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ADJOINT SYSTEMS IN T H E PROBLEM OF MAYER 
U N D E R GENERAL END-CONDITIONS* 

BY S. B. MYERS 

1. Introduction. Necessary conditions in the problems of 
Lagrange and Mayer with variable end points, analogous to the 
Euler equations and transversality condition in the ordinary 
problem of the calculus of variations in the plane, have recently 
been given by Morse and the author.f The methods used in the 
derivation of these conditions, as well as those used by BlissJ 
in his derivation of somewhat more complicated transversality 
conditions in the same problem, consist primarily of certain 
proofs which more properly belong to the theory of differential 
equations. 

In the present paper, certain adjoint relationships in the 
problem hitherto unnoticed are pointed out which make it pos­
sible to derive the necessary conditions mentioned above merely 
by a consideration of the compatibility of the adjoint system of a 
certain set of differential equations and boundary conditions. 
In fact, in the anormal case it is shown that these necessary con­
ditions form an adjoint system of the differential and terminal 
equations of variation. The normal case is treated essentially by 
making it the abnormal case of a slightly different problem. 
Such considerations have the advantage of referring a major 
part of the proofs to the theory of differential equations, and 
thus greatly simplifying them. 

2. The Definition of the Adjoint System. Consider the set of m 
linear homogeneous differential equations of the first order§ in 
the n variables rji, • • • , rjn> 

(1) Lp(rj) = pptfi + qpiVi = 0, m ^ n, 

{& = 1, • • • , m; i = 1, • • • , n), 

* Presented to the Society, April 3, 1931. 
f Morse and Myers, Proceedings of the American Academy of Arts and 

Sciences, vol. 66 (1931), pp. 235-253. 
Î Bliss, Transactions of this Society, vol. 19 (1918), pp. 305-314. 
§ The usual convention of summation with respect to an index repeated 

in the same term is used throughout. 
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where the functions ppjfc), qpi(x) are continuous on the interval 
xx^x^x2 and the matrix ||£^0*011 is of rank m throughout this 
interval. 

By the adjoint set of equations we shall mean the following set 
of n equations in the m dependent variables Xi, • • • , Xm: 

(2) MiÇK) s - —(ppfo) + q^Xp = 0, 
dx 

(0 = 1, • • • , m\ i = 1, • • • , n). 

By a continuous solution of these quasi-differential equations* 
is meant a set (X) of m continuous functions of x such that the 
functions ppfo are of class C' and the equations are satisfied. 

We note the following identityf which holds for arbitrary 
functions (rj) = (rji, • • • , rjn) of class Cr and arbitrary continuous 
functions (X) = (Xi, • • • , Xm) such that the functions ppïkp are of 
class C' : 

[\pLp(ri) — rjiMiiX^dx = [^Lx^]i . 
xl 

Here rjl represents the value of 7}%{x) a t x = xs, (s = l, 2), and X# 
the value of \$(x) at x = x\ 

Consider any set of homogeneous linear boundary conditions 
on rj}. By a set of adjoint boundary conditions of these conditions 
shall be meant a set of linear homogeneous boundary conditions 
on X̂  with the following properties. 

I. The bilinear form [jf̂ X r̂çJ^ vanishes for all X̂  which are 
subject to these conditions while the rjj are subject to the original 
boundary conditions. 

II . Of all sets of conditions with the above property (I), these 
conditions restrict X£ as little as possible; that is, the points in 
2m-space with coordinates X̂  fill out a subspace of maximum 
possible dimensionality. 

The original boundary conditions may be written in the form 

(4) rjl = cihuh, (h = 1, • • • , r; s = 1, 2; i = 1, • • • , n), 

where (u) = (uu • • • , ur) are parameters which are allowed to 

* See Bôcher, Leçons sur les Méthodes de Sturm, p. 10. 
f The notation [ \ means the value of [ ] for 5 = 2 minus its 

value for s — 1. 
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take on any values whatever, and \\cs
ih\\ is a (2nr)-dimensional 

matrix of constants. 

THEOREM 1. A necessary and sufficient condition that a set of 
homogeneous linear boundary conditions on X£ in the form 

(5) bl8\l = 0, (ô = 1, • • • , p; p arbitrary), 

be a set of adjoint boundary conditions of (4) is that they be 
equivalent to the following conditions : 

(6) Vh s [pltie8
ih]\ = 0, (A = 1, • • • , r). 

The proof is simple, and will be left to the reader. 
Equations (2) and conditions (6) together form an adjoint 

system of (1) and (4). 

3. Compatibility of the Adjoint System. In applying our defi­
nition of an adjoint system to the problem of Mayer, the chief 
interest will lie in the question as to when an adjoint system has 
a solution. To answer this question, we start by adjoining to the 
differential equations (1) n — m more differential equations so 
that the extended set of equations becomes 

(7) pkiii + qkiVi = ?*(*) , 

G> = 0), (0 = 1, • • • , m; t, k = 1, • • • , ») . 

Here the functions qT%(x)1 pTi(x), (r = w + l, • • • , n)y are any 
continuous functions subject only to the restriction that the 
determinant |/>&i(^)| be different from zero along (x1, x2).* 

If we have any solution (rj) of (1) of class C', we can use (7) 
to define continuous functions ÇT(x) which we will say cor­
respond to (77). On the other hand, we can choose the functions 
fT as arbitrary continuous functions of x and obtain a solution 
(77) of (7) of class C' taking on arbitrary values at one end point. 
This set (77) will automatically be a solution of (1). 

We now write down an extended adjoint set of equations 

d 
(8) —(pki\k) - g*»Xjb = 0, 0 , k = l, • • • , » ) . 

dx 

We will use later the fact that these equations have a continuous 

* For a proof of the possibility of this adjunction, see Bliss, loc. cit., p. 312. 
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solution (Ai, • • • , Xn) such that the functions pki^k take on 
arbitrary values at one end point (since | pu\ is not zero). 

LEMMA. Between f unctions rji(x) of class C' satisfying (7) with 
the corresponding Ç's and continuous solutions X* of (8) we have 
the following relation : 

(9) [pli\Wi\l = Kïrdx. 

For it is easily verified that the relation 

d 
—(pki\kVi) — Xrfr = 0, (i, k = 1, 2, • • • »; r = w + 1, • • • , n), 
dx 

holds, and we need only integrate this to obtain (9). 

THEOREM 2. A necessary and sufficient condition that the ad­
joint system (2), (6) have a continuous solution (Xi, • • • , Xm) not 
zero at any point of (xl, x2) is that all determinants of the form 

, s _s . {In columns :j= 1, • • • , 2n), 
(A) I Vii - mj I , . 

[In rows : i = 1, - - - , n; s = 1, 2), 
vanish, where rja, • • • , rj^n are the end values of 2n sets of solu­
tions of class C' of the original differential equations (1) and 
Viij ' ' * » Viin o^re 2n sets of values which satisfy the boundary 
conditions (4) with 2n sets of values of the parameters (u). 

To prove the necessity of the condition, assume that there is 
a continuous solution (Xi, • • • , Xw) of (2) and (6) not zero at 
any point of (x1, x2). Then the set (Xi, • • • , Xw, 0, • • • , 0) is a 
solution of (8) and the preceding lemma proves that 

(10) [plr\Wi)l = 0. 

If we multiply equations (6) respectively by arbitrary con­
stants «i, • • • , ur and add, and subtract from (10), we obtain 

(11) [Pfi%(li - dhMh)]\ = 0, 

which may be written as 

(12) [p<X(m-i}l)]\ = 0. 



1932.] THE PROBLEM OF MAYER 307 

The In coefficients pp}\^, ppf^p2 are not all zero, for other­
wise we would have Â  = 0, which is contrary to hypothesis. 
Hence all determinants of form (A) must vanish, and the con­
dition of our theorem is necessary. 

Now suppose that all determinants of form (A) vanish. Then 
there must exist constants m\ not all zero such that the equation 

(13) niiKvi8 - VÔ = 0 

holds for all solutions y)i(x) of class C' of (1), and all solutions 
rji of (4). This is proved as in Morse and Myers (loc. cit., p. 243). 
Using (4), we may write this in the form 

(14) mfai — cihuh) = 0. 

Let (Xi, • • • , Xn) be any continuous solution of (8) not 
identically zero. Then (Xi, • • • , Xn) cannot all be zero at any 
one point of (xl, x2) because of the homogeneity of (8). Subtract 
(9) from (14). We obtain 

(15) v*(m* - pkM) + i ? « W + pk*\è) 

\TÇTd% = 0, 
x1 

(i, k = 1, 2, • • • , n\ h = 1, 2, • • • , r; r = m + 1, • • • , n). 

According to the sentence following (8), we may consider 
pkl^i as having arbitrary values. Furthermore, according to the 
remarks immediately preceding (8), we may consider fr as 
arbitrary continuous functions of x, and 77 ? as having arbitrary 
values. The values of the parameters u% are also arbitrary. 

Let us choose pkl^k1 — —m}. Then if we choose temporarily 
rji = 0 and 2U = 0, we find thatXT = 0. Equation (15) may now be 
written in the form 

2 ^ 2 2 8 S 

(16) vi(m — pki\k) — CihUhMi = 0 . 

From the arbitrariness of Uh and rj? we deduce that 
2 2 2 s s 

pki^k = Wi, MiCih = 0 . 

Thus the conditions 

[pkiXkCih\l = 0, -—(pki^k) — QkîXk = 0 
ax 
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are satisfied with AT = 0, (r = m + l, • • • , n), or, in other words, 
conditions (6) and equations (2) have a continuous solution not 
zero. Hence the condition of our theorem is sufficient. 

4. The Problem of Mayer. Let us consider arcs y% = yi(x) of 
class C' in (n + l)-space, let us denote the end points of these 
arcs by (xs, y\, • • • , ys

n) (xs, y8), where 5 = 1 at the initial end 
point and s = 2 at the final end point. 

Such arcs which satisfy the differential equations* 

(17) frix, y9 y') = 0 

are called differentially admissible arcs. The functions cj>$ are of 
class C". Arcs of the same type which satisfy, for some value of 
the parameters (a) = (au • • • , ar), the conditions 

(18) xs = xs(a), yis = y S (a), 

will be called terminally admissible arcs. The end point functions 
ocs(a), y\(a) are to be of class C'. An arc which is both differenti­
ally and terminally admissible will be called admissible. A set 
(a) will be called admissible if it determines through (18) the 
end points of some admissible arc. 

Let E be an admissible arc y% = yi(x), a x
= x ^a 2 , which 

satisfies (18) for (a) = (0) and along which the functional matrix 
ll^/wll is °f rank m. We seek conditions under which E and the 
set (a) = (0) afford a minimum for a± among admissible sets (a) 
and the corresponding admissible arcs. 

This simple form of the problem is new. I t produces sym­
metrical results and proofs, and makes clear certain adjoint 
relationships in the problem. I t is as general as any other form 
previously used in the sense that any of the other forms can be 
put into this form by simple transformations. The general form 
used by Morse and Myers (loc. cit.), in which the expression to 
be minimized is 

r2 

f(x,y,y')dx + 6(a), 

can be put into the form used in this paper by introducing a new 
dependent variable y$ and a parameter a0, and adjoining the 
new differential equation y$ — f(x, y, y')=0, and the new end 

We use the notation (x, y, y') for (x, yi, • • • , yn, y(, • • • , yn). 
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conditions ^o1 = 0 , y$ =a0 — 6(a). The expression to be minimized 
becomes simply a0. 

5. The Euler-Lagrange Equations and the Transversality Con­
dition. A set of functions rji(x) of class C' which satisfy the 
differential equations of variation 

(19) <t>wm' + HviVi = 0, O, y, yf) on £, 

will be called a set of differentially admissible variations. 
We shall attach the subscript h to xs(a) or y\(a) to denote 

differentiation with respect to ah. Let us set 

Cih = y\h — y'i xh, (h = 1, • • • , r). 

Then a set of 2n numbers rj} which satisfy the terminal equations 
of variation 

(20) rji = cihuh 

for some set of numbers (u) = (ui, • • • , ur) will be called a set of 
terminally admissible variations and will be said to be determined 
by the set (u). 

Let ||rç»7(a0||, (i = l, • * * , n; j = l, • • • , 2n + 2), be any matrix 
consisting of 2n + 2 columns of differentially admissible varia­
tions. Let Y,-1, 7J2 be the j t h of 2n + 2 sets of 2 arbitrary con­
stants. Then the following theorem can be proved.* 

THEOREM 3. There exists a (2n + 2)-parameter family of differ­
entially admissible arcs 

, . Ji = yi(%,ei, * • * , *2n+2), 

Xo1^!, • • • , e2n+2) ^ x S x0
2(eh • • • , e2n+i), 

containing the arc E for (ei, • • • , 0271+2) = (0, • • • , 0), and such 
that 

xos
ej(0, • • • , 0) = 7*, yiej(x, 0, • • • , 0) = i7»,-(a0> 

0' = 1, • • • , 2n + 2). 

The functions y^ yiXJ and xs
0 are of class Cf in ei, • • • , e2n+2-

* See Morse and Myers, loc. cit., p. 239. 
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Now let Uqj, (g = 2, • • • , r ; j = l, • • • , 2n + 2), be 2^ + 2 sets 
of r— 1 arbitrary constants. Consider the equations 

(22) 
#os(tfi, • • • , ^ + 2 ) — xs(aXl ejU2j, • • • , e,-wrj) = 0 , 

yi[%0S(eh • • • , £2n+2), ^ 1 , * * ' , e2n+2]-~ ^ ( « l , ejU2h ' ' • , ejUrj) = 0 . 

These equations are conditions for terminal admissibility and 
they have the initial solution (ai, ei} • • • , e2n+2) = (0, 0, • • • ,0) . 
If the jacobian of the left hand sides of equations (22) with re­
spect to 6i, • • • , e2n+2 were different from zero at this solution, 
the implicit function theorems would show that (22) would 
have solutions for (ei, • • • , 0271+2) as functions of ai for all values 
of ÛJI in the neighborhood of 0^ = 0. That is, there would be ad­
missible arcs in the family (21) giving ai a value smaller than 
zero. This would contradict the fact that £ is a minimizing arc. 
Hence we conclude that the jacobian must be zero. 

If we attach the subscript p to xs or y\ to represent differ­
entiation with respect to ap, the jacobian in question is 

(23) 

Ji/ jy i/V qy A 

- _1_ 

(P = 2, • • • , r ) , 

, (2n + 2 columns ;j = 1, • • •, 2n + 2), 

(2n + 2 rows ; s = 1, 2; i = ! , - • • , « ) . 

Let us set j — Xfiîipj, cipMpj> (P = 2, r). If we mul­
tiply the first two rows of the Jacobian respectively by ylx 

and y I2 and subtract them respectively from the next n rows 
and the last n rows, we obtain 

(24) 7 j* - 7 f 

va — va 
0. 

This holds for arbitrary constants y}, for any sets of differ­
entially admissible variations 77 »,•(#), and for arbitrary constants 
Upj. 

The arbitrariness of y} enables us to deduce from (24) the 
following necessary condition: 

(25) Vit — Vul — 0, ( 8 = 1 , - In), 

where i]a(x) is the Sth of any In sets of differentially admissible 
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variations, and where up5 is arbitrary, if|5 being given by the 
following : 

(26) 7̂*5 = cipupb, (p = 2, • • • , r ) . 

But, according to Theorem 2 of §3, equation (25) is a sufficient 
condition that the following adjoint system of (20) and (26) 
have a continuous solution (Ai, • • • , XOT) not zero at any point 
of (a\ a2) : 

d 
(27) —(0/jyt.'X/s) - <t>0Vi\p = 0, (P = 1, • • • , m; i = 1, • • • , n), 

ax 

(28) [4>w^cïp]\ = 0, (p = 2, • • • , r). 

But from (28) follows an identity in the differentials dap; 

[0j8!/<'V^p]jdo£j, = 0, (p = 2, • • • , r). 

Now c\hdah = dy\~yldx'\ (h = 1, 2, • • • , r), and so we obtain 

(29) [<hvi^{dyi - y\dx)]\ + Kdax = 0, (Z = constant). 

These results may be summarized in the following theorem. 

THEOREM 4. ƒƒ £ and the set (a) — (0) afford a minimum in the 
problem, there exist a constant K and a set of continuous f unctions 
Xi(x), • • • , Ato(ff), not all zero at any point of (a1, a2), such that if 
we set F = \p<j>0, the equations 

(30) —FVi> - FVi = 0 
dx 

are satisfied at every point of E, and the following identity in (da) 
holds : 

(31) [FyAdyi - y\dx]\ + Kdax = 0, 

when dxs and dyl are expressed in terms of (da) and evaluated for 
(a) = (0). 

6. Normalcy. An admissible arc E is said to be normal relative 
to conditions (30) and (31) if there exists no set of continuous 
functions X ^ 0 with which it satisfies these conditions with 
K = 0; that is, if it does not satisfy the differential equations 
and boundary conditions 
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(32) T-(0/3y,-'X/3) — 4>fiyfo = 0, 
dx 

(33) [<t>fivAfiCih]\ = 0, (h = 1, • • • , r). 

Otherwise E is said to be anormal relative to these conditions. 
From Theorems 1 and 2 the following theorems are evident. 

THEOREM 5. The system (32) and (33) is an adjoint system of 
the differential and terminal equations of variations (19) and 
(20). 

THEOREM 6. A necessary and sufficient condition for normalcy 
relative to (30) and (31) is that there exist a non-vanishing 
determinant of the form 

I s 8 I 

I Via — vu | > (<5 = 1, • • • , 2n; i = 1, • • • , n; s = 1, 2 ) , 

where r; »«(#), (i = l , • • • , w), w /Ae 8/A #ƒ any In sets of differ­
entially admissible variations, and r\\b is the 8th of any In sets of 
terminally admissible variations. 
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