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Numerous devices for shortening the computations are 
suggested by numerical work, whether or not the prime 
factor resolution of n be feasible. 

As an immediate consequence of (2) we note that 9 is 
the only prime multiple of 9 which is the sum of two 
cubes > 0 ; from (3) the only solution x > 0, y>0 of 
x3-\-ys = p2, p prime, is (x, y, p) — (1, 2, 3), etc. It is 
not difficult to obtain from (1)-—(3) the known types of 
impossible equations x3 ± y3 = n, except when n is a cube, 
and some others that do not seem to have been stated. 
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1. Introduction. Contact conies and hyperosculating 
curves of the rational cubic have been discussed by Winger, f 
Likewise some account has been given of curves of order n 
which cut the cubic, rational or elliptic, in (3n—1) 
coincident points.^ There remains the question of contact 
curves of order n(n>2) whose contacts are of lower orders. 
This paper considers that question for the rational cubic, 
with results which hold for n>l and for contacts of 
any order. 

If the cubic is taken in the canonical form 

(1) xx = St2, x2 = 3<, x3 = f+1, 

a necessary and sufficient condition that a set of 3n 

* Presented to the Society, San Francisco Section, December 22, 1923. 
f Involutions on the rational cubic, this BULLETIN,VO1.25(1918), p. 27. 
+ Winger, Some generalizations of the satellite theory, this BULLETIN, 

vol. 26 (1919), p. 75. 
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points on the cubic be the intersection of a curve* of order n 
and the cubic is 

(2) ssn = (—iy% 

where ssn is the product of the 3n parameters of the points. 
The intersecting curve will be a contact curve if the 3n 
points are not all distinct, i. e., if the exponent of at least 
one parameter in szn is > 1. For instance, hyperosculating 
curves correspond to the coincidence case t± = t2 = • • • = hn* 
It is from (2) that the results in this paper are derived. 

2. An Example. As an example, consider a contact 
quartic and require that the 12 points common to it and 
the cubic coincide in two contacts, a 5-point contact at 
a point whose parameter is r and a 7-point contact at a 
point whose parameter is t Then, in virtue of (2), / and T 
satisfy the equation 

(3) T*f = ( - 1 ) 1 2 . 

Thus for a given x there are in fact seven points t, which 
means that seven quartics can have 5-point contact at an 
arbitrary point of the cubic and 7-point contact elsewhere. 
However, it is easily seen from (3) that x is merely one 
of a set of 5 points each of which determines this same 
set of 7 points U That is, here are 35 related contact 
quartics, 5 with 7-point contact at each U and 7 with 
5-point contact at each xi% It is easily verified also that 
the 12 parameters of the 12 points ti and U (in terms 
of T) satisfy (2). That is, the 12 contacts of the 35 related 
contact quartics lie on a non-contact quartic. But x was 
an arbitrary point of the cubic. Therefore all contact 
quartics of the type illustrated are related in sets of 35 
each, and the 12 contacts for any one set lie on a quartic. 

Similar relations hold for other types of contact quartics. 
For instance, if x be supposed a 4-point contact and t an 
8-point contact, it can be shown that all contact quartics 

* The curve will in fact be one of a pencil when n > 2 . Hereafter 
the word curve is used with this understanding. 



314 L. W. GRIFFITHS [July, 

of this type are related in sets of 32 each, etc. Indeed, 
similar relations hold if and only if the 12 points common 
to the quartic and the cubic coincide in two contacts. 

3. Generalisation. These relations on contact quartics 
may be generalized immediately, for the method of proof 
is independent of the order n of the intersecting curve. 
Here it is convenient to give the name complementary 
contacts to a pair of points like r and I which absorb all 
the intersections of the curve and the cubic; and to indicate 
that a definite number r < 3 n of single intersections coincide 
at r by saying that r is a Pr for the curve in question. 
Then two complementary contact curves are said to be of 
the same type if their values of n and r are respectively equal. 

THEOREM I. All complementary contact curves of the 
same type are related in sets of r (3n—r) each, where r 
and n have the values for the type in question. The distinct 
contacts for any one such set of complementary contact 
curves are 3n in number, r of them being contacts Pr and 
the remaining {in—r) being contacts P n~r. Each point 
of the type Pr is a contact Pr for (in—r) of the curves 
of the set and for no other complementary contact curves 
of this type in this set or any other-, similarly each point 
of the type P n~r is a contact Pl n~~r for r of the curves 
of the set. That is, points of the cubic are related in non-
overlapping sets of in each by complementary contact curves 
of a given type. 

THEOREM II. The in contacts of a set of related com­
plementary contact curves lie on a non-contact curve of 
order n ivhen and only ivhen n is even. 

4. Several Sets of Contacts. In contrast to this relation 
(Theorem II) among the in contacts of a single set of 
related complementary contact curves, there are relations 
between several such sets of contacts: f or instance, in the 
satellite theory. In particular, the theorem that the 
tangentials of 3 points of a line are collinear relates 3 sets 
of contacts: each set consists of 3 points, a P 1 (the single 
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intersection of a tangent and the cubic) and two P2's (the 
contacts of tangents to the cubic from the P1), It will 
be clear from Theorem 3 that the complete relation between 
these 3 sets of contacts is rather this theorem on tangentials 
and the less familiar theorem that the 6 contacts of tangents 
drawn from 3 collinear points lie by threes on 4 lines. 

For the general case the several sets of contacts are 
determined as follows. First choose arbitrary integer values 
for n, r<3n, k. Let %i (i = 1, 2, 3, • • •, 3k) be the 3k 
distinct points in which a non-contact curve of order k 
intersects the cubic. Then (Theorem I) determine the 3n 
distinct contacts of the set of related complementary con­
tact curves of order n in which r± is a P r ; similarly deter­
mine the set in which T2 is a Pr, etc. Since the n are dis­
tinct, there are 3 k distinct sets of complementary contact 
curves of the same type, each set of complementary con­
tact curves having its set of 3n contacts. These are the 
contacts whose relations are required. Note that they are 
32kn distinct points, of which 3kr are contacts of the type 
P rand 3k{3 n—r) are contacts of the type P*n~r. 

THEOREM III. If as above, any 3k contacts of the type P* 
lie on a carve of order k, then the totality of contacts of 
the type Pr lie on precisely r ~~ curves of order k\ and, 
farther, the totality of contacts of the type P n~r lie on 
precisely (3n—rfk~~1 curves of order k. 

The proof consists in exhibiting two auxiliary sets of 
points, called the points Ti and T( (i = 1, 2, • • •, 3k), such 
that (1) a necessary condition that the points %% lie on a 
curve of order k is that the points Ti lie on a curve of 
order &; (2) a sufficient condition that another selection 
of points of the type Pr lie on a curve of order k is that 
the Ti lie on a curve of order k\ (3) a sufficient condition 
that the points TI lie on a curve of order k is that the 
points Ti lie on a curve of order k\ and (4) a sufficient 
condition that a selection of 3k points of the type P n~r 

lie on a curve of order k is that the points T( lie on a 
curve of order k. Define Ti = —(—r$)r. Then if SBk re-



316 L. W. GRIFFITHS [July, 

presents the product of the parameters of the points 7) 

(4) Ssk = (_i)fc(_i)fcr(ri T2 . . . T8ky. 

And so Ssk = (—l)* if fa z-a . . . r8fc) = (—1)*. This 
proves (1). The proof of (2) is more difficult, and requires 
the specific parameters of the 3n contacts determined by 
T{. By a method similar to that used in discussing* quartics 
they are found to be 

(5) [V., O) T.. dö2T., •••, Wr~1T.. t-, COan-rt.. W2 t•* •••, C r ) ' ? ? ~ r _ 1 / . I , 

where wr is a primitive rth root of unity, <w3̂ _r a primitive 
(3n —r)th root of unity, and ^ = [(—l)n /z£]i/(^-^ a l s o a 

primitive root. Now select (3/c—1) points, one from among 
(Tv wrTv ' "y K~\)> o n e f r o m among (r2, MT2, ..., wp"1^), 
etc., omitting one from the set to which %j belongs. By 
these points a curve of order k is determined. It will be 
shown that the 3Mh point A in which this curve intersects 
the cubic is some one of the points (T., œr.,..., m^r.). 
For, determine the points ifor the points in which this curve 
intersects the cubic. They are Tlf • •., 7)_i, 7a? 7)+1, •.., T8k. 
But by the hypothesis and proof of (1) the 3k points 
Tu . . . , 7}_!, 7), 7)4.1, • . . , r3fc lie on a curve of order Zc. 
Since (3k—1) points on the cubic determine a curve of 
order Jc, Ta is identical with 7). Now from the definition of 
Tj it is clear that each of the r points (T., œrTj, • ••, MI~1TJ) 

determines this same 7), and that no other points deter­
mine this Tj. Therefore A is some one of these points, 
say w™Tj. But A and the (3 it — 1) points selected lie on 
a curve of order k. Therefore (2) is proved. This method 
of proof of (2) leads to the enumeration r3^-1 stated in the 
theorem. For the choice from the points (rv c\^v •••, wj"1^) 
can be made independently in r ways and independently 
of choosing from any of the other sets. 

To prove (3) define 77 = — (— tifn~r
7 where U has 

the value in (5). Then each of the (3n—r) points 

&> MSn-rfV-^ mZ~l~lti) £ i v e S t h e S a m e P° i n t TU a n d 

they are the only ones giving this 77. Then if S8'fe re-
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presents the product of the parameters of the points 77, 
it can be shown that S8'fc = 1/Ssk. Therefore (3) is proved. 
The proof of (4) is precisely the proof of (2), where U and 
77 replace %i and 27 respectively. The enumeration 
(3n — r)^"1 is also immediate. The proof of Theorem 3 
is therefore complete. 

It should be noted that some of the results of Theorem 3, 
but no enumerations, follow from the theory of residuation. 

5. Several Contacts of the Same Order. Finally, consider 
contact curves whose intersections are not completely ab­
sorbed in two contacts. Then at least two contacts are 
arbitrary, and relations are correspondingly indeterminate. 
The interesting case of precisely three contacts is that in 
which the contacts are of the same order; then from (2) 

(6) (txt2tsr = (—D*. 

Thus the necessary and sufficient condition that a triad 
of points be contacts of this sort is that it belong to one 
of the n involutions 
(7) s3 = — «£, (i = 0, 1, • • •, n—\), 

where wn is a primitive nth root of unity. For n = 2 
these contact curves are the familiar tritangent conies. 

The interesting case of n contacts is also that in which 
the contacts are of the same order, when from (2) 

(8) (* i<8- - -<*) 8 = ( - 1 ) * , 

(9) Sn = (—D*4, d = 0, 1, 2), 

where w8 is a primitive cube root of unity. 

6. Analogous Theorems for the General Cubic. For the 
general cubic, expressed rationally in terms of p(u), analogous 
theorems hold. The equations in terms of the elliptic 
argument are not of the simple type (2) afforded by the 
rational cubic, but yield determinate enumerations. 
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