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ON COMPLEX METHODS OF SUMMABILITY* 

BY R. P . AGNEWf 

1. Introduction. When a method of summability J evaluates a 
complex sequence \sn] to L, it is of interest to know if that 
method evaluates {^(s^)} to %.(L), if it evaluates {J(sn)} to 
J{L), and if it evaluates {sn} to L.§ For linear methods of sum-
mability,|| these three questions are easily shown to be equiva­
lent. 

To simplify our discussion, we introduce the two following 
definitions. A method of summability has property A if, cone-
sponding to each sequence \sn\ which it evaluates, the sequence 
{^l(sn)} is evaluated to the real part of the value of {sn}. A method 
of summability has property B if, corresponding to each bounded 
sequence {sn} which it evaluates, the sequence {^(sn)} is evalu­
ated to the real part of the value of {sn}. 

2. Failure of Property B. That a linear regular method may 
fail to have property B, and hence a fortiori fail to have prop­
erty A, follows easily from a consideration of the transforma­
tion^" 

(1) (Tn = | [1 ~ ( - 1)H] Sn-! + | [ l + (-1)"»] Sn 

which assigns to a given sequence {sn} the value lim crn when 
this limit exists. The bounded sequence {xn} defined by xn = l 
+ (—l)ni is evaluated to 0 by (1); but {^(xn)} is evaluated to 
1» {7(xn)} is evaluated to — 1 , and {xn} is evaluated to 2. This 

* Presented to the Society, June 13, 1931. 
t National Research Fellow. 
t By a method of summability, we mean simply a rule which assigns to each 

given sequence (or series) of complex numbers either no value or a single value. 
For example, if we agree to assign to the complex sequence {sn\, where 
Sn — Un+ivnt un and vn real, the value 3 -\-M if VnT^O for some n and the value 3 
if vn = 0 for all n, we have a method of summability. 

§ If w = u-\-iv, where u and v are real, we use %{w)?J(w), and w to denote 
respectively u, iv, and the conjugate u — iv of w. 

|| For definitions of linearity, regularity, etc., and for necessary and suf­
ficient conditions for regularity, see an expository paper by W. A. Hurwitz, 
this Bulletin, vol. 28 (1922), pp. 17-36, and the references there given. 

1T Corresponding to a given sequence si, s2, $8, • • • , we define s0=0. 
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example is of especial interest in that {^(Xn)} not only fails to 
be summable to the real part of the value of {xn}, but is actually 
summable to a different value. 

I t will appear later (§8) that a linear regular method may 
have property B and fail to have property A. 

3. Necessary Condition f or Properties A and B. The following 
two theorems, of which the proofs are immediate, give condi­
tions which are necessary in order that a method may have 
property A or property B. 

THEOREM 1. If a method having property A evaluates a real 
sequence, the value assigned must be real. 

THEOREM 2. If a method having property B evaluates a real 
bounded sequence, the value assigned must be real. 

The converses of these theorems do not hold as we shall now 
show by giving an example of a linear regular transformation 
which assigns a real value to each real sequence which it evalu­
ates, but which nevertheless fails to have properties A and B. 
The transformation is 

(2) <Tn = J ( l - *K-1 + JU + 0*«. 

To show that (2) assigns a real value to each real sequence which 
it evaluates, let \xn) be a real sequence evaluated by (2) to 
Lx+iL2. Then lim %{xn+xn-\) —L\ and lim i(xn — xn-i) =£2, and 
on adding and subtracting we find xn—»Zi+Z,2 and xn-i—>Li — L2; 
hence L\-\-L2—L\ — L2 so that L2 = 0 and the reality of the value 
is established. To show that (2) does not have properties A and 
B, we consider the sequence {yn} defined by 

y4p-3 = 1 — i, ytp-2 = 1 + i, y^p-i = — 1 + i, y*P = — 1 — i} 

(p= 1 , 2 , 3 , . . . ) . 

I t is easily verified that (2) evaluates {yn} to 0, and that (2) 
fails to evaluate {^l(^n)}; hence, since {yn} is bounded, (2) 
fails to have properties A and B. 

4. Complex Transformations and Associated Real Transfor­
mations. We now consider methods of summability which in­
volve transformations (G) defined as follows. Let T be a metric 
set having a limit point /0 not belonging to T, and let complex 
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functions ak(t), k = 1, 2, 3, • • • , be defined for all / in T. If a 
sequence sn is such tha t 

00 

(G) a(f) = J^ak(t)sk 
ft-i 

converges for all / in T, and if 

lim <r(i) = L, 

then {sn} is said to be summable by the method or transfor­
mation (G), or simply summable (G), to L. 

Corresponding to a given (G), we define bk(t) and ck(f) to be 
the real functions determined by the equations 

ak{t) = bk(t) + ick(l). 

The transformation 
00 

51(G) <r(t) = £**(*)** 

may be called the associated real transformation of (G). Using 
the well known necessary and sufficient conditions for regularity 
of (G), we obtain the result: If (G) is regular, then its associated 
real transformation ^ ( G ) is also regular. 

5. Properties of Transformations. The following two theorems 
serve to establish the equivalence of certain problems involving 
properties of (G). 

THEOREM 3. In order that (G) may have property A, it is neces­
sary and sufficient that ^ ( G ) include (G). 

THEOREM 4. In order that (G) may have property B, it is neces­
sary and sufficient that ^ ( G ) include (G) over the set of all bounded 
sequences* 

We will now prove Theorem 3; the same method, together 
with the assumption tha t all sequences considered are bounded, 
furnishes a proof of Theorem 4. 

To establish sufficiency, let ^ ( G ) include (G) and let (G) 
evaluate a given sequence {sn\ to Z; we are to show that (G) 

* We say that a method includes a second method over a set S of sequences 
if each element of 5 which is summable by the second method is also summable 
to the same value by the first method. 
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evaluates {^(Sn)} to ^(L). I t then follows from the definition of 
summability (G) that the series 

00 00 

both converge over T, and that the value of each approaches L 
as 2—>/0; hence^2kLiCk(t)sk converges over T, and its value —>0 
as /—H0. Since bk(t) and ck(t) are real, it follows that the series 

oo oo 

both converge over T, and that their values approach ^(L) and 
0 respectively as t—>/0. Hence the series 

oo oo 

converges over T and its value approaches %.{L) as £—>/0. Thus 
sufficiency is proved. 

To establish necessity, let (G) have property A, and let {sn\ 
be a sequence which (G) evaluates to L\ we are to show that 
^ ( G ) evaluates {sn} to L. We find that the series 

00 00 

J f e - l fc-1 

both converge over 2", and their values approach L and î^(£) 
respectively as /—>/0. Hence J^^Lia* (t)J(sk) converges over Tand 
approaches J{L) as /—->/0. Since ^(s&) is real and J{sk) is pure 
imaginary, it follows tha t the series 

5>*(*)*i(**), f>*(*)7(**) 

both converge over T and that their values approach %{L) and 
3(L) respectively as /—HQ. Hence the series 

ih(t)sk^ Z»*(')[*1(*A)+7(**)] 

converges over T and approaches ^ ( L ) + 7 ( £ ) = i as /—»/o. Thus 
necessity is proved. 
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6. THEOREM 5. If (G) satisfies the conditions 

00 

(3) X) \ck(t) | converges over T, 

(4) Km t\ck(t)\ = 0, 
t-h{T) k==1 

then (G) and ^ ( G ) af£ equivalent over the set of all bounded se­
quences.* 

Let {sn} be any bounded sequence. I t follows from (3) and (4) 
that the series ^2kLiCk(t)Sk converges over T and that its value 
approaches 0 as t—>to. Hence if either of the series 

22k-ict>k(t)sk, z2k-ibk(t)sk 

converges over T, the other must also converge over T and we 
may write 

00 00 00 

^ak(t)sk = ^bk(t)sk + i *jL,Ck(t)sk. 
&=i fc=i * - i 

I t follows tha t if the value of either of the series approaches a 
limit as t—>t0l the value of the other series must approach the 
same limit and the theorem is proved. 

7. Sufficient Condition for Property B. Combining Theorems 4 
and 5, we obtain the following result. 

THEOREM 6. If (G) satisfies (3) and (4), then (G) has prop-
erty B. 

Since (G) is linear, the preceding theorem may be amplified 
to produce the following theorem. 

THEOREM 7. If (G) satisfies (3) and (4), and {sn} is a bounded 
sequence which (G) evaluates, say to L, then {^(sn)}, {7CO } and 
{sn} are evaluated by (G) to ^ ( L ) , J(L), and L respectively. 

* The conditions (3) and (4) are of course not sufficient to ensure regularity 
of (G) ; hence this theorem and its applications give information concerning 
non-regular transformations. On the other hand, (3) is satisfied by every regu­
lar (G), and (4) is satisfied by every regular (G) which satisfies the important 
and useful condition limt^t0(T) 2^fc-i \Q>k(f) \ — 1 . 
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8. Examples. We will now give an example of a linear regular 
transformation of the form (G) which has property B and fails 
to have property A. This example shows tha t Theorems 2, 4, 5, 
and 7 do not hold if the word "bounded" is omitted, and that B 
cannot be replaced by A in Theorem 6. The transformation is 

(H) (Tn = — 1 - U—1 + — 1 + Un, 
2 L l o g ( » + l ) J 2 L log(^ + 2)J 

which assigns to a given sequence {sn} the value lim <rn when 
this limit exists. Tha t (H) is of the form (G) is seen by taking 
(T) to be the set of positive integers, to to be the symbolic limit 
point + 0 0 , and by writing an for a(n). Evidently (H) satisfies 
(3) and (4), (H) has property B, and (H) and ^ ( H ) are equiva­
lent over the set of all bounded sequences. However, we find tha t 
(H) evaluates the unbounded sequence 

Xn = 1 + ( - l)nilog(n + 2) 

to 0; and further that (H) evaluates {5^(#w)} to 1̂  {J(xn)} to 
— 1, {xn} to 2, and the real sequence {ij(xn)} to the imaginary 
value — i. Finally, 21(H) evaluates {xn\ to 1. 

This example shows tha t (4) is not sufficient to ensure mutual 
consistency of a regular (G) and its associated real transforma­
tion 51(G). 

The condition (4) is not necessary in order that (G) and Î^(G) 
may be equivalent, or that (G) may have properties A and B. 
In fact, it is easy to show tha t the regular transformation 

(J) <r« = [i + ( - l W K - t + [1 - i - ( - l)H]sn, 

which fails to satisfy (4), is equivalent to its associated real 
transformation 5^.(J) which obviously has properties A and B. 
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