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QUADRATIC PARTITIONS—I 

BY E. T. BELL 

1. Introduction. This is the preliminary and longest note of a 
series which, by the kindness of the editors of this Bulletin, I 
hope to publish from time to time, giving some of the numerous 
general arithmetical theorems of a particular type which I have 
been accumulating for several years. To make this series self 
contained, I first recall the necessary definitions, and give once 
for all a few formulas that will be used repeatedly. Results and 
methods of two previous papers are indicated by numbered 
references.* 

Subsequent notes will contain only theorems, with statements 
of the elementary identities from which they follow. This will 
be sufficient to enable anyone who wishes to retrace the details 
of the proofs and verify the conclusions. I believe that present 
conditions of mathematical publication in this country demand 
the utmost brevity consistent with reasonable clarity. 

2. Parity. Let £ = (xi, • • • , xn) be a one-row matrix or vector 
in which the elements xi, • • • , xn are in a given field K. Write 
— £ = ( — Xi, • • • , — xn). If ƒ(£) is a single finite real or complex 
number whenever x\, • • • , xn are in K, we say that ƒ(£) is 
uniform over K. Let ƒ (£) be uniform over K. Then, if ƒ( — £) =ƒ(£), 
we say that ƒ(£) has parity pin |) in £; if ƒ( —5) = —ƒ(£), a n d if 
further /(O, • • • , 0 ) = 0 , the parity is p(\n). Let us denote 
by £*, y j , ( i = l , • • • ,r;j=l, • • • , s), vectors in K, having no ele­
ment in common. Then, if /(£i, • • • , £r, 771, • • • , r/8) has parity 
p{n[ | ) i n&, and parity p{\n\') in r?/(i = l, • • • , r ; j = l, • • •, s), 
we shall agree to say that /(£i, • • • , £r, 771, • • • , rys) has parity 
P(n{, • • • , ni \n{', • • • , ni') in (£1, • • - , & . \vu • • • , *?•)> a n d 

we write 

* (1) Arithmetical paraphrases, Transactions of this Society, vol. 22 (1921), 
pp. 1-30; 198-219; (2) A revision of the Bernoullian and Eulerian functions, 
this Bulletin, vol. 28 (1922), pp. 443-450. The material in (1) is included and 
generalized in (3) Algebraic Arithmetic, American Mathematical Society Col­
loquium Publications, vol. 7, 1927, Chapters 2, 3; ibid., pp. 146-159, contain 
a complete account of the umbral calculus used in (2) and in some of the pres­
ent notes. 
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/ ( £ l , • * • , £r, Vh ' ' ' y Va) = / ( £ l , * * ' , £r | 1?1, ' ' * , Va) • 

The field i£ will be given explicitly, or by the context. Unless 
otherwise noted, K is the field of all rational numbers, and the 
values of the elements of £1, • • • , £r, 971, • • • , Vs are rational 
integers. 

3. Notation. As in the references in §1, n, niy d, ô, dl, St-, t, ti} 

m, r, nii, riy v, viy a, &, fx, fii, (i = 1, • • • )., denote integers, of which 
n, niy d, S, di, dif t, ti are greater than zero, and otherwise un­
restricted, m, r, mi, Ti a,re greater than zero and odd, v, Vi, a, b 
are greater than, equal to, or less than zero and are unrestricted, 
ft, fXi are greater than or less than zero and odd. 

If one or more of n, • • • , /*; occur under ^2, the sum refers to 
all n, - - • , fii as defined. 

A sum y^, in which b <a is vacuous, and is to be suppressed. 
The umbra (see §1, references (2), (3)) of the sequence 

£0, £1, • • • , £s, • • • , in which the first element has the suffix 
zero, is £. Symbolically, £8^£s,(s = 0, 1, • • • ). I define the 
(umbral) indefinite integral of £ to be £', where £' is the umbra of 
£s+i/(s + l ) , (5 = 0, 1, • • • ). The even suffix notation is used (as 
in paper (2)) for the numbers of Bernoulli, Euler, Genocchi, and 
Lucas, whose respective umbrae are B, E, G, R. Hence B', E', 
G', R' are defined. The sequences of functions associated with 
By Gy Ey Ry whose respective umbrae are 13, 7, rj, p, are as in the 
paper (2). If necessary to indicate the argument x, we shall 
write j8(#), etc. Thus P(x) is the umbra of &(#), (5 = 0, 1, • • • ) ; 
p'(x) is the umbra oîp8+i(x)/(s + 1), (s = 0, 1, • • • ) . 

4. Partitions. Let n (§3) be constant, and let Q(xh • • • , xp) 
be any polynomial in Xi, • • • , xp with coefficients in X(§2). 
The totality of vectors (xi, • • • , xp), whose elements are in Kf 

such that n = Q(xi, • • • , xp), will be called the Q-partition of 
n. If this partition contains an infinity of distinct vectors, we 
impose conditions C(xi, • • • , xp) upon xi, • • • , xp such that, 
subject to C(xi, - - - y xp), the Q-partition contains only a finite 
number of distinct vectors, and refer to this as a restricted par­
tition. Restrictions will always be stated explicitly; otherwise, 
the partition is unrestricted. If #1, • • • , xp occur under ^ , the 
sum is with respect to the partition, and the limits need not be 
otherwise indicated. 

If Q above is homogeneous of degree 2, the partition is called 
quadratic. 
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5. Special Functions. The following will occur frequently. If 
x is real and positive, [x] in an exponent or as a summation 
limit denotes the greatest integer in x. If y is real and different 
from zero, sgn y is defined (as usual) by sgn :y=3>~1 |:y |, and 
sgn 0 = 0. Hence, for real uy v, 

sin (u sgn v) = sgn v sin u ; 

for z real, ?^0, and x, y real, 

cos (x sgn z) = cos x, 

sgn z cos x cos 3; ± sin x sin y = sgn z cos (# + y sgn 2), 

sgn z sin x cos y ± cos a? sin y = sgn 2 sin (x ± y sgn 3). 

Referring to §3, we define e(v) to be + 1 if v is even; — 1 if ^ is 
odd. Refer to §2 for £. If ƒ(£) has an expansion of the form 

Z a\ an 

**• a\, • • • ,anX\ * * * Xn y 

which is convergent in some non-zero region of the w-space of £, 
we say that ƒ (£) is an entire f unction of £. In particular, a poly­
nomial in #i, • • • , #n is entire in £. 

The previous notation (paper (1), p. 207) 0a&c(^, y) for the 
doubly periodic functions of the second kind, 

<l>abc(x, y, q) = (j>abc{x, y) = &l#a(% + y)/(&b(x)&c(y)), 

of which there are 16, will be used. The remaining 48 expansions, 
not available in previous work, have been obtained by D. A. F. 
Robinson, and will be printed elsewhere.* 

6. Special Vmbral Identities. In the passage from trigono­
metric identities to their equivalents in terms of parity func­
tions, the trigonometric terms having simple poles at the origin 
play a particular part ; see paper (1), p. 204. Such terms con­
tribute sums of parity functions one or more of whose arguments 
are in arithmetical progression. The residue of the pole must be 
zero in any trigonometric identity paraphrased. If it is not im­
mediately obvious that the residue vanishes, the fact that it 
must gives a subsidiary theorem. The following formulas, which 
will be frequently used, enable us to write down the residues 
without calculations in one type of theorem ; £ is umbral as in §3. 

* Probably in the Transactions of the Royal Society of Canada. These ex­
pansions will be stated when used. 
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2 ctn x sin {£x + y) = 2#~'1£o sin 3; + cos {pf(£)x + 3*}, 

2 ctn x cos (£x + y) = 2ar1£0 cos 3; — sin {j3'(£)ff + y) ; 

4 tan # sin (%x + 3>) = cos {Y' (£)# + y], 

4 tan # cos (£x + ;y) = — sin {y'(£)x + y} ; 

2 sec x sin (£# + y) = sin {rj(£)x + y}, 

2 sec x cos (£# + y) — cos {^(Öx + 3>} ; 

esc # sin (£# + 3/) = x_1^o sin y + cos {p'(£)x + y\ , 

esc # cos (%x + 30 = #_1£o cos 3/ — sin {//(£)# + 3>} . 

7. Trigonometric Identities. From the identities on pages 
204-S of paper (1), we write down eight which generalize them 
and greatly reduce algebraic work later. Refer to §§3, 5, and 
write 

Then 

esc x sin (vx + 3O = [{1 — e{v)} ctn x + e{y) esc x] sin y 

N 

+ sgn*>[{ 1 — e(v)} cos 3> + 2 ^ cos {(2r — e(v))xsgnv + 3>} ] ; 

(—1) ^sec # sin (vx + 3O = e(p) sec # sin 3/ 

+ {1 — e(v)} sgn v tan x cos 3;+ {1 — e(v)} sin y 

N 

+ 2 £ ( - 1)' sin {(2r - e(v))x sgn y + 3;} ; 

tan # sin (vx + y) = (— l ^ f V ) tan x sin y 

+ (— l ) ^ { l — e(v)) sgn v sec x cos;y(— 1)M 

+ ( — 1)^ sgn v[e(v) cos 3; — (— l)Mcos(*>x+3/) 

+ 2 Z ( - l ) r cos {(2r-l + e(v))x sgn v + y } ] ; 
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ctn x sin {vx + y) = [e(v) ctn x 

+ {1 — e(v)} esc x] sin 3; + sgn v\ e(v) cos y + cos (i>x + y) 

M - | 

+ 2 ^ cos {(2r — 1 + e(v))xsgnv + 3;} . 
r=l J 

The remaining four are written down from these by replacing 
y by 3>+7r/2. All will be used to reduce terms involving esc, sec, 
tan, ctn in trigonometric identities before passing to parity 
functions. 

8. General Umbral Identities. The principle of paraphrase 
stated in paper (1), pages 4, 5, can be extended to umbral sines 
and cosines, identities between which paraphrase into identities 
between entire functions as defined in §5. Tha t is, the elements of 
the one-row matrices, or vectors, in the principle as previously 
stated, can be replaced by umbrae. I t is necessary only to define 
parity for functions of umbrae, and it will be sufficient to state 
the definitions for functions of one umbra £. If f(x) =f(x |) is an 
entire function of the ordinary x, we say that ƒ(£) (=ƒ(£ |)) has 
parity p(\ |) in £. According to this definition and what precedes, 
ƒ(£) is of the form 

where the series either converges or terminates. If g( — x) 
= —g(x), we say that g(£) ( = g( |f)) has parity p(\l) in £, and 
g(£) is of the form 

Pl%l + P&Z + • * * + p2s+l%2s+l + • • • . 

The condition g(0) = 0 is not imposed, as it is not required here. 
To see how the principle goes over to umbrae the following 

case will suffice. Let 

ƒ(*) = M o + M2 + ' • • + p2s^8; 

let x be an ordinary umbra, and a, & , • • • , c umbrae such that 

cos ax + cos bx + * • * + cos ex = 0 

is an identity in x. Then 

ƒ(<*)+/(*) + •••+ƒ(«) = 0. 
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For, the given identity implies 

dîr + b2r + ' ' ' + C2r = 0, {f = 0, 1, • • • ) \ 

and therefore 

po(a0 + bo + • • • + Co) + p2(a2 + b2 + • • • + c2) + • • • 

+ p2S(d28 + b2s + ' ' ' + c28) = 0; 

which is the stated conclusion. 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

ON S Y M M E T R I C PRODUCTS OF 
TOPOLOGICAL SPACES* 

BY KAROL BORSUK AND STANISLAW ULAM 

1. Introduction. This paper is devoted to an operation that is 
defined for an arbitrary topological f space E and is analogous 
to the operation of constructing the combinatorial product 
spaces. J We shall be concerned with the topological properties 
of point sets defined by means of the above operation when 
executed on the segment 0 S x S 1. 

Let E be an arbitrary topological space. Let En denote the 
nth topological product of the space £ , that is, the space whose 
elements are ordered systems (#i, x2} • • • , xn) of points a^eE. By 
a neighborhood of a point (xi, x2, • • • , xn), we understand the set 
of all systems (#/ , x2 , • • • , x^ ), where x( belongs to a neigh­
borhood Ui of the point Xi in the space E. X 

The operation with which we are concerned in this paper con­
sists in constructing a space which we shall call the ^th sym­
metric product of the space E and denote by E(n). Its elements 
are non-ordered systems of n points (which may be different or 
not) belonging to E. Two systems differing only by the order or 
multiplicity of elements are considered identical. A non-ordered 
system or simply a set consisting of n points x\, • • • , xn from the 
space E will be denoted by I }. If Ui is a neighbor­
hood of the point Xi in the space £ , then the set of all systems 

* The definition of symmetric products is given below. 
f In the sense of Hausdorff, Grundziige der Mengenlehre, p. 228. 
t See, for example, F. Hausdorff, Grundziige der Mengenlehre, p. 102. 


