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SINGULARITIES OF T H E HESSIAN* 

BY T. R. HOLLCROFT 

1. Introduction. I t has been proved f that when a curve ƒ 
has no point singularities its Hessian H has no point singular­
ities. Then point singularities occur on H when and only when 
ƒ has point singularities. Moreover, singular points of H can 
occur only at those points which are singular points of/. 

The number of intersections of ƒ and H at any singularity 
of ƒ is 

65i + 8KI + i\ 

where 5i, /ci, ii are the numbers of nodes, cusps, and inflections 
respectively contained in the singularity of ƒ. A given singu­
larity of ƒ needs but to be resolved and the number of inter­
sections of ƒ and H are thus found without reference to H. In 
order for this number of intersections to occur, there must be 
a singularity of H at this point, but except for cusps and simple 
multiple points with distinct tangents these singularities of H 
have not been investigated. 

The purpose of this paper is to explain geometrically how 
the intersections of ƒ and H at a given singularity of ƒ occur. 
The principal problem involved is to find the singularity of H 
corresponding to a given singularity of ƒ. 

2. Simple Multiple Points. It has long been known that at 
a simple r-fold point of ƒ with r distinct tangents, H has a 
(3r — 4)-fold point, r of whose tangents coincide, one each, with 
r tangents of the r-fold point on ƒ ; also that at a cusp of ƒ, 
H has a triple point two of whose tangents coincide with the 
cuspidal tangent. 

* Presented to the Society, October 30, 1926. 
t A. B. Basset, On the Hessian, the Steinerian, and the Cayleyan, Quar­

terly Journal, vol. 47 (1916), p . 227. 
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Any number of cusps up to and including r—1 may occur 
in a simple r-fold point. The occurrence of KX cusps in such a 
multiple point causes Ki+1 tangents at that point to become 
consecutive. Also each cusp implies two additional inter­
sections of ƒ and H at this point. 

Consider that ƒ has an r-fold point at the origin 0, the tan­
gents at which are given by the equation ^ r = 0. Of the 3f —4 
tangents to H at 0, r have the equation ur = 0 and the remain­
ing 2{r — 2) have the equation 

d2ur d2ur / d2ur V 
T s - ( - ) = 0.* 

dx2 dy2 \dx by) 
If the singularity of ƒ at 0 contains c—1 cusps, it has c 

consecutive tangents. The tangents to ƒ at 0 are now given 

by 
ur 55 {ax + by)cur-0 = 0. 

For this form of un the equation T becomes 

T = {ax + by)*l*-uU*(r-c-\) = 0, 

where Z72(r-c-i) is a function of ax-\-by} ur-c and their first and 
second partial derivatives. Then each cusp in the r-fold 
point 0 of ƒ causes two of the 2(r —2) additional tangents 
to H dit O to become consecutive with the two consecutive 
tangents common to H and ƒ. 

If, in the above, c = r, the expression for T is identically 
satisfied so that it no longer is the equation of the additional 
tangents to H at O. This shows that the above conclusions are 
justified when and only when the number of cusps in the 
f-fold point of ƒ does not exceed r — 2. When it contains r—-2 
cusps, there are but two distinct tangents to ƒ at P and these 
two are the only tangents to H at P . The (3r —4)-fold point 
on H now contains 3{r — 2) cusps. If a general (3r —4)-fold 
point, it could contain one more cusp, causing all its tangents 
to become consecutive, but this special Hessian multiple 
point can not have this additional cusp, that is, a simple 

* Hilton, Plane Algebraic Curves, 1920, Ex. 11, p. 103. 
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multiple point on a Hessian can not consist of a single super-
linear branch. 

The r-fold point P on ƒ, however, may contain r— 1 cusps 
and consist of a single superlinear branch. At P , H now has a 
3(r—l)-fold point with 2(r—1) of its tangents consecutive 
with the single tangent to ƒ at P and the remaining r—1 tan­
gents distinct from this and from each other. The well known 
triple point of H at a cusp of ƒ is a special case of this for r = 2. 

Consider the f-fold point of/first without cusps and let nodes 
be changed into cusps one by one up to and including the maxi­
mum. Each cusp up to and including the (r--2)th causes 
three nodes of the (3r — 4)-fold point of H to be converted into 
three cusps. The genus of H is not affected by this exchange 
so long as the number of cusps of ƒ at P does not exceed r — 2. 
When the (r— l)th node is changed into a cusp, nothing differ­
ent from usual happens on ƒ, but something very different 
occurs on H. The multiplicity of P on H is increased by unity 
causing the addition of 3r~- 4 nodes and a corresponding de­
crease of 3r — 4 in the genus of H and, in addition, r—2 cusps 
in the multiple point of H a t P are changed back into nodes 
causing r — 2 branches of H at P that had been coincident to 
become distinct. 

If r = n—l, H is of order 3(n — 2) with a (3n — 7) -fold point 
at P . In this case and in this case only can the Hessian be 
rational. If r = # — 1, H is a proper curve when and only when 
the number of cusps of ƒ at P does not exceed n — 3. If the 
(n — l)-fold point off contains n — 2 cusps, H degenerates into 
3(n — 2) lines through P of which 2(n — 2) coincide with the 
single tangent to f at P. A well known special case of this is 
the Hessian of a cuspidal cubic. 

3. Compound Singularities. When the singularity of ƒ at 
P is compound, the singularity of H at P is also compound. 

Any number 5 of consecutive r-fold points at P on ƒ with 
r distinct branches determines at P , on H, s consecutive 3 (r — 1)-
fold points with 3(r— 1) distinct branches and with the same 
tangent as that to ƒ at P . There are, then, at P , r branches of 
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ƒ, each of which has contact of order s with each of the 3(r— 1) 
branches of H that pass through P . 

Any series of consecutive multiple points of orders 
fi, r2f Tz, - - - where ri>r2^rz^ • • • and n>r2+l gives rise 
to a series of consecutive multiple points on H of the respective 
orders ZY\ — 4, 3(r2 — 1), 3(r3—1), • • • and through the same 
respective penultimate points and therefore with the same 
tangent. If, however, r2 ^ t\ ^ r2+1, the series on H are of the 
respective orders 3(m— 1), 3(r2 —1), 3(r3 —1), 

In case ri = ^2, the 3(^i — 1) branches of H all have the same 
tangent at P as the Ti branches of/. In case ri = r2 + l, at P 
on ƒ there are r2 branches with the same tangent and one 
branch with a distinct tangent. At P on H there are 3m —4 
branches that have the tangent common to the r2 branches of 
ƒ and the remaining branch of H has the same tangent as the 
remaining branch of ƒ. 

Since any series of consecutive multiple points of/gives rise 
to a series of consecutive multiple points of H through the same 
penultimate points respectively, the order of nearness* of any 
two consecutive points of H is always equal to the order of 
nearness of the two corresponding consecutive multiple points 
of/. 

Any series of consecutive multiple points of orders 
ru Hi Tz, • - - where r i ^ r 2 ^ r 3 ^ • • • may contain any number 
of cusps up to and including ri—1. For each node changed into 
a cusp in the part of the m-fold point involved in the consecu­
tion or in any of the other consecutive points, a bitangent of the 
singularity is changed into a stationary tangent. Then if the 
number of cusps k is such that 

k S r2 - 1 

the singularity contains k inflections, but if 

* See F. Enriques, Lezioni sulla Teoria Geometrica délie Eguazioni e délie 
Funzioni Algebriche, vol. 2, pp. 404-408. 
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the singularity contains r2 —1 inflections provided that the 
cusps are considered as being introduced so far as possible into 
that part of the singularity involved in the consecution. Then 
the introduction of k^r2—l cusps causes the addition of 3k 
intersections of ƒ and H at this point, 2k for the cusps that re­
place k nodes and k for the k inflections that replace k bitan-
gents. The introduction of k cusps into the portion of the n-
fold point not involved in the consecution causes the addition 
of only 2k intersections as for simple multiple points. 

If the consecutive multiple points of ƒ a t P contain any num­
ber k of cusps all of which are involved in the consecution, the 
consecutive multiple points of H at P contain 3& — 1 cusps. All 
the branches of both ƒ and H at P (except the simple branches 
of the f i-fold point of ƒ and the (3fi —4)-fold point of H in case 
n>r2) have the same tangent whether the points contain 
cusps or not. The change of k nodes into k cusps on ƒ causes 
k + 1 of the branches to coincide, while on H the 3& —1 cusps 
cause the coincidence of 3k branches. H and ƒ must now have 
3k additional intersections at P . None of these are accounted 
for by the mere coincidence of the branches, but all are 
accounted for by the fact that the superlinear branches of ƒ 
and H have closer contact than had each of the component 
branches when distinct. If there are 5 consecutive r-fold points 
of ƒ at P , each branch of ƒ has s-point contact with each branch 
of H at P . When the multiple points of ƒ contain k cusps, 
however, each of the k + 1 partial brandies of the superlinear 
branch o f / a t P has [(s + l ) / (£ + l)]-point contact with each 
of the 3k partial branches of the superlinear branch of H at P . 

A flecnode on ƒ gives rise to a flecnode on H with the same 
stationary and simple tangents respectively. Also a biflecnode 
on ƒ gives rise to a biflecnode on H with the same two station­
ary tangents. In general, if any of the tangents at an r-fold 
point of ƒ are stationary tangents, these are also stationary 
tangents to H at this point. 

4. Line Singularities. Simple line singularities of ƒ cause 
on H either no singularities or simple line singularities. If the 
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line singularity of ƒ be composed of only bitangents, that is, 
if all its contacts are distinct, H avoids both this line and its 
contacts and has no singularity caused by such a multiple line 
of/. Moreover, a multiple line of class p of ƒ may contain any 
number up to (p + l ) /2 inflections, no more than one at each 
contact except that one point of contact may contain two 
inflections, and H will have no line singularity. It is only 
when more than two inflections occur at one contact or more 
than one inflection at two or more contacts of a multiple line 
p of ƒ that H has ^ a s a multiple line. 

In general, if ƒ has a multiple line p of class p and q is the 
number of contacts of p with ƒ that contain two or more in­
flections and ij is the number of inflections contained in any 
one of these q contacts, then p is a multiple tangent of H 
of class 

Q 

Pi = 23 ii ~ Ï-

Since the number of inflections of a multiple line of class p 
with q distinct contacts can not exceed p — g, there is an upper 
limit to the class pi of the line p of H 

Pi S P — 2q. 

The equality sign holds only when no contacts of p with ƒ con­
tain less than two inflections. It is also apparent that the 
fewer the number of distinct contacts, the larger the class of 
the multiple line of H may be. Thus the maximum class of 
a multiple line of H that results from a multiple line of class p 
of ƒ is p —2. This occurs when and only when p contains p— 1 
stationary tangents t o / , in which case q= 1. In this case, the 
multiple line p contains p — 3 stationary tangents to H and 
all its contacts are at one point. 

5. Singularities that a Hessian Cannot Have. In the pre­
ceding sections, the multiple points and lines that a Hessian 
can have were discussed. There are, however, certain singular 
points that a Hessian can not have under any circumstances. 
These include all simple or compound double points except 
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distinct nodes, multiple points of order 3a+1 for a any integer 
and simple multiple points with all tangents consecutive. 

There are no such restrictions on multiple lines of the Hes­
sian. 

6. The Hessian as a Jacobian. Since the Hessian of ƒ is the 
Jacobian of the net of first polars of ƒ, the singularity P of H 
caused by a given singularity P of ƒ is the singularity of the 
Jacobian of the net of first polars of ƒ corresponding to this 
basis point P on the first polars. Since an r-fold point P of ƒ 
causes a (3r — 4)-fold point P of H and an (r— l)-fold point 
P on each first polar, then H as the Jacobian has a (3i — 1)-
fold point at an i-fold basis point of the net. Since this result 
is general, it might be inferred that the singularities of the 
Jacobian corresponding to any kind of basis point could be 
now found by finding the kind of basis point on the first polars 
determined by a given singularity of ƒ. However, the result 
is general only for simple multiple points with distinct branches. 
If the curves of the net have contact of any given order with 
each other at P , the nature of the singularity P on the Jacob­
ian can not be predicted unless more is known about the net. 
For example, simple contact in a first polar net may result 
from a cusp on ƒ or a tacnode on ƒ. In these cases, the singu­
larity on the Jacobian is respectively a triple point two of whose 
tangents coincide with the cuspidal tangent or two consecutive 
triple points whose tangent coincides with the tacnodal tangent. 
But a simple contact in a net of otherwise general curves 
causes on the Jacobian a triple point with three distinct tan­
gents one of which coincides with the common tangent of the 
curves of the net. 

For n>3, first polar nets are not the most general nets of 
order n — 1 and for all values of n, if ƒ has singularities, first 
polar nets are very highly specialized. For this reason (except 
in the case of a simple multiple point with distinct tangents) 
general results for the singularity of the Jacobian at a given 
singularity of the net can not be obtained by regarding the 
Hessian as the Jacobian of the net of first polars. 
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