THE JACOBIAN OF A CONTACT TRANSFORMATION*

BY E. F. ALLEN

The equations

(1)
$$x_1 = X(x, z, p), z_1 = Z(x, z, p), p_1 = P(x, z, p),$$

where X, Z, and P are functions of class C'', represent a transformation of line-elements in the xz plane to line-elements in the x_1z_1 plane. With Lie we shall define every transformation in x, z, p, which leaves the Pfaff differential equation

$$(2) dz - pdx = 0$$

invariant, as a contact transformation of the xz plane to the x_1z_1 plane. Hence the equations (1) must satisfy an identity of the form

$$(3) dz_1 - p_1 dx_1 = \varrho(dz - pdx),$$

where ϱ is a function of x, z, and p alone.

The following relations connecting X, Z, P, and their partial derivatives are easily obtained: \dagger

(4)
$$\begin{cases} Z_x - PX_x = -p\varrho, \\ Z_z - PX_z = \varrho, \\ Z_p - PX_p = 0; \end{cases}$$

(5)
$$\begin{cases} [XZ] = X_p(Z_x + pZ_z) - Z_p(X_x + pX_z) = 0, \\ [PX] = \varrho, \text{ and } [PZ] = \varrho P. \end{cases}$$

The jacobian of transformation (1) is

(6)
$$J = \begin{vmatrix} X_x & X_z & X_p \\ Z_x & Z_z & Z_p \\ P_x & P_z & P_p \end{vmatrix}.$$

^{*} Presented to the Society, December 1, 1923.

[†] Lie und Scheffers, Geometrie der Berührungstransformationen, p. 68, Chap. 3.

We shall show that this jacobian is equal to ϱ^2 . Let us multiply the first row by P and subtract the product from the second row; then

(7)
$$J = \begin{vmatrix} X_x & X_z & X_p \\ Z_x - PX_x & Z_z - PX_z & Z_p - PX_p \\ P_x & P_z & P_p \end{vmatrix}.$$

Hence, using equations (4), we find

(8)
$$J = \begin{vmatrix} X_x & X_z & X_p \\ -p\varrho & \varrho & 0 \\ P_x & P_z & P_y \end{vmatrix}.$$

This reduces to

(9)
$$J = \begin{vmatrix} X_x + pX_z & X_z & X_p \\ 0 & \varrho & 0 \\ P_x + pP_z & P_z & P_p \end{vmatrix},$$

when the second column is multiplied by p and the sum is added to the first column. Evaluating this determinant, we have

(10)
$$J = \varrho [P_p(X_x + pX_z) - X_p(P_x + pP_z)].$$

Therefore, by equation (5), we may write

$$(11) J = \varrho^2.$$

The equations of a contact transformation may be regarded as the equations of a point transformation, which transforms points in xzp space to points in $x_1z_1p_1$ space. In general a surface in xzp space, represented by the equation $F_1(x, z, p) = 0$, will be transformed into a surface in $x_1z_1p_1$ space, represented by the equation $F_2(x_1, z_1, p_1) = 0$. Or if we regard equations (1) as the equations of a transformation of line-elements, it will transform a differential equation in x, z, p, into one in x_1 , z_1 , p_1 , and also the solutions of the first differential equation into the solutions of the second.

Now if we set ϱ equal to zero,* we will have the equa-

^{*} In some cases there are no values of the variables that will make ρ equal to zero. The following theory does not apply to such cases.

tion of a surface in xzp space, or we might say that we have a differential equation in xz space. Let us see into what this surface or into what this differential equation is transformed when it is subjected to the transformation (1). A few examples result in obtaining curves in $x_1z_1p_1$ space or in obtaining differential equations free from p_1 . This leads to the following theorem.

THEOREM. The surface $\varrho = 0$ is transformed into a curve in space by the transformation (1).

If the partial derivative of ϱ with respect to z is not identically equal to zero, the equation $\varrho=0$ may be solved for z.* Assuming that this is true, when the value thus obtained for z is substituted in X, Z, and P, they become functions of x and p alone. Regarding x and p as parameters, the equations (1) are the parametric equations of a surface. A necessary and sufficient condition \dagger that

(12)
$$x_1 = f(x, y), y_1 = g(x, y), z_1 = h(x, y)$$

define a curve in space and not a surface is that

(13)
$$EG-F^2 = A^2 + B^2 + C^2 \equiv 0,$$
 where

(14)
$$A = \frac{\partial(y_1, z_1)}{\partial(x, y)}, B = \frac{\partial(z_1, x_1)}{\partial(x, y)}, C = \frac{\partial(x_1, y_1)}{\partial(x, y)}.$$

To prove our theorem it is necessary and sufficient to show that the A, B, and C connected with equations (1) are identically equal to zero. That is, it is sufficient to show that all the determinants of the following matrix vanish identically:

(15)
$$\begin{vmatrix} X_x + pX_z & X_p + \frac{\partial z}{\partial p}X_z \\ Z_x + pZ_z & Z_p + \frac{\partial z}{\partial p}Z_z \\ P_x + pP_z & P_p + \frac{\partial z}{\partial p}P_z \end{vmatrix}.$$

^{*} If $\partial \rho/\partial z \equiv 0$ we will be able to solve for either x or p if $\rho \neq \text{const.}$

[†] Eisenhart, Differential Geometry, p. 71.

Let us see what the effect will be when the value of z as obtained from $\varrho = 0$ is substituted in equations (1). Suppose that the substitution has been made in X and Z. It is easy to see that X_z and Z_z are equal to zero, and that to differentiate X completely with respect to x, it is necessary to differentiate with respect to x and then to use the function of a function rule, thus $X_x + X_z (\partial z/\partial x)$, and similarly for the other letters. Thus using the fact that $\varrho = 0$, we may write the equations (5) in the form

$$(16) \begin{cases} \left(X_{p} + \frac{\partial z}{\partial p} X_{z}\right) (Z_{x} + pZ_{z}) - \left(Z_{p} + \frac{\partial z}{\partial p} Z_{z}\right) (X_{x} + pX_{z}) = 0, \\ \left(P_{p} + \frac{\partial z}{\partial p} P_{z}\right) (X_{x} + pX_{z}) - \left(X_{p} + \frac{\partial z}{\partial p} X_{z}\right) (P_{x} + pP_{z}) = 0, \\ \left(P_{p} + \frac{\partial z}{\partial p} P_{z}\right) (Z_{x} + pZ_{z}) - \left(Z_{p} + \frac{\partial z}{\partial p} Z_{z}\right) (P_{x} + pP_{z}) = 0. \end{cases}$$

It is very easy to see that these equations are now the expanded form of the determinants of the matrix (15). Hence the theorem is proved.

THE UNIVERSITY OF MISSOURI

INTEGRO-DIFFERENTIAL INVARIANTS OF ONE-PARAMETER GROUPS OF FREDHOLM TRANSFORMATIONS*

BY A. D. MICHAL

1. Statement of the Problem. The author† has already considered functionals of the form $f[y(\tau'_0), y'(\tau'_0)]$ (depending only on a function $y(\tau)$ and its derivative $y'(\tau)$ between 0 and 1) which are invariant under an arbitrary Volterra one-parameter group of continuous transformations. The

^{*} Presented to the Society, December 1, 1923.

[†] Cf. Integro-differential expressions invariant under Volterra's group of transformations in a forthcoming issue of the Annals of Mathematics. This paper will be referred to as "I. D. I. V."