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THE TRANSVERSALITY RELATIVE TO A SURFACE 
OF /F(x9 y, z, y', z')dx~ MINIMUM* 

BY JESSE DOUGLASf 

1. Introduction and Statement of Theorem, Consider, for 
illustration, a surface 2, on which A and B are any two 
points. Then, of all curves in space which join A and J3, 
the straight line segment AB is the shortest; of all curves 
on S joining A and B, the geodesic AB is the shortest. 

The generalization from the length integral 

(1) * - f (1 + / f + *'f)1/2<** 

to the general integral of first order 

(2) ƒ = CF(x,y,z,y'9z')dx 

is obvious. Thus we may speak on the one hand of the 
unrestricted extremals of J relative to space, <*>4 in number, 
and, on the other, of the extremals of J relative to a given 
surface 2, oo2 in number. 

The idea of transversality may likewise be defined relative 
to a given surface as well as for space. Let us review the well-
known definitions and facts in this connection. The space 
transversality T belonging to an integral / i s essentially a corre­
spondence between lineal elements and surface elements (of 
the first order) characterized by the following two properties : 
(1) a lineal element and its corresponding surface element 
have the same base point, (2) if, taking an arbitrary base 
surface 5, we construct the <x>2 extremals of / which meet 
S transversally, then lay off along each extremal, starting 
at 5, an arc over which the integral / has a fixed value, 
the locus of the end points of these arcs is a surface trans-

* Presented to the Society, October 30,1926. 
t National Research Fellow in Mathematics. 
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versai to the congruence of extremals. By varying the 
fixed value continuously ool such transversal surfaces result. 

Analytically, if a lineal element be fixed by coordinates 
%i y> z* y'i z' in the usual way, the transverse surface element 
has the same base point x, y, z, and the equation of its 
(infinitesimal piece of a) plane is 

(3) (F - y'Fy. - z'F.')ix + Fyby + F,.tz - 0, 

where ôx, 8y, ôz denote coordinates relative to x, y, z. 
The surface S or any of the other transversal surfaces 

of the congruence of extremals may degenerate into a curve 
or a point—in fact, the appropriate concept to use here is 
not that of surface but Lie's concept of union of surface 
elements. The simplest representation of a transversal!ty 
is obtained by allowing S to be a point—the extremals 
transversal to a point are simply those which issue from it. 
In the illustrative case of the length integral (1) the trans­
versal surfaces are then concentric spheres, from which it 
appears that for the length integral transversality is the 
same as orthogonality*—a fact which is expressed analyti­
cally by the circumstance that the equation (3) formed 
for (1) reduces to 8x + y'by + z'ôz = 0. 

How is the transversality of / relative to an arbitrary 
surface 2 defined? Let us construct the pencil of extremals of / 
relative to S which radiate from a fixed point 0 of 2. If 
we proceed along each extremal, starting from 0, until we 
have run off a fixed value of / , the locus of points arrived 
at is a curve I\ which we say meets transversally the ex­
tremals radiating from 0. More definitely, if C is one of the 
extremals through 0, intersecting V at point p, the lineal 
element X of T at p is termed transversal to the lineal element 
/ of C at the same point. By varying 0, there is assigned 
to each lineal element lof S a transverse lineal element X. 

* The most general integral of the first order for which transversality 
is orthogonality is fv{x> y, z)ds, where v is any function of its three argu­
ments. 
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If C is the extremal containing the element /, any point of C 
may be used as point 0 to define the transverse element X; 
we always get the same X. 

The correspondence so defined between I and X we call 
the transversality of / relative to 2, and denote by r; 
it is of course to be carefully distinguished from the space 
transversality T of / . The analogy between r and T 
is completed by the theorem that the extremals of / relative 
to 2 which start transversally from any base curve have oo J 

transversal curves, between any two of which arcs over 
which / has the same value are intercepted on all these 
extremals. 

Now, in the theory of surfaces there is a classic theorem 
of Gauss which may be stated as follows. 

Any two orthogonal trajectories of a system of oo1 geodesies 
of a surface intercept the same length on all these geodesies.* 

In our terminology the theorem may be stated as follows: 
The transversality r of the length integral relative to an 

arbitrary surface 2 is the orthogonality of lineal elements on 2. 
The purpose of the present paper is to prove the following 

more general theorem, which includes that of Gauss as a special 
case. 

THEOREM. The transversality r of any integral J relative 
to an arbitrary surface 2 is the section by 2 of the space 
transversality T of J. 

By the section of T by 2 we mean, naturally, the following: 
Let I be any lineal element of 2, and let the surface element or 
correspond to I by T; then the lineal element X corresponding 
to / by r is the intersection of (the tangent plane of) 2 
with o*. 

2. Proof. Let S be represented by the equation 

(4) x + <l>(yfz) = 0. 

* G. Scheffers, Einfûhrung in die Theorie der Fliïchen, second edition, 
1913, p. 500. 
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Let 

(5) y = y(x), z « z{x) 

define a curve C o n 2 which joins any two fixed points 0 
and 1 of that surface. Then the infinitely near curve C 

(6) y = y{x) + erj(x), z « z{x) + cf (a) 

may be considered as lying on 2 when and only when 

(7) pri(x) + qt(x) = 0 

where p—<j>v{y, z), q.—^>z{y, z) and y, z are to be replaced by the 
functions of x appearing in (5) ; (7) then to hold identically 
in x. 

The conditions that C pass through 0 and 1 are 

(8) r)(x0) = °> f(*o) = 0 ; ri(xi) = 0, f(*0 == 0. 

Supposing (7) and (8) verified, the variation of / in 
passing from C to C is, by means of the usual integration 
by parts, 

(9) a / « f {A(F)i + B(F)t}dx 

where 

(10) A(F) =FV- —Fy,, B(F) =FZ- —F.., 
ax ax 

d/dx denoting total differentiation with respect to the 
abscissa of C. In order that C be an extermal of / relative to S, 
the necessary and sufficient condition is 

(11) A(F)V + B(F)Ç ~ 0 

for all y, f satisfying (7), or qA(F)~pB(F)=0 where all the 
symbols involved are to be reduced to functions of x, abscissa 
along C. 

Suppose now 2 to denote any point on S infinitely near 
to 1, and let Cf be the extremal relative to S which joins 
0 to 2. Its equations have the form (6) with (7) verified, and 
r}(xo) =0 , f (xo) =0 , but instead of the second pair of equations 
(8) we have, expressive of the fact that C' contains 2, 
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(12) by = yibx + erj(xi), bz = z(bx + ef(*i), 

where ôx, by, 5z denote the coordinates of 2 relative to 1 
and xi, yu zu y{, z{ are the coordinates of the lineal ele­
ment of C at 1. 

These equations then follow: 

F(x,y,z,y',z')dx, 

{F + e(Fvr, + FJ; + Frf + F A')} dx 
ZQ 

- C{F + e(Fvr, + F£ + Frf + F,f)}rf* 

+ F(xi,yi,zi,y{ ,z{)bx, 

where we neglect infinitesimals of higher than the first order. 
By subtraction we find 

bJ = J 02 ""** J01 

- « f \F„ri+F,^+Fv,ri'-\-F^,)dx-\-F{xx,y1,zi,yi ,z{)àx 

-«{F,.(l)i|(*i)+i'. '(l)f(*i)} 

+ e ri{A(F)v + B(F)S}dx + F(l)ix. 
J xo 

The integral vanishes by (11), since 77, f satisfy (7) because 
C' lies on S. Using (12), we have after dropping the index 1, 

(13) bJ = {F - y'JPV - *'F.0«* + *V«y + Ff rfs. 

For transversality, 8 / = 0, giving 

(14) (F - y'Fr - *'F.0«* + F*ty + F»'** - 0. 

Besides (14), Sx, ôy, 5s; are restricted to satisfy 

(15) ôx + pôy + qôz = 0, 

which is the equation of the element of S in the immediate 
neighborhood of 1 (tangent plane). The direction 5x : by : bz 
transverse to 1 : y' : z' at 1 is to be found by combining 
(14) with (15). 
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Now (14) is identical with (3) defining the space trans-
versality of / . Hence our theorem. 

The theorem is easily extended to an m space immersed 
in an n space. Since a Riemann space of m dimensions 
can always be immersed in a flat space of at most %tn(m + l) 
dimensions, we have an immediate proof of the Gauss 
theorem for a Riemann space of any number of dimensions. 
For it is obvious that the transversality of the length 
integral in a flat w-space is the orthogonality of lineal elements 
to (« — 1)-elements with the same base point, and evidently 
the section of this transversality by any ra-spread contained 
in the ft-flat is the orthogonality of lineal to (m —1) -elements 
in the w-spread. 

PRINCETON UNIVERSITY 

ON THE EXTENSION OF A METHOD OF BRIOT 
AND BOUQUET FOR THE REDUCTION 

OF SINGULAR POINTS* 

BY B. O. KOOPMAN 

In a classical memoir,t Briot and Bouquet gave a method 
by means of which the differential equation 

dx dy 

X(x,y)~~ Y(x,y) 

could be reduced to a simple standard form in the neighbor­
hood of an analytic singular point, i. e., a point at which 
X(x, y) and Y(x, y) are analytic, but vanish simultaneously. 
Although the method fails to be directly applicable to 
certain special cases, it has shown itself to be of sufficient 

* Presented to the Society September 9, 1926. 
t JOURNAL DE L'ECOLE POLYTECHNIQUE, vol. 21, p. 161. See also 

Picard, Traité d'Analyse, Paris, Gauthier-Villars, 1908, vol. 3, p. 34. 


