CONCERNING A SET OF AXIOMS FOR THE SEMI-QUADRATIC GEOMETRY OF A THREE-SPACE* ## BY J. L. DORROH In his paper Sets of metrical hypotheses for geometry, \dagger R. L. Moore raises the question whether the set O of order axioms and the set C of congruence axioms employed therein, together with M, the proposition that every segment has a mid-point, and P_2 , a form of the parallel postulate, are sufficient to give the semi-quadratic geometry of a three-space. At the same time, he states that this question may be answered in the affirmative if it can be proved on the basis of O, C, and M that all right angles in space are congruent to each other. In the present paper it will be shown that O and C are sufficient to require that all right angles in space be congruent to each other. It is a result of a recent paper; of the present author that the theorems of sections 1, 2, 3, and 4 of M.H. are consequences of O and C. Theorems from these sections of M.H. will be quoted without further mention of this justification of their use. THEOREM 1. If A, B, C, D are four non-coplanar points such that $\angle ABD$ is a right angle ABD and ABC and ABC and ABC is a right angle, and ABC is a right angle. PROOF. If E is a point of the line AB, or of the line CB, then, by hypothesis, $\angle EBD$ is a right angle. Suppose, then, that E belongs to the plane ABC, is distinct from B, and belongs neither to the line AB nor to the line BC. Let C' denote a point such that CBC'. It follows by a corollary ^{*} Presented to the Society, September 6, 1928. [†] Transactions of this Society, vol. 9 (1908), pp. 487-512. The notation M. H. will be used to designate this paper. Similarly, S. A. will be used to denote O. Veblen's paper, A system of axioms for geometry, ibid., vol. 5 (1904), pp. 343-384. [‡] Concerning a set of metrical hypotheses for geometry, Annals of Mathematics, (2), vol. 29 (1928), pp. 229-231. [§] See Definition 7 of M. H., §3. of Theorem 16 of S.A. that the line BE contains a point H such that AHC or AHC'. Let G denote one of the points C or C' so that AHG. Let F denote a point such that DBF and $DB \equiv BF$. Since by hypothesis the line BD is perpendicular to the line AB and to the line BG, it follows that $DG \equiv FG$ and $AD \equiv AF$. Since $AG \equiv AG$ and $AH \equiv AH$, it follows * that $DH \equiv FH$. Hence, by definition, $\not\subset DBH$ is a right angle. THEOREM 2. If L, M, N, O are four non-coplanar points such that $\angle LON$ is a right angle and $\angle MON$ is a right angle, then $\angle LON \equiv \angle MON$. PROOF. Since L, M, N, O are non-coplanar, L, O, M are non-collinear. Let E denote a point such that the ray OE bisects $\not \subset LOM$. † Let M' denote a point in the order MOM', and let Q denote a point such that the ray OQ bisects $\not \subset M'OL$. Then $\not \subset EOQ$ is a right angle. ‡ Let P denote a point such that QOP and OP = OQ; then QE = PE. Also, since by Theorem 1 $\not\subset NOP = \not\subset NOQ$, QN = PN. The ray OM contains a point K such that PKE, and the ray OL contains a point E such that THEOREM 3. If α_1 and α_2 are two intersecting planes and ϕ_1 is a right angle in α_1 and ϕ_2 is a right angle in α_2 , then $\phi_1 \equiv \phi_2$. PROOF. Let k denote the line of intersection $\|$ of α_1 and α_2 . Let k_1 denote a line in α_1 perpendicular to k at a point O of k, and let k_2 denote a line in α_2 perpendicular to k at O. Let ψ_1 be a right angle formed by k_1 and k, and let ψ_2 be a right angle formed by k_2 and k. It follows from Theorem 2 that $\psi_1 \equiv \psi_2$. ^{*} A special case of Theorem 11 of M. H. §1 may be stated as follows: If A, B, C are three non-collinear points and A', B', C' are three non-collinear points, and ADC, A'D'C', $AB \equiv A'B'$, $AC \equiv A'C'$, $AD \equiv A'D'$, $BC \equiv B'C'$, then $BD \equiv B'D'$. For the suggestion that the figure used in the proof of Theorem 1 and the use of the particular theorem just stated would shorten the arguments I had previously given for Theorems 1 and 2, I am indebted to H. G. Forder. [†] See a corollary of Theorem 6 of M. H., §3. [‡] See proof of Theorem 7 of M. H., §3. [§] See the theorem stated in a footnote on Theorem 1. ^{||} See Theorem 25 of S. A., p. 363. By Theorem 1 of M.H. §4, $\phi_1 \equiv \psi_1$, and $\phi_2 \equiv \psi_2$. It follows, then, from Theorem 14 of M.H. §1, that $\phi_1 \equiv \phi_2$. THEOREM 4. If ϕ_1 and ϕ_2 are two right angles in space, then $\phi_1 \equiv \phi_2$. PROOF. If ϕ_1 and ϕ_2 are in the same plane, $\phi_1 \equiv \phi_2$ by Theorem 1 of M.H. §4. If ϕ_1 and ϕ_2 are not in the same plane, they lie in intersecting planes or in non-intersecting planes. If they lie in intersecting planes, they are congruent to each other by Theorem 3. If ϕ_1 and ϕ_2 lie in the planes α_1 and α_2 , respectively, and α_1 does not intersect α_2 , there exists a plane α_3 which intersects both α_1 and α_2 . There exists in α_3 a right angle ϕ_3 . By Theorem 3, $\phi_1 \equiv \phi_3$ and $\phi_2 \equiv \phi_3$; hence, by Theorem 14 of M.H §1, we have $\phi_1 \equiv \phi_2$. THE UNIVERSITY OF TEXAS ## CERTAIN QUINARY FORMS RELATED TO THE SUM OF FIVE SQUARES* BY B. W. JONES† 1. Introduction. The number of solutions in integers x, y, z of the equation $n = x^2 + y^2 + z^2$ is a function of the binary class number of n. For numerous forms $f = ax^2 + by^2 + cz^2$, the expression of the number of solutions of f = n in terms of the class number is another way of showing that the number of representations of n by f is a function of the number of representations of various multiples of n as the sum of three squares.‡ Similarly, the number of solutions of the equation $n=x^2+y^2+z^2+t^2$ in integers is the sum of the positive odd divisors of n, multiplied by 8 or 24, according as n is odd or even. There are various forms $f=ax^2+by^2+cz^2+dt^2$ for which the number of representations of n by f is a multiple of the sum of the odd divisors of n. The number of representations of n by one of ^{*} Presented to the Society, April 5, 1930. [†] National Research Fellow. [‡] See, for example, Kronecker, Journal für Mathematik, vol. 57 (1860), p. 253; J. V. Uspensky, American Journal of Mathematics, vol. 51 (1929), p. 51; B. W. Jones, American Mathematical Monthly, vol. 36 (1929), p. 73.