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A PROPERTY OF CONTINUA EQUIVALENT 
TO LOCAL CONNECTIVITY* 

BY W. A. WILSON 

1. Introduction. It is the purpose of this note to develop a 
property of continuous curves which seems to have been over­
looked by the numerous writers on this subject and which, 
in effect, gives a new definition of this extensive class of con­
tinua. The property in question is given by the following defini­
tion. 

A continuum {or space) M is said to be divisible if, for every 
pair of sub-continua A and B without common points, there is a 
decomposition of M into two continua P and Q such that P B = 
QA=0. 

It will be shown that for a compact, metric, and connected 
space the concepts of divisibility and local connectivity at 
every point are equivalent. It will also be shown that this is 
true for any continuum, bounded or unbounded, located in 
a euclidean space. 

As a preliminary we note that we cannot replace the word 
"sub-continua" in the above definition by the word "points." 
To see the truth of this statement consider the plane continuum 
M consisting of a segment ab of length 1 and an infinite set of 
arcs of radii n (n — 2, 3, • • • ), each subtended by ab and of 
length less than a semi-circumference. It is readily seen that 
this continuum is not divisible in the sense of the above defini­
tion, but that for any two points A and B we can decompose M 
into two continua P and Q such that P • B = Q A = 0. 

2. THEOREM. Let M be a metric, separable, connected space 
which is locally connected at each point. Then M is divisible. 

PROOF. Let A and B be any proper sub-continua of M and 
A B = 0. Let x be any point of A, let e > 0 be less than one-
third the distance between x and B, and let the symbol Ve(x) 
denote the set of points of M whose distance from x is less than 
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€. Since M is locally connected at each point, there is a ô > 0 
and a sub-continuum Cx of M such that V&(x) c CxcV€(x). 
Let F be the union of the continua {Cx} as x ranges over A 
plus the limiting points of this set. Then F is a continuum, 
every point of A is an inner point of F, and B • F = 0. Only the 
last statement requires explanation. If B contains a point a 
of F, it lies on no Cx, but is the limit of a sequence {an} of 
points such that each an lies on some Cn corresponding to a point 
xn of A. Let en be the e corresponding to xn. These quantities can 
have no positive lower bound, since each en is less than one-third 
the distance from xn to B. But this means that for a partial se­
quence €n—>0, whence xn~>a, contrary to the hypothesis that 
A-B=0. ThusBF = 0. 

In like manner it is easy to see that there is a sub-continuum 
G of M such that every point of B is an inner point of G and 
AG = 0. Since M is everywhere locally connected, each com­
ponent of M— (F+G) has limiting points on F+G. Set P' equal 
to the union of F and all the components of M— (F+G) having 
limiting points on F, and define Q' corresponding in like 
manner to G. Then M = Pf + Q'. Also P = P' and <2 = Q' are 
continua and, since A and B are inner sets of F and G, respec­
tively, P B = Q A = 0. Thus M is divisible. 

Note. Similar reasoning shows that, if Ai, A2, • • • , An are 
proper sub-continua of M and Ai Aj = 0 if i^j, then M can 
be decomposed into n continua [Pi] such that for each i, we 
have A < c P t and P{ • [T^Ai-Ai] =0 . 

3. THEOREM. L ^ M be a compact, metric, and connected space 
which is divisible. Then M is locally connected at each point. 

PROOF. Let x be any point of M, let e>0 , and let K be any 
component of M— Ve(x). Since M is divisible, M = Pk + Qk, 
where Pk and Qk are continua and K Pk = xQk:=0. Now 
Rk = M — Pk is a region and ikf — Fe(x) is contained in the union 
of the regions {Rk}. 

Since M is compact, and M— Ve(x) is closed, the Borel 
theorem applies and a finite set of the regions {i?/c}, say Ri, 
R2, - - - , Rn, covers M— Ve(x). As each Ri is a sub-set of a cor­
responding continuum Qi which does not contain x, we have 
shown that M — Ve(x) is contained in n sub-continua of M, 
none of which contains x. Since n is finite, it follows that for 
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each €>0 there is a least integer m such that M— Ve(x) c 
X^rSi, where each Si is a continuum, x-Si = 0, and SiSj = 0 
if *Vj . 

Let £ = M-]£r,S<- Then R is a region and R c F€(#). Let 
p be any component of i? not containing x and ju, be the compon­
ent containing x. No component p has limiting points on more 
than one Si. For, if such a p existed, # p = 0 and Si+p + Sj 
would be a continuum not containing x, contrary to the as­
sumption that M— V€(x) is contained in not less than m such 
continua. On the other hand, each component of R has limit­
ing points on at least one Si. Since R is a compact closed set, no 
two continua [Si] have common points, and M=R+^™Si 
is a continuum, it follows that R contains a continuum H ir­
reducible between Si and X>S*. Then Hf = H-H^TSi is 
connected and lies on a component of R. As Hf contains points 
of more than one Si, H'cfx. Hence /Z-Si^O, and likewise 
jl-SiT^O for every i. 

If, for every e>0 , there is some d>0 such that fx D V&(X), 
the theorem is proved. For # is a continuum of diameter less 
than or equal to 2e, which makes the oscillation of M about x 
not greater than 2e. As e can be chosen at pleasure, the oscilla­
tion is zero. 

The alternative possibility is that for some e > 0 and every 
ô > 0 , Vt(x) contains a point of some p. We show that this 
leads to a contradiction as follows. If this case occurs, every 
Vs(x) must contain an infinite sequence of points {ay} con­
verging to x, where each ay lies on a component p y of R and every 
Pi has points on precisely one Si, say Si. (This last statement 
is valid since m is finite and no component of R except \x has 
limiting points on more than one Si.) 

Since M is divisible, there is a decomposition M = Ni + N2, 
where Ni and N2 are continua and Ni • Si = N2 • x = 0. Then Ni 
contains an infinity of the points {aj}, because x is a limiting 
point of the set {aj}. Since x-N2 = 0 and Si c JV2, we have 
N2Si = 0 for i ^ 2 . For Si can be joined to no other Si by a 
continuum not containing x. 

Let L be a sub-continuum of Ni irreducible between some 
a,-and * + £ ? S < , and let £ ' = L ~ L • ( a y + x + £ ^ ) . _Now V 
is connected, L ' c Af—^fS», and either xcL' or L'-Si^O 
for some ig^2. In the first case L'+x+a, is connected and 
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hence #3c/x, a contradiction. In the second case the connected 
set L'+ajCpj and pj-Si^O for i=l and some other i, another 
contradiction. Thus the assumption that there is no S such 
that Vs(x) C/JL is false and the theorem is proved. 

4. THEOREM. Let M be a bounded or unbounded continuum 
lying in a euclidean space. For M to be locally connected at 
every point it As necessary and sufficient that} for every pair of 
sub-continua A and B of M, there is a decomposition of M into 
two continua P and Q such that P B = QA=0. 

PROOF. The condition is necessary by §2. If M is bounded it 
is sufficient by §3. Let us assume then that M is unbounded. 
The proof for this case is obtained by suitably modifying that 
of §3 to take care of the fact that M is not compact. 

Regarding i f as a space, proceed as in the first paragraph of 
the proof of §3. Let F be the frontier of Ve(x). As F is compact, 
it is covered by a finite set of the continua {Qk}, say Qi, Q2, 
• • • ,Qn. Then T = M—Ve(x)+^/lQi is a closed set and a 

finite number of its components cover F. Let these be G, 
C2, - • • , Ck. I t is easily seen that T=^2\Ti) where each 7\- is 
a closed set, TV 7 \ = 0 if ir^j, and da Ti for each i. If T\ is 
not a continuum, T\= Ui+Wi, where Ui'W\ — Q and U\ and 
W\ are closed; suppose that G c U\. Then M is the sum of two 
closed sets, W\ and Vi(x) + Ui+^2^Til without common points, 
—an impossibility as M is a continuum. Thus G = T\ and like­
wise Ci~Ti for every i. We have then, as in the second para­
graph of the proof of §3, for each e a least integer m such that 
M— Ve(x) is covered by m mutually exclusive sub-continua of 
M, which we may denote by {Si} and none of which contains 
x. 

The remainder of the proof of §3 needs no alteration for this 
case. The existence of the irreducible continuum L in the last 
paragraph can be established in the same way as the existence 
of H in the third paragraph. 
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