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NON-EUCLIDEAN GEOMETRY, A RETROSPECT* 

BY JAMES PIERPONT 

1. Introduction. Non-euclidean geometry had its origin in 
the unwearied attempts of mathematicians during 2000 years to 
free the Elements from its one notorious blemish, namely, the 
postulate or axiom relating to parallel lines. 

Wallis (1693), Saccheri (1733), Lambert (1786), Legendre 
(1794),Schweikert (1807), Wachter (1817), and Taurinus (1826) 
are noteworthy forerunners, but the first systematic and 
rigorous development of the subject to be published was a 
series of five papers entitled On the principles of geometry, which 
appeared during 1829-30 in the Kasan Messenger. Their author 
was an unknown Russian mathematician, Lobachevsky. The 
present year 1929 may be regarded as rounding out the first 
century of this new science. What has it accomplished in this 
time? I propose to answer this question, paying attention not so 
much to concrete results obtained, as to the basal ideas which 
have made its phenomenal progress possible. 

The early history of our subject is too well known to require 
more than a few words. We must mention, however, that Gauss 
was already in full possession of Lobachevsky's results, although 
he permitted nothing to reach the ears of the public. The 
Hungarian Bolyai had also broken through the barriers of 
euclidean geometry independently. His treatise, through no 
fault of his own, did not appear till 1832. 

The method used by these geometers was the synthetic 
method of Euclid, with a slight mixture of trigonometry, 
analytic geometry and the calculus. It was adequate to estab­
lish the existence of a non-euclidean geometry, but new methods 
and ideas were necessary for further progress. These came with 
a bound. 

Riemann's Habilitationsschrift Ueber die Hypothesen welche 
der Geometrie zu Grunde liegen, read before the Philosophical 
Faculty of the University of Goettingen in 1854, but first 

* An address delivered by invitation of the Program Committee at the 
meeting of the Society in Berkeley, June 30, 1929. 
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published in 1868, after Riemann's death; Cayley's Sixth 
memoir upon quantics (1859); Klein's Ueber die sogenannte 
Nicht-Euklidische Geometrie (1871): these were the epoch 
making papers of this second period, which we now consider. 

2. The Projective Methods of Cayley and Klein. Cayley takes 
four numbers Xi, x2, x3, x4, and regards their ratios xr.x2 'x3 :x4 
as defining a point. In the notes to volume 2 which Cayley 
prepared for his Collected Papers, he says on page 605 : 

"As to my memoir, the point of view was that I regarded 
'coordinates' not as distances or ratios of distances, but as an 
assumed fundamental notion not requiring or admitting of 
explanation." 

This abstract method of procedure seems to have been en­
tirely misunderstood by Klein and as a result he has developed 
non-euclidean geometry from another point of view, as we shall 
see. 

Continuing with Cayley, we define a straight abstractly by 
the points 

Xi = lai + mb{, (i = 1,2,3,4). 

Here /, m are parameters and a», bi the coordinates of two points 
a, b. A plane is defined by the equation 

aiXi + #2^2 + a^xz + a^Xi = 0. 

To define distance and angle, Cayley introduces the quadratic 
form 

ryXjX) ==: \X)X) — / jttijXjX i , dij — CLjiy \^)J ~ -*- j ^ j ^ ? ^7 ? 

and the bilinear form 

F(x,y) = (x>y) = ]Cfl*7*0';-

In euclidean geometry, F(x, x)—0 defines a quadric surface 
which Cayley calls the absolute. 

Associated with the form F is the form 

G(u,u) = y^Ja
ij'u1,Ui, 

in which aij'= minor a^/a, where a denotes the determinant 
\aij\. Then G = 0 is the equation of the absolute in plane co­

ordinates. Cayley now defines the distance between two points 
x, y by means of the formula 
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F{xy) 
(1) C O S Ô = ; 

{F{xx)F{yy)yi* 

and the angle between two planes u, v by the formula 
G{u,v) 

(2) cos 6 = • 
{G{uu)G{vv)yi* 

With these definitions and those which naturally flow from 
them, it is possible to construct a complete and simple develop­
ment of non-euclidean geometry.* 

We turn now to Klein. He tells us in his notes to his papers 
on non-euclidean geometry (Mathematische Abhandlungen, 
vol. 1, pp. 50-52, 241-243) that he was introduced to this sub­
ject while attending Rummer's and Weierstrass' seminar in 
Berlin (1869-70) by O. Stolz, who was thoroughly familiar with 
the work of Lobachevsky, Bolyai, and von Staudt. 

Klein soon saw the relation between the geometry of Loba­
chevsky and Bolyai and Cayley's memoir of 1859; and in 1871 
he published his first paper on this subject, as already noted. 
His Goettingen lectures on Nicht-Euklidische Geometrie were 
published in autograph form in 1892. These have enjoyed the 
most widespread popularity, and probably the majority of 
mathematicians of the younger generation learned their non-
euclidean geometry from these lectures. 

Klein apparently was influenced by a youthful paper of 
Laguerre (1853) which contains implicitly this result: The 
angle <£ made by two straights a, b meeting at the point x is 
expressed by {i/2) log {ab, u'u"), where uf, u" are the straights 
joining x with the cyclic points, and {ab, u'u") is the cross ratio 
of the four straights. 

The equation of u', un is u? +u£ = 0 , a degenerate conic. 
Following Cayley, Klein replaces this conic by the general 
conic F = /faijXiXi = Q in point coordinates, or G=^2ailUiUj = 0 
in line coordinates ; and he defines the distance ô between two 
points x, y in the plane by the formula 

c 
(3) 8 = — log {xy, %'%"). 

i 
* See the forthcoming paper by the author, Cayley's definition of non-

euclidean geometry. 
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Here x , x are the points of intersection of the straight 
Ixi+myi with the conic F = 0, (xy, x'x") is the cross ratio of 
the points in the parenthesis, and c is a constant chosen so that S 
may be real. Similarly the angle <j> between two straights u, v, 
meeting at point x, is defined by the equation 

c' 
(4) <t> = — log (uv,u'u"). 

i 

Here u', u" are the tangents drawn from x to the conic F or G, 
(uv, u'u") is the cross ratio of the straights in the parenthesis, 
and c' is a constant chosen so that 0 may be real. 

If we take F = 0 to be x? +x£ +x£ = 0, we get the geometry of 
Riemann, which we shall discuss later; if we take F = Q to be 
%i -\-x$ —xg = 0, we get the geometry of Lobachevsky and 
Bolyai. The extension of the foregoing to space is obvious. The 
expressions (3), (4) may be immediately transformed into those 
o f ( l ) , ( 2 ) . 

It appears at first sight as if little had been gained. Klein's 
real contribution is the following. The cross ratio (xy, x'x") 
in (3) depends on the coordinates of the four points 
and also on the lengths of their segments. The expression (3) 
therefore defines a non-euclidean geometry by means of eucli­
dean geometry. This would be a serious defect if it could not 
be obviated. This Klein has done employing the ideas of von 
Staudt, freed from the parallel axiom. If one wishes to carry 
this work through rigorously, it requires a very considerable 
effort which most mathematicians, I fancy, would be glad to 
avoid, as in fact I believe they do. It seems strange therefore 
that the simpler method of Cayley has been entirely overlooked. 
It should be noted that the superiority of the methods of 
Cayley and Klein over the synthetic methods of the founders of 
non-euclidean geometry is exactly analogous to the superiority 
of projective methods over the synthetic methods of Euclid in 
euclidean geometry. Another enormous advantage is due to the 
fact that many of the methods and results of euclidean pro­
jective geometry may be taken over in toto, or with obvious 
modifications, without putting pen to paper. 

3. The Differential Method. First Period. Riemannian 
Geometry, This period begins with the publication (1868) of 
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Riemann's Habilitationsschrift mentioned above. Riemann's 
paper may be regarded as a vast generalization of Gauss' 
Disquisitiones generales circa superficies curvas (1827). It is 
interesting to note that Gauss was present when Riemann read 
his paper. Riemann's memoir, when finally published, was 
promptly taken up. Beltrami (1868), Christoffel and Lipschitz 
(1869), Schlaefli (1871), Beez (1874), Voss (1880), Ricci (1884), 
and Killing (1885) were among the first to enter this field. In 
1901 Ricci and Levi-Civita published in volume 54 of the 
Mathematische Annalen a resumé of their new tensor analysis. 

Riemann's point of departure is analogous to that of Cay-
ley. Any n numbers Xi, x2, • • • , xn he regards as the co­
ordinates of a point. When the x's vary in a continuous manner, 
the corresponding points range over a part or all of an w-way 
space. Riemann offers no geometric picture of his configura­
tions ; they are abstractions determined by arithmetic relations 
between the coordinates, which latter are undefined. 

Riemann regards this highly abstract procedure as quite 
necessary, for at the close of his paper (Werke, p. 268, edition 
of 1876) he says: "Solche Untersuchungen, welche, wie hier 
ausgeführt, von allgemeinen Begriffen ausgehen, können nur 
dazu dienen, dass diese Arbeit nicht durch die Beschrânktheit 
der Begriffe gehindert und der Fortschritt im Erkennen des 
Zusammenhangs der Dinge nicht durch überlieferte Vorurtheile 
gehemmt wird." 

We cannot go into details, as that would take too much 
space,* but a few words may be spent on a fundamental 
question. Riemann regards the metric properties of his space 
to be defined by the distance between two nearby points 
x, x-\-dx. He takes this to be defined by the formula 

(5) ds2 = ^dijdxidxj, an = a^y (i,j = 1,2, • • -, n), 

where the a's are functions of whose determinant a 
is different from zero. For euclidean space of three dimensions, 
we would have 

(6) ds2 = dxi2 + dx2
2 + dx£ . 

* The reader may if he chooses consult the author's paper, Some modern 
views of space, this Bulletin, vol. 32 (1926), pp. 225-258. 
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A curve in Riemann space is defined by n relations of the type 
Xi = Xi(t) ; a straight is a curve along which dfds==0, where ds is 
defined by (5). 

When the variation is executed we are led to n differen­
tial equations defining the straight, namely, 

d2Xi __̂  (X/x) dx\ dxa 
(7) — - + £ \ . \— T = ° ' (t,X,M = l , 2 , - - - , ») . 

dsz x̂  \ i ) ds ds 
The symbols under the summation sign were introduced by 
Christoffel, who was one of the earliest to elaborate the ideas of 
Riemann. He sets 

Ta/Tl 1 / ddai ddpi daap\ 

L i J 2 \ dxp dxa dxi / 

If we denote by &XM the minor of &xM in a, divided by a, we have 

In the following we shall set 

Ta/Tl (a/3) < 
(10) . =C a / î i < , < . V = C a ^ . 

The quantities %\ = dx\/ds we call the direction parameters of 
the straight. Let f x, ??x be the parameters of two straights meet­
ing at a point. The straights l^\+mr]\, where / and m are parame­
ters, define a plane. Other geometrical terms are introduced in a 
similar manner, as generalizations of the corresponding notions 
in euclidean geometry. 

The question at once arises: when do two quadratic differ­
ential forms of the type (5) define the same geometry? It is 
well known that the geometry on a cylinder or a cone, or more 
generally on a developable surface, is, for not too large regions, 
identical with that of the plane, that is, it is euclidean. More 
generally, we may ask: when is the geometry on two given 
surfaces the same (for not too extended regions)? This question 
was partly answered by Gauss by means of the important notion 
of total curvature or Gaussian curvature k, at a point on a 
surface. If the geometries of two surfaces have constant curva-
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ture, this condition is sufficient. Gauss established the im­
portant fact that k is an invariant of the quadratic form 

(11) Cudui2 + 2cnduidu2 + c22du2
2, 

defining the metric of the surface. The determinant of this form 
we will call c. We can write down the value of k in a neat form 
by introducing what is now known as the Riemannian curva­
ture tensor. For the general quadratic form (5), this tensor has 
n components (not all distinct) defined by the equations 

(12) Rfx\,jk = h Z*/(P\k,cPpj,i ~ C\j,aC^k,i)CL%a, 
OOCjc O 00 j ia 

where the C's are the Christoffel symbols (10) relative to the 
form (5), and i, j , a, X, ju = 1, 2, • • • , n. If we denote by 
R»\iik(c) the components of the Riemannian tensor relative to 
the binary form (11), the Gaussian curvature of a surface in 
euclidean geometry is 

(13) k = R2i,n(c)/c. 

Guided by the ideas of Gauss, as developed in the Dis-
quisitiones generales, Riemann proceeds as follows. Any two 
geodesies £, -q in his general w-space (5) meeting at a point P 
define a plane œ = l^+mr]. This being a two-way manifold, the 
coordinates of any point on it are functions of 
two parameters, say Ui, u2. Hence 

Ö 00% O 00% 

d%i = dui H du2, (i = 1,2, • • • , n). 
dux du2 

These set in (5) show that the metric of the plane œ is defined 
by a form of the same type as (11), say by 

(14) ds2 = bndu^ + 2b\2du\du2 + b22du2
2, 

whose determinant call b. The coefficients of this form depend 
on uh u2, and the In direction parameters fi, • • • , £n, 
Vu ' • ' i Vn> 

Riemann defines the curvature of co to be 

(15) k = R(b)21,12/b, 

where the R(b) here refers to the form (14). We see that this is 
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entirely analogous to Gauss' definition (13). Here, however, the 
surface œ lies in an w-way space whose metric is given by (5). 
Suppose we turn the plane œ about P by replacing the straights 
£, rj by other straights meeting at P . Each of these planes will 
have a curvature k. If all these &'s are equal at P , we say that 
our space (5) has curvature k at this point. If k has the same 
value at all points P of our space, we say the space (5) is of 
constant curvature k. 

For such spaces, we have the result Gauss established for 
n = 2} that is, two w-way spaces of the same constant curvature 
have the same geometry (for not too large regions). Spaces of 
constant curvature have also this important property: in them, 
rigid bodies exist which may be moved about freely without any 
distortion. This of course is not generally true. For example, 
on an oval surface of revolution, like an eggy a small figure 
drawn on it can be moved without distortion only by revolving 
it about the axes of the surface. Riemann found that by a 
proper choice of variables the metric (5) of a space of constant 
curvature could be given the form 

dx? + dx2
2 + • • • + dx^ 

(16) ds2 = • 
[1 + ek(%? + x2*+ - • • + * n

2 ) ] 2 

For k = 0, and w = 3, this reduces to (6); thus euclidean space is 
a space of zero curvature. If in (16) we take e= — 1, n = 3, we 
get the space of Lobachevsky and Bolyai. As the pseudosphere 
has a constant negative Gaussian curvature, the geometry on 
this surface is identical (for not too large regions) with plane 
Lobachevskian geometry, as first remarked by Beltrami (1868). 

If we take e=+l, n = 2y we have the geometry on a sphere. 
For e=+l, and n = 3 we have a three-dimensional geometry 
never before imagined. As on the sphere, so here in three-way 
space, all straights are closed curves of constant length w/\/k. 
Space is finite in extent, but without boundaries; its volume in 
fact is 7T2/(4&3/2). 

This new space with positive k may be called spherical. As 
Klein first remarked, it has two forms; in the second form the 
straights are still closed, but of length 7T/(2A/&), two points 
always determine uniquely a straight ; whereas in the first form 
there is an exception, namely, when the two points are at a 



74 JAMES PIERPONT [Feb., 

distance ir/(2\/k). The connectivity of this second form of 
spherical space is quite complicated. For example, a watch 
moved along a straight / has been rotated through 180° about / 
when it returns to its point of departure. We have dwelt on 
spaces of constant curvature, partly because of their relation to 
the results obtained by projective methods, and partly because 
of their intrinsic value. But the geometry of spaces of constant 
curvature is only a small part of Riemannian geometry, as it 
is now called; that is, the geometry based on the general metric 
(5). In this geometry, the notions of euclidean space are ex­
tended so as to apply to this general metric. The reader who 
wishes to study this subject may consult one of the treatises 
mentioned in the footnote.* 

4. The Differential Method, Second Period. Non-Riemannian 
Geometry. Riemannian geometry is based on a quadratic differ­
ential form. For a long time it was studied as an abstract 
science, just as the ancient Greeks studied the conic sections, or 
Gauss and Kummer studied the theory of numbers. Then all at 
once a great change came. In 1916 Einstein promulgated his 
general theory of relativity. The basis of this theory is a 
quadratic differential form (5) in four variables. This gave 
Riemannian geometry an enormous impetus. Riemannian 
geometry was no longer an abstract theory cultivated by a 
small body of mathematicians and quite neglected by the 
others ; of a sudden it became of great practical value and wide­
spread interest. 

In 1917, Levi-Civita introduced the notion of infinitesimal 
parallel displacement. It was soon seen that this notion is more 
fundamental than that of the notion of distance ds between two 
nearby points, and that it can be used to find a geometry more 
general than that heretofore considered, a geometry now called 
non-Riemannian. It contains Riemannian geometry as a 
special case. 

It is interesting to discover the origin of a notion so funda­
mental. Thompson and Tait in their Natural Philosophy (edi­
tion of 1879) discuss the kinematics of a surface rolling on a 

* J. L. Coolidge, The Elements of Non-Euclidean Geometry, especially 
Chapters XV, XVI, Clarendon Press, 1909. L. P. Eisenhart, Riemannian 
Geometry, Princeton University Press, 1926. W. Killing, Die Nicht-Eukli-
dischen Raumformen, Leipzig, 1885. 
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plane without spin. They say in § 135: "The whole change 
of direction in a curved surface from one end to another of any 
arc of a curve traced on it is equal to the change of direction 
from end to end of the trace of this arc on a plane by pure 
rolling." In 1906 Brouwer hit upon the same notion for spaces 
of constant curvature. We may define the new notion as 
follows. 

Suppose an elementary vector £ whose components are 
£i> £2, • • • , £n is moved along a curve K from a point x to the 
point x+dx, a distance ds as given by (5). If this vector changes 
its direction so that its components satisfy the n relations 

/7t. _̂̂  . doc ' 
(17) —L + Z c k i - 7 i = 0 ' (i,j,k= 1,2, ••• , n ) , 

as ji as 

the Cs being the Christofïel symbols (10) belonging to the 
metric (5), we say that £ has received an infinitesimal parallel 
displacement along K. It is also said to be displaced geodetically 
along K. In fact the direction parameters i;i = dxi/ds of the 
tangent to a geodesic satisfy the equations (17) by virtue of 
(7). Hence the tangent to a geodesic receives an infinitesimal 
parallel displacement as it moves from x to x+dx along the 
curve. 

When £ is moved geodetically from A to B along two different 
curves, we find the direction of £ at B is not the same. If £ is 
displaced geodetically along a closed curve G its change in 
direction after the circuit is given by the equation 

(18) A£t- = I J2&RVkdx3dxk, 
J G jk\ 

where 
i i 

(19) R\jk = V Z^(CakC\j — CajCxk) -
OXjc OX j (x 

The relations (17), (18), (19) suppose that a metric (5) has been 
given us in advance. We may, however, proceed in another 
order. Let us suppose instead of starting with the quadratic 
form (5) and forming then the C# and the R{jk, we take nz 

functions of Xi, x2, • • • , xn which we will denote by T)i, and 
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say that the vector £ is displaced geodetically from a point x to 
x+dx on a curve H when 

(20) dh+ 2»ïfcd*y = 0. 

Let us define a geodesic to be such a curve that its tangent is 
displaced according to (20). When a vector £ is displaced ac­
cording to (20), that is, geodetically, around a closed circuit G, 
we find that its components receive the increments 

A£ = I ^^xKxjkdxjdxky 
J G jkl 

where the K'§ are obtained from (19) by replacing the C's by 
the new functions Y)i. With these T's and K's it is possible to 
develop a geometry in many ways analogous to that of Rie-
mann. Still further generalizations have been made but these 
few remarks must suffice.* 

In closing, the author expresses the hope that the present 
sketch may awaken a desire in the reader to acquaint himself 
more fully with this fascinating subject. At least it will give 
him an idea what tremendous strides non-euclidean geometry 
has made since Lobachevsky published his Principles of Geome­
try in 1829. 

Y A L E UNIVERSITY 

* For further information the reader may consult the author's paper re­
ferred to in an earlier footnote, or L. P. Eisenhart, Non-Riemannian Geometry, 
Princeton University Press, 1928; D. J. Struik, Grundzüge der méhrdimen-
sionalen Differentialgeometrie, Berlin, 1922. 


