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1. Introduction. In the domain of mathematics there are a 
number of famous theorems which have stimulated the keen 
interest of mathematicians over extended periods of time, and 
whose proofs have presented a long continued challenge to the 
powers of mathematical logic. To some of these, in spite of 
the fact that the theorems themselves remain unproved, our 
science is indebted for important advances. 

As one illustration I may mention the well known theorem 
of Jordan which states that a simply closed continuous plane 
curve divides the plane into two and only two connected 
regions. This is a theorem of whose truth we are convinced 
at the start intuitively. But what we may for the moment 
call intuitive reasoning busies itself with simpler cases only, 
and is impatient of exceptions and refinements, unless by long 
study and continuous contemplation it has become a very 
sophisticated intuition indeed. Jordan was the first to insist 
that the theorem needed proof. Since his initial effort many 
others have attempted to give the conclusion of the theorem 
a substantial logical basis, and the theories of point sets and 
of functions of a real variable have been greatly enriched 
thereby. I am particularly interested to mention this theorem 
because it seems to me that with regard to it a satisfactory 
conclusion has been reached. There is doubtless still oppor­
tunity for improvements and simplifications in its proofs, but 
some at least of them have stood the test of examination by 
widely scattered experts. It is encouraging to have this 
evidence that not all of the mathematical questions generally 
recognized as most difficult are impossible to answer. 

One should mention, of course, among the notable illustra­
tions of the type of theorem which I have been discussing, 
Fermat's last theorem and the so-called four-color map 
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theorem. The latter asserts that every map can be colored 
with four different colors in such a way that each country has 
one color only, and no two countries adjoining along a bound­
ary have the same color. No one has constructed a map 
which can not be so colored, and most of us, I think, believe 
that the theorem is true. But so far as I know no proof of it 
has as yet been widely accepted, the vote usually standing 
one, namely the author, strongly in favor, many others 
doubtful, and some, who have had the temerity to examine in 
detail the screed in question, definitely against. This state of 
affairs is even more pronounced in the case of Fermat's last 
theorem, with the difference that one may with justice, it 
seems to me, feel very uncertain of the validity of the theorem 
itself. All of the proved evidence is in its favor, but the 
behavior of very large numbers, far without the range of our 
every-day experience, is so beyond our ken that it should not 
be a surprise to us if some day it were found that the theorem 
is not true. We are fortunate in some ways, however, that 
these questions remain unanswered. For every attack by 
experts upon them is likely to yield, as has been true notably 
in the past, important advances in the domains of analysis 
situs and the theory of numbers. The chapter of progress 
associated with Jordan's theorem may still be subjected to 
improvements and additions, but as compared with those in 
which the centers of interest are the four-color map theorem and 
Fermat's last theorem, it is relatively completed and closed. 

Many of you will have inferred from the title of this address 
the theorem of which I wish to speak to you especially to-day. 
I t is the one which states that by a birational transformation 
an algebraic curve, no matter how complicated its singularities 
may be, can always be transformed into another having only 
double points with distinct tangents. I t is with some diffi­
dence that I designate this theorem as one of the type of 
which I have hitherto been speaking, since among my mathe­
matical friends there are some for whose opinions I have great 
respect who disagree with me as to the difficulty of its proof. 
Unfortunately I have not been near enough to them to find out 
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with completeness what is in their minds. My purpose this 
afternoon will be achieved, however, if I can interest you 
again for the moment in some of the work of the sequence of 
distinguished mathematicians who have studied the theorem, 
and if I can make clear to those of you who have not specialized 
in the subject, some of the difficulties which they have sought 
to overcome. Up to the present time I do not know of any 
proof of the theorem which is sufficiently simple and unsophis-
tocated to justify one at least of its important applications 
in the theory of algebraic functions to which I shall presently 
refer again. 

2. The Two Transformation Theorems. In the statement 
of the theorem mentioned in § 1, reference is made to the 
notion of a birational transformation. There are two types 
of birational transformations, one of which is well illustrated 
by the very simple but important example f = x, rj — x/y 
relating the points of the £i/-plane to those of the ^77-plane. 
If one prefers homogeneous coordinates this transformation 
may be written in the form p£i = x2Xs, pf2 = #3^1, p& = ^i#2-
I t establishes a one-to-one correspondence between the points 
of the two planes with the exception of those on certain loci, 
in this case the coordinate axes, and is a special example of 
the general class of birational transformations which establish 
such correspondences between two planes and which are called 
Cremona transformations. Incidentally the transformation 
transforms every not too special algebraic curve f(x, y) = 0 of 
the ;n/-plane into a similar curve <p(£, rj) = 0 of the {77-plane 
and establishes a one-to-one birational correspondence between 
their points. I t is also possible, however, to have a one-to-one 
correspondence between the points of two curves fix, y) = 0, 
<p(%> v) = 0, with coordinates (x, y) and (£, rj) of corresponding 
points rationally expressible in terms of each other, but such 
that the correspondence is not a part of any Cremona trans­
formation between the planes of the two curves such as has 
been described above. Such a transformation has been called 
a birational transformation relating the two curves alone. 
A simple example of such a transformation is defined by the 



164 G. A. BLISS [April, 

equations £ = x2, 77 = y when applied to a curve not sym­
metric with respect to the ?/-axis. 

Before proceeding to the discussion of the various proofs 
which have been made of the theorem I should like to say 
that there are really two closely related theorems which have 
been considered in this connection. To understand them we 
should remember that an "ordinary" singular point of a curve 
is one through which pass a finite number of branches whose 
tangents are distinct. For such a point (x, y) = (a, b) in the 
finite part of the plane these branches will be determined 
analytically by convergent series of the form 

x = a+ at+ • ", y = b + f3t+ • • •, 
in which the coefficients a and /3 are not both zero, and the 
different branches through (a, b) will have distinct ratios a : /?. 
The two theorems mentioned are then as follows. 

THEOREM I. Every irreducible algebraic plane curve can be 
transformed into another which has only ordinary singular points 
by a Cremona transformation of the planes of the two curves. 

THEOREM I I . Every irreducible algebraic plane curve can be 
transformed into another which has only ordinary double points 
by a transformation which is birational between the two curves. 

Theorem II is the one of which I have already spoken, and 
I may say here that there are two types of proofs of it. For 
one of them the conclusion of Theorem I is assumed, and a 
further birational transformation is then determined which 
will replace ordinary multiple points of multiplicity higher 
than two by ordinary double points. The other type of proof 
is more direct, presenting at once a birational transformation 
producing ordinary double points only, without the use of 
Theorem I. 

In the theory of algebraic functions these two theorems 
have an important application. The genus of an algebraic 
curve, and the more important properties of the Abelian 
integrals and the field of rational functions associated with the 
curve, are invariant under birational transformations. The 
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presentation of the theory, from the standpoint of the so-called 
transcendental methods inaugurated by Riemann and devel­
oped and amplified by many other writers, is greatly simplified 
if one can presuppose that the curve under consideration has 
only ordinary singular points. Some further advantage in 
simplicity would be gained if only ordinary double points 
were present, but, as one of my mathematical colleagues has 
aptly said, this would be in the nature of a luxury rather than 
a necessity. It is significant, however, that most lecturers 
and writers who approach the subject from the standpoint of 
Riemann are content to start with the result of Theorem I, 
which they probably would not do if they found that Theorem 
II were provable in relatively as simple and elementary a 
fashion. Some of the other theories of algebraic functions 
which do not presuppose any special properties of the singular 
points of the basal curve seem to me highly interesting* and 
desirable, notably that of Dedekind and Weber as amplified and 
presented by Hensel and Landsberg.* Theoretically this is 
certainly a very elegant and satisfying method of approach. 

In speaking a few minutes ago of the correspondence 
established between two algebraic curves by a birational 
transformation, I used locution of which I very much dis­
approve, but which at that moment could not very well be 
explained. The elements of an algebraic curve which are set 
into one-to-one correspondence with those of another curve 
by a birational transformation are not the points of the curve, 
but the so-called branches or cycles. Through each finite point 
of the curve there passes one of these branches, if the point is 
simple, but possibly more than one if the point is multiple, 
and there are besides branches belonging to the so-called 
points at infinity. Analytically each branch is determined 
in non-homogeneous coordinates by equations of the form 
x = P(f), y = Q(f), where P(t) and Q(t) are convergent power 
series having usually only terms with positive powers of t, but 
for a finite number of branches having also a finite number 
of terms with negative exponents. If homogeneous coordi-

* Theorie der algebraischen Funktionen einer Variabeln, 1902. 
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nates are used the cycle or branch can always be represented 
by series having only positive powers of t. Weierstrass 
especially emphasized the point of view that a curve may well 
be thought of as the totality of the branches which satisfy its 
equation, and I think that failure to appreciate his contention 
has in some cases caused confusion in the proofs of the theorems 
of which I have been speaking. Birational transformations 
do not in general transform curves point for point into each 
other, but they do establish a unique correspondence between 
the branches of the two curves. 

3. Geometric Interpretations. The most useful geometric 
picture of an algebraic equation f(x, y) = 0 which we have is 
its so-called Riemann surface. The effectiveness of the picture 
is due to the fact that there is a one-to-one continuous corre­
spondence between the points on the surface and the branches 
which satisfy the equation. Furthermore the character of the 
cycle of sheets of which each point of the surface is a vertex 
indicates important properties of the corresponding analytic 
branch. Besides the Riémann surface, however, there are two 
other geometric representations of an algebraic curve which 
have especial importance in connection with the transforma­
tion theorems stated above, but each of which is open to the 
objection that it visualizes for us only the real branches of the 
algebraic curve in question. 

For the first of these, consider the pencils of lines through 
two points A and B selected arbitrarily in the plane. In the 
pencil through A, for example, we may regard each ray as 
designated by the value x of its anharmonic ratio with three 
fixed rays through A chosen in advance; and the rays through 
B are similarly determined by numbers y. If we now associate 
with each pair of values (x, y) satisfying an algebraic equation 
f(x, y) = 0 the point of intersection of the corresponding x~ 
and 2/-rays through A and B, we obtain a curve representing 
geometrically the real branches of our equation. In order to 
give equal consideration to all the rays through A and B 
without using infinite values for the coordinates we may 
introduce the homogeneous variables xi, x2, and y\9 y2 defined 
by the equations x = xi/x2, y = 2/1/2/2. 
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The other geometric representation of the equation f(x, y) 
== 0 is so familiar that I need not speak of it in detail. If 
we replace x and y by homogeneous coordinates xi, X2, x% 
defined in the usual way by the equations x = xijxzy y = x2/xs, 
then the equation f(x, y) = 0 determines a curve in the pro­
jective plane as soon as a coordinate triangle and unit point 
have been assigned. 

For the sake of convenience let us agree to call the former 
of these two geometric interpretations of the equation f(x, y) 
= 0 the function-theoretic one, and the latter simply the 
geometric interpretation. The reason for this nomenclature 
is that the former is closely allied to the theory of algebraic 
functions, while the latter is that of ordinary plane projective 
geometry. The function-theoretic interpretation is the more 
convenient one for representing properties of curves which are 
invariant under transformations of the form 

(1) x- a£+(h
f M + fr2j 

while the geometric interpretation has similar advantages for 
transformations 

(2) x = ai£ + biy + ci = a£ + b2rj + c<i m 

(hk + hrj + cs ' a3£ + hrj + c3 

We say in either case that a point of the curve f(x, y) = 0 
with finite or infinite coordinates is an ordinary double point 
if it has this character after an appropriate transformation (1) 
or (2) into a non-special point with finite coordinates. The 
points on the line AB in the function-theoretic representation 
are special points. 

I t is perhaps more satisfactory to define analytically what 
is meant by a curve with ordinary double points only. In the 
function-theoretic case the equations of a branch can always 
be taken in the form 
Xi= ai+ ocit+ •-, yi= bi+ Pit+ • • •, (i = 1, 2), 

(ai, (h) * (0, 0), (6i, h) 9^ (0, 0), 

and the branch is said to be linear if the two determinants 
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do not both vanish. A second branch with primed coefficients 
has the same center if 

a/ — kdi, hi = Ibi, (i = 1, 2) ; 

and two branches with the same center are said to have 
distinct tangents if the expression 

( W - WX&i'ft - WPù - 0i'<*2 - tfe'aiX&ift' - fcft') 
is not zero. 

In the geometric case a branch has equations 

x% = ai + <Xit+ •-, (i = 1, 2, 3), {au a2, a3) ^ (0, 0, 0), 
and is linear if the determinants aiau — ak(Xi (i 9^ h) are not 
all zero. A second branch with primed coefficients has the 
same center if a / = pa& (k = 1, 2, 3); and two branches with 
the same center have distinct tangents if the determinant 
(aiObOLz) is different from zero. For branches with finite 
centers (x, y) = (a, b) these definitions of branches with 
distinct tangents reduce to those of the usual cartesian analytic 
geometry. A curve with no singularities except ordinary 
double points is in either interpretation one such that all of its 
branches are linear, such that none of its points is a center of 
more than two of its branches, and such that every pair of 
its branches having a common center has distinct tangents. 
These properties are invariant in the function-theoretic and 
geometric cases under the respective transformations (1) 
and (2). 

Now it happens that the branches which satisfy an equation 
fix, y) = 0 may determine a curve with ordinary double 
points only in one of these interpretations, while more com­
plicated singularities are present in the other. This is due to 
the fact that we have added in two different ways points with 
infinite coordinates to the totality of finite points (x, y) in the 
plane in order to obtain the two interpretations. If, for 
example, the line x = oo through A is intersected by n distinct 
branches in the function-theoretic case, then the curve for 
the geometric interpretation of the equation will have an 
ordinary singular point with n branches at the intersection of 
the a>axis with the line at infinity. Similarly if the line at 
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infinity in the projective plane intersects the geometric curve 
in n points distinct from each other and from the x- and ?/-axes, 
then the function-theoretic curve will have an ordinary singular 
point with n branches through the intersection of the lines 
x — oo and y = oo. 

We could readily analyze this correspondence in greater 
detail, but the essential thing to remark is that there is really 
a pair of Theorems II which are not equivalent. The dis­
tinction between these theorems has not, in my opinion, been 
sufficiently emphasized in the literature, though proofs apply­
ing to both have been presented. At the present time the 
function-theoretic theorem appears to me somewhat easier to 
handle, though neither of them is simple. 

4. Noether's Theorem. Those of you who have not been 
specialists in this domain will perhaps be interested to know 
something of the origins of these theorems. Theorem I is, 
with what seems to be universal agreement, ascribed to Noether. 
In 1871 * he stated the theorem and indicated the proof which 
has since been modified and elaborated in one way or another 
by many writers. A difficulty in the proof not explained in this 
original paper can be removed by methods used in the same 
year by Hamburger f in his study of the Puiseaux expansions 
at a singular point. Noether $ himself in 1876 treated the ques­
tion more elaborately in a paper devoted to the analysis of the 
singular points of an algebraic curve. Bertini § was dissatis­
fied with the methods used by Noether, and in 1888 gave a 
direct proof of the theorem which he characterizes as simple 
and rigorous. The proof with which I am most familiar is 
that given by Picard 11 and ascribed by him to Simart. The 
geometers would be perhaps most interested in those of Severi ̂  

* GÖTTINGER NACHRICHTEN, 1871, page 267. 
t ZEITSCHRIFT FUR MATHEMATIK UND PHYSIK, vol. 16 (1871), p. 461. 

t MATHEMATISCHE ANNALEN, vol. 9 (1876), p. 166, especially § 5. 
§ LOMBARDO RENDICONTI, (2), vol. 21 (1888), page 326. In com­

menting on Noether's paper he says "le considerazioni (§ 5) lasciano forse 
a desiderare maggiore semplicita e chiarezza," and he says that his intention 
in his own paper is to prove Noether's theorem "semplice e rigorosa." 

|| Traite d'Analyse, vol. 2, 1st éd., 1893, page 360; 2d éd., 1905, p. 404. 
If Lezioni di Geometria Algebrica, 1908, p. 61. 
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and Enriques,* but there are many others.f The proofs are 
all modifications of Noether's original one, and there is no 
question with regard to the validity of the theorem. I may add 
that Halphen J gave two methods of transforming a curve into 
one with ordinary singular points only by birational transforma­
tions which are not Cremona transformations. 

The method of the proof is to place the origin of coordinates 
at one of the singular points of the curve, say one of order k, 
and then to apply the simple quadratic transformation £ = x, 
rj = x/y of which I have spoken above. In the new curve the 
character of the singular points not at the origin remains the 
same as before, but the singularity of order k at the origin is 
exploded by the transformation, and when one examines the 
pieces remaining two new ordinary singular points are found 
at corners of the coordinate triangle, plus one or more other 
fragmentary singular points on one side of this triangle the 
sum of whose orders is k. The difficulty which I have men 
tioned above and which was not originally explained by 
Noether lies in the possibility that there may be only one such 
fragment of the same order as the original singularity, in 
which case the situation might easily be as bad after as before 
the transformation. I t is provable, however, that after a 
finite number of repetitions of the transformation the number 
of the fragments will surely be greater than one, and their 
orders each less than k. By a continuation of the process, 
therefore, one can finally replace the singular point originally 
placed at the origin, and indeed all of the singular points, by 
ordinary singular points only. I t is not surprising that there 
have been so few variations from the method of proof originally 

* Lezioni sulla Teoria Geometrica dette Equazioni e délie Funzioni Alge-
briche, vol. 2, 1918, p . 417. 

t See ENCYCLOPÉDIE, I I I C 4, p . 363; Pascal, Repertorium der Höheren 
Mathematik, vol. 2, 2d éd., p . 291; Brill und Noether, Die Entwicklung der 
Theorie der algebraischen Functionen, JAHRESBERICHT DER VEREINIGUNG, 
vol. 3 (1892-3), p . 369. Interesting references which do not seem to be 
listed in these places are Jordan, Cours d'Analyse, vol. 1, 2d éd., 1893, 
p . 588; and Clebsch-Lindemann, Vorlesungen über Geometrie, vol. 1, 1876, 
p. 491. 

{ C O M P T E S RENDUS, vol. 80 (1875), p . 638, and OEUVRES, vol. 1, 

p . 358; JOURNAL DE MATHÉMATIQUES, (3), vol. 2 (1876), p. 87. 
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proposed by Noether, if one remembers the theorem that 
every Cremona transformation is decomposable into a succes­
sion of projective transformations and simple quadratic 
transformations of the type we have been considering. 

5. The Kronecker Group of Proofs of Theorem II . With 
regard to Theorem II , it seems to me that the story is quite 
a different one. The origin of the theorem is less easy to 
determine, and no proof of it has been adopted with uni­
versal or even with widespread approval. During a somewhat 
cursory examination of the literature over a year ago I found 
so many doubtful comments by authors themselves upon 
proofs which had preceded theirs, and so many questions of 
my own which it seemed difficult to answer, that I resolved 
to try by a closer personal examination to convince myself of 
the merits of some of the published demonstrations of the 
theorem. I t is of the impressions gained from this study that 
I wish to speak to you now. After we have looked for a 
moment at the various types of proofs which have been given 
it will perhaps be easier to describe intelligibly the sources 
from which the theorem seems to have been developed. 

The proofs fall into four main groups,* and I shall speak 
first of that which originated with Kronecker because it is the 
one in which I have myself been primarily interested. In 
1881 Kronecker f published a paper in which he discusses the 
factorization of the discriminant of an algebraic function, and 
which he had presented to the Berlin Academy many years 
before, in 1862. I t is a very well known paper, for many 
reasons one of the most suggestive and interesting which I 
have ever read. In it he shows that the discriminant of an 
algebraic function y of x, defined by an algebraic equation 
f(x, y) = 0, has always the form D = R2A, where R and A are 
two polynomials in the variable x. If the equation ƒ (x, y) = 0 
is subjected to a birational transformation of the form 

£ = x, rj = r(x, y) 

* For the literature see Brill and Noether, loc. cit., pp. 369 ff.; Wirtinger, 
ENCYCLOPADIE, II B 2, p. 127; Berzolari, ibid., I l l C 4, pp. 362 ff.; and 
in Pascal's Repertorium, loc. cit. 

t JOUKNAL FÜR MATHEMATIK, vol. 91 (1881), p. 301. 
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upon the dependent variable alone, then the resulting equation 
<p(x, rj) = 0 will have a discriminant D\ = i?i2A in which R\ 
is in general different from R, while the factor A remains 
unchanged. A principal purpose of the paper is to determine 
the birational transformation in such a way that the roots of 
jRi are distinct from each other and from those of A. If this 
has been accomplished, then it is provable that the curve 
<p(x, rj) = 0 can have no singularities in the finite part of the 
œrç-plane except ordinary double points. This last step I do 
not find explicitly explained in Kronecker's paper, though it is 
clear from other sources that he and his followers were well 
aware of the geometric significance of his transformation of 
the discriminant. 

Kronecker states that the results of the paper, of which I 
have been speaking were in part known to him as early as 
1857, and that he used them repeatedly in his lectures for 
many years before the paper itself was published. His trans­
formation of the discriminant was adopted by Weierstrass in 
lectures on the theory of algebraic functions in 1869. I am 
acquainted with Weierstrass' treatment of the question only 
through a brief outline by Brill and Noether * and a more 
detailed paper based upon this outline published by Thome 
in 1903.f The papers of Kronecker and Thome are both very 
clear and convincing, but neither of them affords a complete 
proof of either the function-theoretic or the geometric Theorem 
II because after their transformations there may still be 
complicated singularities at infinity, though only ordinary 
double points in the finite part of the plane. 

In order to secure his birational transformation simplifying 
the discriminant, Kronecker made use of the rational functions 
r] (x} y) on the Riemann surface of the curve f(x, y) = 0 which 
have no poles on the finite part of the surface, the so-called 
integral algebraic functions in the field of rational functions 
associated with the curve. A general formula for such a 
function is 
(3) r/Qr, y) = ux{x)rii{xy y) + h un(x)7ln(x> y), 

* Loc. cit., pp. 375-6. 
t JOURNAL FÜR MATHEMATIK, vol. 126 (1903), p. 52. 
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where 771, • • •, rjn is a suitably selected set of linearly independ­
ent functions of this sort, and the coefficients u\y • • •, un are 
arbitrary polynomials in x. If these coefficients uk are suit­
ably specialized, then x and rj will satisfy an algebraic equation 
<p(x, 77) = 0 birationally related to f(x, y) = 0 and with a 
discriminant of the desired simplicity. 

In 1902 Hensel and Landsberg * extended this reasoning of 
Kronecker. The functions rj(x, y) which Kronecker uses are 
restricted to have minimum orders zero at the finite points of 
the Riemann surface of ƒ(#, y) — 0, but are unrestricted at the 
infinite points. A formula like (3) still holds, however, if the 
functions TJ(X, y) have the properties just mentioned with the 
exception that minimum orders different from zero, either 
positive or negative, are admitted at a limited number of 
finite points of the Riemann surface. If now the number of 
poles allowed for rj (x9 y) is sufficiently large, and if the coeffi­
cients ui, • • •, un are again suitably specialized, the function 
rj(x, y) will not only satisfy an equation <p(x, rj) = 0 biration­
ally related to f(x, y) = 0, and have a discriminant of the 
form attained by Kronecker, but it will also have finite 
distinct values at the infinite points of the Riemann surface. 
This brings us to the function-theoretic Theorem I I provided 
that the poles allowed for rj(x, y) are of order one and over 
distinct values of x. For if on the Riemann surface of <p(x, rf) 
= 0, which is the same as that for f(x, y) = 0, the function 
77 (#, y) has distinct finite values at the value x = 00 and simple 
poles over distinct finite values of x, then the infinite branches 
of <p(x, rj) = 0 give rise to no multiple points in the function-
theoretic interpretation of the equation. If furthermore the 
discriminant of rj(x, y) has the simple form attained by 
Kronecker, then the curve <p(x, rj) = 0 can have no singular­
ities at finite points (x, rj) except ordinary double points. 

The discussion of the separation of the roots of the dis­
criminant given by Hensel and Landsberg seems to me 
at one point incomplete f without the addition of some 

* Theorie der algebraischen Funktionen einer Variabeln, pp. 402-9. 
f Loc. cit., the paragraph on pages 407-8. 
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details from Kronecker's original memoir. Their final state­
ment of the theorem does not distinguish between the function-
theoretic and geometric cases upon which I have insisted 
above, and it is followed by the assertion without a reference 
that the theorem was first proved by Kronecker. So far as I 
can discover from published papers, this last statement is not 
quite just to themselves. The extension of Kronecker's proof 
which enables one to secure proper behavior of the transforma­
tion at infinite as well as finite points of the Riemann surface 
is apparently their own, and it is a much more difficult exten­
sion than is indicated by my brief outline of their argument. 

I have been interested to attempt to prove the geometric 
Theorem I I also by Kronecker's method, and have found a 
proof which seems to me satisfactory. If an algebraic equa­
tion <p(i-, rj) = 0 of degree q defines q expansions f or 77 at £ = 00 
of the form 

V = oiki + jSfc + yk r H , (k=l, • • •, q; ak 7* OL\ for k ^ I), 
ç 

and if the discriminant for rj has the simplified form attained 
by Kronecker, then it is provable that in the projective plane 
the corresponding curve meets the line at infinity in distinct 
points and has no singularities in the finite part of the plane 
except ordinary double points. To obtain such a curve bi-
rationally related to f(x, y) = 0 one can start by selecting 
q > 2p + 2 ordinary points on the Riemann surface of 
fix, y) = 0 over distinct values of x, p being the genus of the 
surface. The functions rj(x, y) which have no singularities 
except possibly simple poles at these points constitute a linear 
family of the form 

(4) rj(x, y) = cirii(x, y) + h cvrjv(x, y), (y = q - p + 1), 

the coefficients ck being constants. A suitable special choice 
of these coefficients can easily be made so that the resulting 
function £(#, y) has surely a simple pole at each of the q 
points. With more difficulty a second special function rj(x, y) 
of the family can then be chosen which with £ satisfies an 
equation <p(£, rj) = 0 birationally related to f(x, y) = 0 and 
which has the further properties described above. 
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Here, then, based upon the methods of Kronecker, are 
proofs of both the function-theoretic and geometric Theorems 
II . They are what I should call sophisticated proofs, since 
they make use of properties of rational functions with prescribed 
poles on the Riemann surface of f(x, y) = 0, which are well 
known and well established but not elementary. These 
properties are proved in the theory of algebraic functions as 
presented by Hensel and Landsberg without restrictive 
assumptions upon the singularities of f(x, y) = 0. If the so-
called transcendental method of Riemann is adopted, however, 
it is usually presupposed in proving them that the singularities 
of the curve f(x, y) = 0 are ordinary multiple points only, 
or, in other words, that the result of Theorem I has been 
attained by transformation. An easily derived property which 

I have found for the linear families (4) aids very much in 
simplifying the proofs of both the function-theoretic and 
geometric interpretations of Theorem II . 

6. The Halphen Growp of Proofs of Theorem II . There is a 
second very interesting series of discussions of Theorem II 
which seems to have been inaugurated by Halphen in 1884.* 
So far as I have been able to discover this paper of Halphen's 
contains the first explicit statement and proof of Theorem 
II which has been published. In 1893 Picard f reproduced 
Halphen's argument. At its conclusion, in commenting on a 
particular step in the proof, he says that the point is not to be 
doubted, but that he does not see quite the means of estab­
lishing it so as to avoid every objection. The reasoning by 
continuity which he has just been using makes the accuracy 
of the conclusion seem to him more than probable. In a foot­
note he adds that Halphen arrives at the theorem without 
mentioning the difficulty. 

This comment of Picard seems to have instigated a series 
of attacks on the theorem which continued for more than a 

* Étude sur les points singuliers des courbes planes algébriques, appendix 
to Salmon's Traité de Géométrie Analytique (Courbes Planes), translated by 
O. Chemin, edition of 1903, pp. 627-31. 

t Traité d'Analyse, vol. 2, 1893, p. 364. 
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decade. In the same year, 1893, Simart * modified Halphen's 
proof as presented by Picard and remarks that the theorem, 
though affirmed by many authors, has never to his knowledge 
been demonstrated rigorously, and he offers, therefore, a 
demonstration which he believes to be secure against every 
objection. Only a little later in the same year Poincaré f 
proposed a geometric proof of a different sort, of which he 
says that the two principal steps will possibly seem almost 
evident. Yet there will perhaps be some interest, he continues, 
in having a demonstration which is secure against every 
objection. In 1895 Appell and Goursat % refer in a footnote 
to the proofs of Simart and Poincaré, but rely for their estab­
lishment of the theorem upon another very interesting trans­
formation previously used by Halphen § to secure a curve 
with ordinary singular points only. In 1896 Vessiot | j states 
that many demonstrations of the theorem have been given, 
but that the modification of Appell and Goursat's proof 
which he is about to explain will not be without interest on 
account of its simplicity and complete rigor. In a footnote H 
he says that if one accepts as evident the steps (e) and (ƒ) of 
his demonstration, as Appell and Goursat have done at the 
analogous points of their proof, one may arrive at his con­
clusion more rapidly. But the explanations wThich he gives 
seem to him indispensable if one desires to establish these two 
points beyond all doubt. 

It seems to me that these comments express considerable 
dissatisfaction and uncertainty with regard to the proofs of 
Theorem II which were at that time under discussion. The 
transformations suggested by Halphen are most interesting 
and plausible, and one would expect, as Picard implies, that 
their effectiveness can be conclusively established. I do not 
feel convinced as yet that this has been done. Simart's paper 
is so concise that I have so far been unable to verify all the 

* C O M P T E S R E N D U S , vo l . 116 (1893) , p . 1047. *~~ 

t COMPTES R E N D U S , vol. 117 (1893), p . 18. 

t Théorie des Fonctions Algébriques, 1895, p . 282. 
§ JOURNAL DE MATHÉMATIQUES, loc. cit. 

|| ANNALES DE TOULOUSE, vol. 10 (1896), p . D l . 

If Page D6. 
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steps of his argument to my own satisfaction. Vessiot uses a 
combination of projective transformations with the simple 
transformation 

One cannot in general by a preliminary projective transforma­
tion prevent this function rj from having poles in the finite part 
of the Riemann surface off(x, y) = 0. Each of these poles pro­
vides a branch which in the projective œrç-plane passes through 
the intersection of the 77-axis and the line at infinity. A sin­
gular point is therefore introduced at infinity on the projective 
curve which cannot be made to disappear by a subsequent pro­
jective transformation. It does not seem possible, therefore, to 
prove the geometric Theorem II by this method. On the other 
hand I am inclined to believe that Vessiot's method may afford 
a relatively simple proof of the function-theoretic Theorem II. 
By a projective transformation one should be able to bring it 
about that rj = dy/dx has distinct finite values at the infinite 
points of the Riemann surface, and at most simple poles over 
distinct values of x in the finite parts of the surface. These 
properties insure the existence of simple points only at the 
intersections of the function-theoretic curve with the rays 
x = oc and 2/ = 00 through the points A and B. The methods 
of Vessiot could then be used to secure at most ordinary double 
points at finite points (x, y). Some of the steps are, however, 
analytically delicate. 

7. The Bertini Group of Proofs of Theorem II. A third group 
of proofs, this time of the geometric Theorem II, is due to 
Bertini.* In 1891 he was apparently unaware of Halphen's 
paper of 1884, for he states that in many works on geometry 
Theorem II is applied, but that as far as he knows no one 
has given an explicit demonstration. He proposes, therefore, 
one which appears to him to be simple and rigorous. It seems 
likely that the form which he devised was suggested by some 
studies of birational transformations of curves published by 
Clebsch and Lindemann in 1876.f In 1894 Bertini republished 

* RiviSTA Di MATEMATICA, vol. 1 (1891), p. 22. 
t Vorlesungen über Geometrie, 1876, pp. 661 ff. 

12 
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his proof in the MATHEMATISCHE ANNALEN,* and in a footnote 
explained that a geometric difficulty which Poincaré had 
avoided somewhat circuitously in 1893 had already been dis­
cussed by himself. Klein added a second footnote in which 
he suggested an interesting geometric transformation, equiva­
lent to Bertini's, which he says had been communicated to him 
orally by Clebsch in 1869. In 1905, in the second edition of the 
second volume of his Traite d'Analyse,] Picard adopts Bertini's 
proof with slight modifications only. In 1906 Walker % remod­
eled Bertini's method in detail in accordance with Klein's 
geometric suggestion. In Walker's introduction he refers to the 
proofs listed in this and the preceding groups, and remarks that 
they are written in very concise style and leave a great many 
minor points to the reader. In 1907 W. H. and G. Ch. Young § 
described a new condition on Bertini's transformation which 
must be added in order to make it entirely satisfactory. They 
were evidently unacquainted with Walker's thesis, in which 
this objection had been answered in a different way but had 
not been pointed out explicitly. 

The great advantage of the form of Bertini's proof adopted 
by Walker lies in the fact that the various steps of the proof 
have geometric interpretations in ordinary spaces of two and 
three dimensions. I t is consequently easier by this method 
to classify the properties which must be imposed upon Bertini's 
transformation, and to make sure that all of them have 
been suitably secured. The proof is in outline as follows. 
Through six points of a plane x, not on a conic and no three 
collinear, there pass four linearly independent cubic curves 
fi(xi, x2, Xs), (i = 1, • • •, 4). The equations 

(5) pyi = fi(xi, x2, xs), (i = 1, • • •, 4) 

define a cubic surface F in the three-dimensional ^/-space, and 
the points of F are in one-to-one correspondence with those of 
the plane w with the exception that six of the straight lines 

* Vol. 44 (1894), p. 158. 
t Page 408. 
% On the resolution of higher singularities of algebraic curves into ordinary 

nodes, Dissertation, Chicago, 1906. 
§ TORINO ATTI, vol. 42 (1907), pp. 82-6. 
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on the surface correspond to the six base points. For each 
of these lines there is, however, a one-to-one correspondence 
between its points and the rays through the corresponding 
base point. Let K be an irreducible algebraic curve in the 
£-plane with ordinary singular points only, and let the base 
points of the transformation just described be selected so that 
one of them is at a singularity A of K but the others not on K. 
Then the curve K is transformed by equations (5) into a new 
curve Kr on the surface F, and K' has singularities similar 
to those of K with the exception that one of them, namely A, 
is dispersed into ordinary points. If a suitable center of 
projection 0 is now taken on the surface F, the curve K' can 
be projected into a plane curve K" which has possibly new 
ordinary double points in place of A, but whose other 
singularities are the same in number and in type as those of K. 
By a succession of such transformations all of the singular points 
of K may therefore be replaced by ordinary double points. 

The difficult part of the demonstration is the proof that it 
is possible to choose properly the center of projection 0. If 
0 is selected on F but distinct from K' and the straight lines 
of F, and distinct from the cones generated by K' at its own 
singular points, then the projection of K' from 0 defines a 
curve K,f in one-to-one correspondence with K' except for a 
finite number of double points of K" where the correspondence 
is one-to-two. The choice of 0 in this manner on the cubic 
surface F effectively prevents any ray through 0 from being 
a trisecant of K'. If 0 is not on the developable of the 
tangents to K', then K" will have no cusps. If 0 is not on the 
tangent planes to F at the multiple points of K', and not on 
the cones generated by K! at its own singular points, then 
each multiple point of Kf will project into an ordinary multiple 
point of the same character for K". Finally if 0 is distinct 
from the ruled surface whose generators are lines joining 
points of K' with coplanar tangents, then the only double 
points introduced for K" will be ordinary double points. In 
order to make the proof complete it must be shown that each 
of the loci just mentioned exists and can be avoided in the 
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selection of the point 0. Walker has not only done this but 
he has also discussed in detail the properties of the cubic 
transformation from the plane w to the surface F. His thesis 
fills all told about fifty pages, a decided contrast to Bertini's 
original outline of slightly more than one page. I have been 
satisfied, by Walker's reasoning or by arguments of my own 
which seemed to me more convenient, that all of his step? are 
well justified. It would be highly desirable to have the proof 
shortened and simplified without sacrificing clearness or 
accuracy, and I am inclined to think that it could be done. 

8. Other Geometric Proofs of Theorem II. There is a fourth 
and final principal group of proofs of Theorem II, more geo­
metric in character, with which I am relatively much less famil­
iar.* The plan underlying most of them is to transform the given 
plane algebraic curve into a twisted curve in a higher space 
devoid of singularities, and then to project this non-singular 
curve upon a two-dimensional plane in such a way that only 
ordinary double points remain. Intuitively the possibility of 
these two steps, as Poincaré says, does seem almost evident, 
and it is perhaps for this reason that in most of the geometric 
proofs the final projection is hardly mentioned. It seems to me, 
however, that this projection is a really difficult part of the 
proof. Poincaré's proof, for exatnple, is very condensed, but 
all of his steps can be verified without serious difficulty up to 
his discussion of the projection of the non-singular curve in 
higher space into a non-singular curve in three-space. At this 
point his reasoning seems to me much too concise, and even 
questionable. In Walker's form of Bertini's proof the pro­
jection of the space curve Kf on the surface F into a plane 
curve K" is the most difficult step. My doubts about the 
ease of making the projection have been strengthened by 

* Veronese, MATHEMATISCHE ANNALEN, vol. 19 (1881), p . 213; Poincaré, 
loc. cit.; del Pezzo, NAPOLI RENDICONTI, (2), vol. 7 (1893), p . 15; Vessiot, 
BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE, vol. 22 (1894), 

p. 208; Pieri, RIVISTA DI MATEMATICA, vol. 4 (1894), p . 40; Segre, ANNALI 
DI MATEMATICA, (2), vol. 25 (1897), p . 43; Severi, Lezioni di Geometria 
Algebrica, 1908, p . 172; Del Re, MODENA M E M O R I E , (2), 10 (1894), p . 447, 
footnote; Jamet, Nouvelles Annales, (3), vol. 19 (1900), p . 506. 
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some further interesting evidence. After I had made the 
proof of the geometric Theorem II, following Kronecker, I 
read Seven's geometric proof and was surprised to find a close 
analogy between my own argument and his. This was a 
result of the relationship between the theory of rational 
functions of x, y with prescribed poles on the Riemann surface 
of ƒ(#, y) = 0 and the geometric theory of the groups of points 
intersected on the curve f(x, y) = 0 by linear families of 
curves. It is these linear families which Severi uses to get 
his transformation from the plane curve to a non-singular 
curve in higher space. But Severi relegates the question of 
the projection of his space curve upon a plane, so as to leave 
only ordinary double points, to a short footnote containing 
only some remarks on how to avoid trisecants, whereas in the 
Kronecker theory the equivalent steps form the most delicate 
part of the proof. For the present, then, I am discontented, 
to say the least, when I find a geometric proof which does not 
explain in detail the projection mentioned. The transforma­
tion from the original plane curve to the non-singular space 
curve is relatively easy and can be done in a number of ways. 

9. Origin of Theorem II. You will understand, I think, from 
what has been said above, that it is not easy to designate with 
certainty the origin of Theorem IL Halphen in 1884 ascribed 
the theorem to Noether, and he has since been imitated by a 
number of other writers, probably on account of the close rela­
tionship between Theorem II and Noether's Theorem I. On 
the basis of published papers it would be difficult to establish 
this origin. Klein, after stating the theorem without proof in 
the text of his Riemannsche Flachen* inquires in a footnote " Wo 
ist der Satz zum ersten Male gedruckt?", and states that he 
himself first heard it orally from Kronecker in the autumn of 
1869. Hensel and Landsberg also ascribe the theorem to 
Kronecker. If we rely on printed memoirs, however, one 
must admit that Kronecker's paper, first published in 1881, 
was devoted to the analysis of the discriminant of an algebraic 
function and was essentially analytic in character. His 

* 1892, p. 245. 
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reduction has indeed an important bearing upon Theorem II , 
but it affords only a partial proof. You will remember that 
Klein, in the footnote which he added to Bertini's ANNALEN 

paper of 1894, states that the geometric transformation there 
described was communicated to him orally by Clebsch in 1869. 
Brill and Noether* further publish an extract from a letter 
of Klein to Noether dated December 17, 1869, in which Klein 
describes two results attained, respectively, by Kronecker and 
Clebsch. The first is the transformation of an arbitrary 
algebraic plane curve into another with no singularities except 
a single ordinary singular point; and the second is the trans­
formation of a curve with a single ordinary singular point 
into one with at most ordinary double points by the geometric 
process which Klein ascribes to Clebsch in his footnote to 
Bertini's paper. Klein further adds in his letter that he be­
lieves Clebsch's method can be extended so as to reduce any 
number of arbitrary singularities to ordinary double points. 
Brill and Noether contend, and it seems to me with justice, 
that these assertions would be more effective as the basis of a 
claim for priority in the proof of the theorem if they had been 
afterwards substantiated in print. In 1897 Segre,f speaking 
of the transformation of a plane curve into one in higher space 
with no singularities, says that solutions of the problem are 
contained implicitly in a paper by Brill and Noether of 1874,{ 
and more explicitly in Veronese's paper of 1881 previously 
cited. As I said above, however, the first explicit published 
statement of the theorem with proof was probably that of 
Halphen in 1884. On the whole, I am inclined to agree with 
the conclusion implied by an above quoted statement of 
Bertini in 1891. The theorem seems to have gradually 
established itself in the consciousness of mathematicians during 
the decades from 1860 on, and an assignment of it to a definite 
origin would probably be incorrect. I t is without doubt true 
that many a theorem now confidently attributed to a particular 

* JAHRESBERICHT, loc. cit., p . 371. 

t Loc. cit., p . 43. 
% MATHEMATISCHE ANNALEN, vol. 7 (1874), p. 269. 
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mathematician would upon closer examination prove rather 
to be, as this one seems to be, the product of a gradual evolu­
tion in the minds of many individuals. 

I t seems to me that there is still a need for concise and clear 
proofs of the function-theoretic and the geometric Theorems 
I I . The Hensel and Landsberg proof of the former, and 
Walker's proof of the latter following Bertini and Klein, are 
the only published ones with whose details I am at the present 
time personally well content. There are objections to both of 
them. I t would be very difficult and inconvenient to analyze 
and understand the former unless one had read many of the 
preceding pages of Hensel and Landsberg's book, and possibly 
also Kronecker's original memoir. Walker's proof has the 
sort of geometric background which should enable one to 
decide definitely whether or not all essential details have been 
thought of and suitably discussed. But it is very long, and, 
having been published privately, it has not been subjected to 
the close scrutiny of mathematicians in various centers which 
seems to me desirable. The last objection applies also to my 
own proof of which I spoke above. So far as I know there is 
at present only one person who has definitely, though some­
what timidly, expressed his approval of this effort of mine, 
and his identity I must leave you to surmise. In conclusion 
I have only one further hope to express, namely, that no new 
proof will appear in the very condensed style which makes it 
almost impossible to decide whether the theorem has really 
been established or not. There are a number of these already, 
and the accumulation of others would only add to the diffi­
culties of every earnest searcher for the truth in this domain. 
I t seems to me that brevity at the expense of clearness, in a 
situation of this sort, should not be mistaken for simplicity. 
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