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A GENERAL FORM 
OF THE SUSPENSION BRIDGE CATENARY 

BY IRA FREEMAN 

1. Introduction. The form of the curve assumed by a 
uniform chain or string hanging freely between two sup­
ports was first investigated by Galileo, who erroneously 
determined it to be a parabola; Jungius detected Galileo's 
error, but the true form was not discovered until 1691, 
when James Bernoulli published it as a problem in the 
ACTA ERUDITORUM. He also considered the cases when the 
chain was (1) of variable density, (2) extensible, (3) acted 
upon at each point by a force directed to a fixed center. 

These curves attracted much 
attention, and were discussed by 
John Bernoulli, Leibnitz, Huygens, 
David Gregory and others. A re­
view of the literature shows, how­
ever, that in the problem of the 
inextensible string acted upon by 
gravitational forces, only two 
special cases are considered:—the 
case where there is simply a string 
of uni-form linear density, and the 
case of a string of inappreciable °v x 
weight supporting a uniform hori­
zontal load. Moreover, the modern text-books in the sub­
ject appear to shun a more general case, and content 
themselves with presenting only the two very special cases 
mentioned. 

The object of the present paper is to consider what 
happens when a cable of appreciable uniform linear density 
supports a uniform horizontal load, conditions that are 
very nearly realized in the suspension-bridge. The texts 
solve the special cases by the solution of two first-order 
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differential equations, the first of which gives the intrinsic 
equation of the curve. The following method uses one 
second-order differential equation, and does not involve 
the intrinsic equation as an intermediate step. 

2. Densities Different and not Zero. Both the cable and 
the bridge platform have uniform linear densities ivhich are 
appreciable, and, in general, different. 

Let a be the weight per unit length of the cable, and 
let fi represent that of the bridge platform. If any arc s 
is in equilibrium, the horizontal component of the tensions, 
at the extremities of the arc, will be the same constant 
which we may call T. The difference of the vertical com­
ponents of the extreme tensions will equal the total weight 
on the arc; that is, we shall have 

T(tan 02—tan 0i) = as-{-fix. 

If s is small, this becomes 

(1) T^ = « £ + *, 
,àly 
ax (A/JU 

since 

But since 

tan 02—tan di = -r-\-~-\dx. 
dx\dxi 

ds_ 
dx 

we may write 

^-•V'+(f ) '+ ' -dx2 J \dx] 

If p = dyldx, we have 
dp 

(2)
 avT+j?+6 = £to' 

where a = a/T and 6 = fi/T. The equation (2) is the 
differential equation of the curve. To integrate it, put 
p = tan 0 ; then 

sec2 0^0 _ do _ 
& + &sec0 ' cos 6(a-\-bcos 0) 
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By the method of partial fractions, we may write 

( 3 ) _ ^ _ _ Me - adx 

cos 0 a + &cos0 
Integrating, we find 

(A) log (sec 0 + tan 0) 

b 1 [b + acos6-\-Vb2—a2sin0 

] -- V¥^ log l ^+ï^e J = «° 
the constant of integration being zero if we let x — 0 
when 0 = 0. Dividing (2) by dy, we may write 

dp 
( , dy dx 1 pdp , 

aVT^+b ~ ~dy ~~~ 7' aVT+p+6 ~ V' 
To integrate this put, as before p = tan 0. Then 

tan 0 sec2 0^0 . sec 0[d(sec 0)] 7 

—-—— = dy or A , 7 = ay. 
a sec 0 + & a sec 0 + & y 

Integrating, we find 
&+asec0—b log (& + a sec 0) = aay + JK". 

liy = y0 when 0 = 0, J5T= & + a — blog(a + b)—a2y0, 
and hence 

(B) a(sec , - l ) + 6 log [ 1 R ? ^ _ ] = « V ~ * ) . 

The equations (A) and (B) are the parametric equations of 
the curve, the parameter being 0, the angle of inclination. 

3. Alternative Forms. If b<Ca, equation (A) in its 
present form will involve square roots of negative quantities. 
But in this case there is a form of (A) which is real, and 
which is therefore better suited for computation. This 
form will now be developed. 

The second term of the left member of (A) is now 

&__ p + acosfl+l/&2— a2sin0l 
VW^2 °gL a + 5cos0 J 
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that is, 

z = 

or 
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b . I b + aco$d-\-iV a2— 
iV^-b2 ° g 1 a + &cos0 

[October, 

-&2sin0] 

J' 
^=^ b + acos6 + iVa*-b*sme 

or 
eVa*— b2 

a + b cos 6 

cos I r ) + * sin 
. IzVa2 

3 m \ — I 
b + a cos 0 + iVa2—&2 sin (9 

a + & cos 0 
Equating the imaginary parts, 

IzV^T2] y ^ ^ s i n ö 
sm 

/gKfla—&*\ = 

a + & cos 0 ' 

= sm x -
2—b2 L "Ka2—&2 L a + &cos0 

so that (A) may be replaced by the equation 

(C) Iog(sec0 + tan0) 

v\ 
b . AVa2—&2 sin 01 

sm - 1 = ax. 
JVa2—usinai = 

L a + frcos0 J 

4. Bridge Density Zero. If the linear density of the 
bridge becomes zero, the equations reduce to those of the 
common catenary. Here b = 0, so (A) takes the simple 
form log (sec 0 + tan 0) = ax, since the second term re­
duces to zero. Hence we may write 

eax = s e c (9 + l/sec2a — 1 , or sec 0 = —(e?°*-\-e~ax). 
z 

The equation (B) becomes sec 0 — 1 = a(y—y0), since the 
argument of the logarithm never becomes infinite. Combining 
these results, we have 

\{eax+e~™) = l + a(y—yo), 

which is the equation of the common catenary. 
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5. Cable Density Zero. When we put the linear density 
of the cable equal to zero, a becomes zero, and this makes (A) 
and (B) reduce to identities. We can, however, obtain the 
equations ivhich should result. If we divide (A) throughout 
by a and then put a = 0, the result is an indeterminate 
form, of the type zero divided by zero. This is evaluated 
by the rule of de L'Hospital: 

{b/(a2-b2)}{[Vb~2
 —a2 (b + a cos 0 + Vb2— a2 sin d) 

— (a + b cos 0) (Vb2—a2 cos 0—a sin o)] ~ 

[{b + a cos 0 +VV:=ö?$me)(a + &cos 0)] + 

Vb2-
When we now put a 
(A) takes the form 
(A1) 

log 
\b-\-aco$0+Vb2—a2sin0 

• ] } • -aa L a+6cos0 

0, this reduces to (1/6) tan 0, and 

tan 0 bx. 

Similarly, when we divide (B) through by a2 and take the 
quotient of the derivatives, we have 

b2 

(sec Ö — 1) 1 (a + &)(& + « sec 0) 
2a 

Applying the rule a second time, 

a=0 

0̂  
0 

y(sec0—1) 
&(l + secfl) + 2flsecfl 
{a + b)2(b + asecd)2 

so that (B) takes the form 

1 

a=a = 2ÏUn2e> 

(B1) 2b tan20 y—yo-

Combining (A1) and (B1), we may write 

y- -Vo = jar 

which is the equation of a parabola. 
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