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AN EXTENSION OF LAGRANGE'S EQUATIONS 
BY C. A. SHOOK 

1. Introduction. In studying the motion of a planet about the 
sun under the action of a disturbing planet the following co­
ordinates are convenient. Let the plane determined by the 
origin and the tangent to the planet's path at any instant be 
7T. Let x, P, N denote respectively the points where a unit 
sphere about the origin is cut by the x axis, the radius vector 
to the planet, and the line of intersection of TT and the xy 
plane. Then let 6 = xN, w — NPf </> = the dihedral angle between 
T and the xy plane, and r = radius vector, it being understood 
that <t> is in the first quadrant and 6 is between 0 and 360°. 

If j8 and X denote latitude and longitude respectively, we 
have for the kinetic energy of a unit particle 

(1) IT = /-2 + r2(£2 + cos2/3X2). 

But we have the relations 

sin /3 = sin 6 sin w ) 

tan (X — 6) = cos <j> tan w ) 

whence 

(3) IT = r2 + r 2 [ ( l - sin2 w sin2 <t>)62 + w2 + sin2 w<t>2 

+ 2 cos (f>dw — 2 sin w cosw sin<t>Ó<j>]. 

I t will be shown that the condition that the velocity be in the 
plane IT is 

dT 
— = 0, 
dcf> 

which in the present case reduces to 

(4) sin w4> — cos wsin 00 = 0. 

If by means of this relation we eliminate <j> from T we get 

2T = r2 + r2(w + cos<£0)2. 

Now put v = w+6 and T = l —cos </>, so that 
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(5) IT = r2 + r2(b - Yè)K 

The four coordinates used are r, 0, v, T. 
The question now is whether or not we may use Lagrange's 

equations with this value of T. There are two reasons why it is 
by no means obvious that we may. In the first place we are 
using four coordinates and the dynamical system has but three 
degrees of freedom. In the second place, partial derivatives are 
involved in Lagrange's equations. Now the partial derivatives 
of T depend not only on its value but on the way it is expressed. 
We might, for example, have eliminated ê by means of (4); or 
we might have assumed a relation altogether different from (4). 
We shall prove a theorem which shows that, in spite of all this, 
Lagrange's equations do apply in the present case. 

2. Conservative Holonomic Dynamical System. In a conserva­
tive holonomic dynamical system with n degrees of freedom let 
the kinetic energy, T, be given by 

(6) IT = aij-qiCj-j 

the double appearance of i and j denoting summation from 1 
to n. The a^ are functions of gi, • • • , qn and we may suppose 
that aij = dji. Let the kinetic potential be 

(7) £ = r + F ( ? i , - . . , g w ) , 

and let 

d( d \ d 

Qi " dkdqj dqi ' 

With this notation Lagrange's equations are 

DqL = 0. 

Suppose that the gt- are related to n+l new variables, 
fi, • • • , r«+i, by the equations 

(8) qi = qi(rh • • • , fn+i), (f *= 1, 2, • • • , ») , 

which are such that 

*(ri, • • • , rn) 
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We have 

(9) qi = ~-r8y (s = 1, 2, • • • , n + 1), 
dr8 

and 

(10) - ^ = ^ • 
df s dr s 

When L is expressed in terms of ra, ray we shall write it L'. Now 

dL! dL dqi dL dqi 

df8 dqi dfs dqi dr8 

d/dL'\ dq{ d/dL\ dL d/dq{\ 

dt\drsJ dr8 dt\dqi/ dqi dt\dr8J' 

dL' dL dqi dL dqi 

dr8 dqi dr$ dqi dr8 

Since 
q{ _ d/dq{\ 

r8 dKdr8/' 

we have 
dOi 

(11) DUL' = -f- DtJL. 
dr8 

Since Dg.L = 0 along the trajectories, we have 

(12) DrJL' = 0 

along these trajectories. But as we should expect, these equa­
tions are not sufficient to determine ri, • • • , rn+i- In fact the 
equations are not independent, for it can be verified that 

(13) B - D ' «*-•••'»> ftJ/-0. 
««i d{rh • • • , r_ i , r8+1, • • • , rn+ï) 

Let us restrict the variables fi, • • • , rn+i by an equation of 
the form 

(14) <x8r8 = 0, (5 = 1, 2, • • • , n + 1, an+i y* 0), 

where the a's are functions of fi, • • • , r»+i. This enables us to 
eliminate fw+i from L'. After this elimination the kinetic po-
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tential will be denoted by L". We note that L=L' =L", but 
that the partial derivatives of the last two are not in general 
equal. 

If the subscript zero denotes that after differentiation fn+1 is 
eliminated by means of (14), then if S9^n + 1, 

dL" _ /dL'\ / àL'\ Mn+i 

dfa \drs/o \drn+Jo drs 

dL" _ /dL\ / dL'\ drn+i 

drs \drs/o \drn+J 0 drs 

Hence, 

(15) DrsL" = (DrJJ)o + — 
dt 

Let us suppose that (14) is so chosen that 

/ dL' \ 
(16) ( — - ) - 0. 

It will be seen by Theorem 2A that this assumption is equiva­
lent to saying that (14) is identical with 

dL' 
(140 = 0. 

From (15) and (16) it follows that 

(17) DrsL" = 0 

along the trajectories. I t is easily shown that this equation also 
holds for s = n+l, in which case it becomes dL"/drn+i = 0. 

If we replace L' by L" in (13), this equation holds by virtue 
of (15) and (16). I t is no longer an identity, however, since it 
holds only by virtue of (16), that is, of (14). In other words (14) 
is deducible from equations (17) and may be used in place of 
any one of these. We can now state the following theorem. 

THEOREM 1. If L(qi, • • • , qni qu • • • , qn) is the kinetic po­
tential in a conservative holonomic dynamical system and we put 

If —-\ ——1 - ( \ —— 

(8) q% = qi(ri, • • * > rn+i) 
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and suppose that 

dL' 
(140 T — = 0, 

drn+i 

then r\, • • • , rn+i are determined by the equations 

(17) DrJJ' = 0, 

and (14') is a consequence of these equations. 

3. Alternative Conditions to Replace (16). 

THEOREM 2. Condition (16) implies and is implied by either of 
the following : 

(A). The ratio 
dqi d'qj 

dr8 drn+i 

is the same for every 5 = 1, 2, • • • , n + 1. 

(B). Ifrn+i is eliminated from qi by (14), 

dq' ' n 
qi s 0. drn+i 

The proof of these conditions is immediate. Since L contains 
qi and hence rs only through Tf (16) becomes 

(160 ( — — ) - 0. 

By (6) and (9) we have 

dqi dqi 
2V = an Kh, (s, a = 1, 2, • • •, n + 1), 

drB dra 

so that 
dT' dqi dqj 

= an f„ (5 •= 1, 2, • • • , n + 1), 
dr w +i ' dr8 drn+i 

and 

Wn+i/o ôfn+iL3ffc a»+i drn+iJ 

( * - ! , • • • , » ) . 
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From this it follows that 

[February, 

/ m \ dq* \ d q i ak dqi 1 A / i . 1 N 

(19) air- - s 0, (* = 1, • • • , »), 

and hence 
dqi dqj 

(20) Otkldij = Ofn+l'öt-/ 
drn+i dr»+i 

showing that the ratio on the left is the same for all values of k. 
Conversely if (20) is satisfied then (19) follows and hence (18), 
or (16). This proves the equivalence of (A) and (16). 

When rn+i is eliminated from qt by (14) we get 

(21) 

and hence by (18) 

Ci = ~ r*> (* = !> ' • * > *)> 
Ldr*. an + i drn+iJ 

dq' • n 

This proves the equivalence of (B) and (16). 

THEOREM 3. If (16) is satisfied, then when fn+i w eliminated 
from qi, • • • , gn, 

d(gi> ' • ' > gn) 
0. 

Equations (19) may be regarded as n equations for the de­
termination of dqj/drn+i. Since these derivatives do not all 
vanish and the equations defining them are homogeneous, it 
follows that the determinant 

I , I I (ait <** dai\\ 
I oih| = mA- T — j 

I \drk <Xn+i orn+i/1 
is zero. But by the rule for multiplying determinants 

dqi ak dqi 
bjk an 

= an 

drk ûJn+i drn+i 

dqi 

dr> 

, (i not summed), 

(i not summed), 
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by (21). Since |a^-| is the determinant of a positive quadratic 
form, we must have 

d(gi, • • • , qn) __ 

à(h, * ' ' , K) 

4. Geometric Aspects of the Theory. In this section we confine 
ourselves to the case n = 2. The discussion will also apply to the 
case in which all but two of the qi are not changed by the trans­
formation. If 

(23) IT = öii^i2 + 2auqiq2 + a<nq£, 

then T may be regarded as the kinetic energy of a particle of 
unit mass constrained to move in a surface whose metric is 

ds2 = andqi2 + 2andqidq2 + a22dq$ . 

At any point P of the path w of the particle in this surface con­
struct a geodesic G tangent to w. Let G cut any fixed directed 
curve r at N, and let O be a fixed point of V. Let m = ON, meas­
ured along r , r2 = NP, measured along G, r3 = angle between Y 
and G. The equations of 7r, qi — q%{t), are found by solving the 
given dynamical problem, while g* are direction numbers of the 
tangent to ir. The relations between qi and rz are 

(24) 9i = qi(ri,ri,rz), (i = 1 , 2 ) . 

If ri and r2 are held fast, these are the equations of a geodesic 
circle, C, with center at N, and dqi/drz are direction numbers of 
the tangent to C. Now C is perpendicular to G and hence also to 
7T. The latter fact is expressed by the equation 

dq3-
(25) difli = 0. 

drz 

By Theorem 2B this is a necessary and sufficient condition that 

/dT'\ 
(26) ( — ) = 0. 

Conversely if (26) holds, G will be tangent to w. These results 
may be stated as follows: 

(22) 
dqi 

dfi 
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THEOREM 4. If the kinetic energy of a dynamical system is given 
by 

IT = anq4h (hJ = !> 2)i 

and if on a surface whose metric is 

ds2 = aijdqidqj, (i} j = 1, 2), 

fi, Hy rz are three coordinates chosen in the manner specified above, 
then 

/6T\ 

\drJo 
0. 

Also, rit r2, rz are obtained from the equations 

d/dL"\ dL" 

-ha-^r"' (s-''2'3)' 
where the double prime denotes that the kinetic potential is expressed 
in terms of ru r2, rS} h, h. 

5. Examples. For a unit particle constrained to move in the 
#;y-plane, we have 2T = x2+y2. Let P be the point (x, y), N a 
point on the x-axis, and O the origin. Put z = ON, p = NP} 

<i> = XNP. Then 

x = z + p cos <£, y = p sin <j>. 

If NP is to be tangent to the path of the particle, we must have 

dx dy 
x h y— = 0. 

d4> d(j> 

This is the condition expressed by (25). In terms of the new var­
iables this condition becomes 

(27) z sin <j> — p4> = 0. 

We easily find 

IT' = z2 + 2 cost zp + P2 - 2p sin*20 + P V > 
and 

dT' 
—r = — p sin <t>z + p20 = 0, 
dcj) 

by (27). Using (27) we get 

(28) 2T" = (zcos<t> + p)2. 

file:///drJo
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It may be remarked that since (25) is linear and homogeneous 
in ji, T" will always be a perfect square when n = 2. If F is the 
force function expressed in terms of z, p, 0, the equations of 
motion are, by Theorem 4, 

d r ' i d F 

[COS <j>(z COS 0 + p) J = > 
dt dz 

d . dF 
—(z cos 0 + p) = > 
dt dp 

dF 
z sin <j)(z cos 0 + p) = • 

d(j> 

If we multiply these equations by p, — p cos 0, sin </> respectively 
and add we obtain (27). 

The total order of these equations appears to be five, but it 
is in reality only four since a first integral can be obtained from 
a linear combination of them without any integration. If the 
reader wishes to carry through the integration for the case 
F= —gy= —gp sin 0, he will see that only four arbitrary con­
stants enter. The force function suggested is that due to gravity. 

A second example is that given in the opening section. A care­
ful comparison of this example with the theory is suggested. 

6. Case of more than One Extra Coordinate. The preceding 
theory can be extended to the case in which more than one 
additional coordinate is introduced. If the equations of trans­
formation are 

q% = qi(ri, • • • , rn+P), (i = 1, • • • , »), 

there are p extra variables. If the new variables are restricted 
by p equations like (14), and if as a consequence of these rela­
tions we have 

/dT\ 
(— - ) = 0, (s = n+l, .,.,n+p), 
\drs/o 

then it can be shown that 

(29) DrJJ' = 0, (* = 1, 2, • • • , » + £). 
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No satisfactory geometrical interpretation has been found ex­
cept for the case p = n — 1. This includes also the case p<n — l, 
provided that n — p — 1 of the original coordinates are not af­
fected by the transformation. For example, in the case discussed 
in the first section n = 3 and p = 1 and there was one coordinate 
not affected by the transformation. The geometrical interpreta­
tion for p = n — 1 is similar to that for w = 2, p = l. If 

IT = ai,44u (i,j = 1, 2, • • • , »), 

then T may be regarded as the kinetic energy of a unit particle 
moving in a space* of n dimensions whose metric is 

ds2 - aijdqidqj, (i, j = 1, 2, • • • , n). 

Let (ri, • • • , rn~h 0) represent the g-coordinates of a point iV in 
this space; rn = the distance along the geodesic joining N and the 
point P: (qh • • • , qn); rn+i, • • • , ^2n-i be the first » —1 direc­
tion cosines of this geodesic at N. Suppose the point N is so 
chosen that this geodesic will be tangent to the path at P . If 
then ri, • • • , rn are held fast in the equations of transformation, 

q% = qi(rh • • • , r2n-i), (f = 1, 2, • • • , »), 

these equations become those of a geodesic sphere. This sphere 
will be perpendicular to the geodesic NP at P , and hence also 
to the path. This fact is expressed by the « — 1 equations 

dqj 
aij-qi = 0, (s == n + 1, • • •, In — 1). 

But these are necessary and sufficient that 

(bT\ 
( ) s 0 , (5 = » + l , - . . , 2 * - 1 ) 
\ d / V o 

so that equations (29) will hold. 
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