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A GENERALIZATION OF NORMAL 
CONGRUENCES OF CIRCLES* 

BY J . L. WALSH 

1. Introduction. A congruence of circles in three-dimen­
sional space is said to be normal if every circle of the congruence 
is normal to three surfaces. Normal congruences have long 
been studied,! and one of their principal properties is expressed 
in the theorem that if a variable circle C is normal to the 
three fixed surfaces Si, S2, S3 at the points Pi , P2 , P3 re­
spectively, and if the point P 4 is determined by a real constant 
cross ratio with Pi , P2, Pz, then as C varies the point P 4 

traces a surface which is also orthogonal to C. 
I t is the purpose of the present note to consider a type of 

congruence to which we shall give the name of isogonal 
congruence and which is a generalization of the notion of 
normal congruence. A congruence of circles is said to be 
isogonal if every circle of the congruence cuts three surfaces at 
equal angles in such a way that when the circle is inverted 
into a straight line i , the tangent planes to the corresponding 
surfaces at their points of intersection with L are all parallel. 
That is, every sphere through a circle of the congruence cuts 
at equal angles the three surfaces at their points of intersection 
with that circle. I t is to be noted that the term isogonal 
might well be given to a still larger type of congruence of 
circles, but in the present paper the term will be used only in 
the restricted sense indicated. 

We shall prove (Theorem III) that if a congruence is isogonal 
there are not merely three surfaces but a one-parameter 
family of surfaces which have the isogonal property, and all 
the surfaces of the family can be obtained as in the case of 
normal congruences. 

* Presented to the Society, December 27, 1922. 
t By Ribaucour, Darboux, Bianchi, Eisenhart, and Coolidge, among 

others. Detailed references are given by Coolidge, A Treatise on the Circle 
and the Sphere, Oxford, 1916, Chap. XV. 
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Isogonal congruences of circles are thus a generalization of 
normal congruences of circles, of normal congruences of lines, 
and of certain congruences of lines which naturally arise in 
connection with the parallel mapping of surfaces*. Isogonal 
congruences are particularly interesting because in general 
three arbitrary surfaces determine one or several such con­
gruences isogonal to them. If one fixed circle C is isogonal to 
three surfaces, there is in general one and only one congruence 
of circles isogonal to those surfaces and containing C. For 
the condition of isogonality for a circle Cf and three sur­
faces Ci, C2, C% is satisfied if two spheres through the circle 
C' cut at equal angles the surfaces Ci, 02, C3 at their points of 
intersection with C'. This is equivalent to four independent 
conditions on all the six-parameter family of circles in space. 

Let us proceed to investigate the analogue in the plane of 
the isogonal congruence. 

2. Isogonal Series in the Plane. The name isogonal series 
shall be given to a one-parameter family of circles in the plane 
such that each circle of the family cuts at equal angles three 
curves, and in such a way that when the circle is inverted into 
a straight line, the tangents to the transformed curves at their 
points of intersection with the transformed circle are all 
parallel. In general, three arbitrary curves determine one or 
more isogonal series, and if a circle C cuts isogonally three 
curves there is in general one and only one isogonal series 
which contains C and all of whose circles cut isogonally those 
three curves. For the condition of isogonality to three curves 
involves two independent conditions on the three-parameter 
family of all circles of the plane. We shall proceed to prove 
the following theorem. 

THEOREM I. Let a variable circle C cut three fixed curves C\, 
Ciy Cz isogonally at the variable points z\> %%, z% respectively. 
Then the point z± defined by the real constant cross ratio 

(1) A — (Zi, Z2, Zz, ZA) = 7 . 7 • r 
(22 — 3s) (Z4 — 2 l ) 

* Isogonal congruences are also a generalization of a type of congru­
ences of circles considered by F. W. Beal, ANNALS OF MATHEMATICS, (2), 
vol. 17 (1915-16), pp. 180-170. 
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traces a curve C± such that the circle C cuts isogonally C\, C2, 
Cz, C± at the points zi, z2, zz, 24. 

We fix our attention on a particular circle C and its points 
of intersection zi, zi, zi (supposed distinct) with C\, C2, C3. 
We shall prove that if zi, z2, Zs move simultaneously from 
zi, zi, zi along Ci, C2, Cz in any way whatever, then the point 
24 defined by (1) traces a curve which C cuts isogonally with 
C\, C2, Cz. 

If z\ moves from zi along C\, but z2 and Zz are kept coin­
cident with zi and zi, then z± moves from zi along a curve 
which is cut by C isogonally with Ci. This becomes obvious 
if zz is transformed to infinity; equation (1) then represents 
a transformation (z\, zi) of similitude with z2 as center, while 
C is a straight line which is unchanged by the transformation. 
Likewise if z2 moves from z2 along C2, but z± and zz are kept 
coincident with zi and zi, then s4 moves from zi along a 
curve which is cut by C isogonally with C2. A similar fact 
obtains if £3 moves from zi along Cz- Thus, independent 
infinitesimal changes of z\, z2, Zz from zi, zi, zi along Ci, 
Ci, Ci move £4 from zi along a curve of the kind described, 
so simultaneous infinitesimal changes of zi, z2, Zz from zi, zi, 
zi along Ci, Ci, Ci also move z± from zi along a curve C4 
such that C cuts the curves C\, C2, Cz, C4 isogonally at zi, 
z2', ^i, zi.* This completes the proof of Theorem I. 

Theorem I is particularly interesting in the case that C\, 

* The detailed analysis of the differentials involved is extremely simple 
in the present case. We have by differentiation of (1) and substitution of 
(1) in the result, 

(-i'\ A - Oft —g2)d£3 + fa — Zj)(dzi — dz2)~\(z2—Zz)dzi—\(zi — Zi)(dz2—dz3)_ 
Oi— z2)-\-\(z2~zs) 

Transform the circle C of Theorem I into the axis of reals, identify the 
real values z%' of Theorem I with the z% of (1'), and identify the variables 
z% of Theorem I with the zi + dzi of (1'). All the quantities in (1') except 
the differentials are real; all the differentials of the right-hand member 
have the same argument (mod w), so dzi has also tha t same argument 
(mod 7r). 

Thus if zi(t), z2(t), z3(t), Zi(t) are solutions of a Riccati equation whose 
cross ratio is a real constant, then whenever the z%(t) vary as functions of t, 
they trace paths that are cut isogonally by the circle on which the Zi(t) lie. 
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C2i Cs are all circles. In this case we have the following 
theorem.* 

THEOREM I I . Let Ci, C2y Cs be three fixed non-coaxial circles. 
Then the circles C which cut isogonally C\, C2) Cs at points 
%i, z2, #3 form four distinct series,^ each of which is composed of 
the circles of a coaxial family. If there are considered the circles 
C of but one isogonal series, the point z± defined by the real 
constant cross ratio 

X = (zi, z2, zsy 24) 

traces a circle C± which is such that C cuts isogonally Ci, C2, Cs9 

C4 at z\, z2, %s, Zi. 
If Ci, C2, Cs are coaxial but not all tangent at a single point, 

there is but one series of circles C cutting them isogonally, 
namely the circles of the coaxial family conjugate to the 
family to which d, C2, Cs belong, and all these circles C cut 
the three given circles orthogonally. But the points Zi, z2, Zs 
may be chosen on C and on the circles C\, C2, Cs in four 
essentially different ways, always so that C cuts Ci, C2i Cs 
isogonally at z\, z2, 23. Thus we still have four circles C4 and 
for any particular choice of 04, the circle C cuts isogonally 
Ci, C2, Cs, CA at 21, z2, Zs, z±. 

If Ci, C2, Cs are all tangent at a single point P, any circle 
C through P cuts the original circles isogonally at the inter­
sections of C and those circles distinct from P , so no isogonal 
series is defined. We can still obtain the four circles C4, 
however, by requiring respectively (1) that no point Zi, z2) Zs 
shall coincide with P; (2) that 21 shall always lie at P ; C 
must then be orthogonal to d, C2, Cs', (3), (4) similarly for 
z2 and S3. Always the circle (74 is traced by the point 24, and 
the circle C cuts C\, C2, Cs, C4 isogonally at 21, z2) z3, z4. 

3. Isogonal Congruences in Space. Theorem I and its proof 

* See Walsh, TRANSACTIONS OF THIS SOCIETY, vol. 22 (1921), pp. 101-

116; Lemma IV. 
t By a proper convention for the angle between two circles, these four 

systems are described respectively by saying tha t C cuts Ci, C2, C3 all a t the 
same angle or one of those circles at an angle supplementary to the angle 
cut on the other two. A similar remark obtains below for Theorem IV. 
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as just given extend directly to space. Let us prove the 
following theorem. 

THEOREM I I I . Let a variable circle C cut isogonally three 
ûxed surfaces C\, C2, Cs at the variable points Ph P2, P3. Then 
the point P 4 defined by the real constant cross ratio 

(2) X = (Px, P2 , P3 , P4) 

traces a surface C4 such that the circle C cuts isogonally Ci, C2, 
Cs, C4 at the points Pi , P2 , P3, P4 . 

We fix our attention on a particular circle C and its points 
of intersection Pi ' , P2, P/ (supposed distinct) with Ci, C2, C3. 
We shall prove that as Pi, P2, P 3 move from Pi, P2 , P3

r on 
Ci, C2, Cs in any way whatever, then P 4 as defined by (2) traces 
a surface (7/ such that C cuts isogonally Ci, C2, C3, CI at PÎ, 
P2

;, P3 ' , PA', where P 4 ' is defined by X = (Pi', P2 ' , P3 ' , P4 ' ) . 
If P i moves from P / along Ci, but P 2 and P 3 are kept 

coincident with P2 and P3 ' , then P 4 traces a surface which is 
cut by C at P 4 ' isogonally with d, C2, Cs at P / , P2

7, P 8 ' . 
The corresponding fact holds if P 2 or P 3 is allowed to move 
on C2 or (73 while the other two of the original three points are 
kept fixed. Independent infinitesimal changes of Pi , P2 , P3 
from Pi, P2, P 3 ' along d, C2, Cs therefore move P 4 along a 
surface of the kind described, so simultaneous infinitesimal 
changes of these points must move P 4 along a surface CI such 
that C cuts isogonally Cu C2, Cs, CI at P / , P2 ' , P3

r , P4
7. 

Thus even if a congruence is not isogonal but a single circle C 
of the congruence cuts isogonally the surfaces Ci, C2, Cs, then 
C cuts isogonally with Ci, C2, Cs the surface traced by the 
point P 4 defined by (2). 

We leave to the reader the proof of the following theorem, 
which is the space analogue of Theorem II . 

THEOREM IV. Let Ci, C2, Cs be three fixed non-coaxial 
spheres. Then the circles C which cut isogonally Ci, C2, Cs at 
points Pi, P2, Ps form, four distinct congruences, each of which 
is composed of the circles through two points, real, coincident, or 
imaginary. If there are considered the circles C of but one 
isogonal congruence, the point P 4 defined by the real constant 
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cross ratio 
X = (Pi, P2 , P8 , P4) 

traces a sphere (74 which is such that C cuts isogonally C\, C2, 
Cs, (74 at Pi, P2, Ps, Pe­

lf the spheres C\, C2, Cs are coaxial but not all tangent at 
a single point, there is but one congruence of circles cutting 
them isogonally; all of these circles C cut Ci, C2, Cs orthog­
onally. However, the points Pi , Pi, Ps may be chosen on 
C and on their proper spheres in four essentially different 
ways, and in each case C cuts isogonally C\, C2, Cs at Pi , P2 , 
P3 . Thus the point P 4 still traces four spheres C4; and for 
any particular (74, the circle C cuts isogonally C\, C2, Cs, CA 
at Pi , P2 , Ps, P 4 . 

If the spheres Ci, C2, Cs are all tangent at a single point P, 
any circle C through P cuts those spheres isogonally at the 
intersections of C and these spheres distinct from P , so we 
have no unique isogonal congruence. There are, however, 
four spheres (74 which can be obtained by requiring respectively 
that Pi , P2 , Ps, or that none of those points should coincide 
with P . In the former cases the circle C must be orthogonal 
to C\, C2, Cs to have the proper isogonal property; in the 
latter case all the circles C to be considered form a complex 
instead of a congruence. In every case the point P 4 traces a 
sphere C4 such that Ci, C2, Cs, C4 are cut isogonally by C &t 
Pi, P2 , Ps, P4 . 

Theorems I I I and IV can be extended readily to any number 
of dimensions. 

We add the remark that isogonal congruences arise in space 
naturally if we consider the problem of finding the locus of a 
point P 4 defined by the real constant cross ratio 

(3) X = (Pi, P2 , P3 , P4) 

when the points Pi , P2 , P3 have as their respective loci the 
regions Pi , P2 , P 3 , or the surfaces Si, S2, S3. The surfaces 
C\, C2, Cs defining the isogonal congruence are the boundaries 
of the regions Pi , P2 , P 3 or the surfaces Si, S2, S3 themselves. 
The boundary of the locus of P 4 is traced by P 4 as defined by 
(3) when the circle C of the congruence cuts C\, C2, Cs isog-
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onally at Pi , P2 , P3. Detailed consideration of the corre­
sponding fact for the plane has been given in a paper by the 
writer,* and can easily be extended to space by the reader. 

HARVARD UNIVERSITY 

A CORRECTION 

BY EINAR HILLE 

In the June number of this BULLETIN (vol. 28, No. 5, p. 261), 
the author published a paper with the title Convex distribution 
of the zeros of Sturm-Liouville functions. Through an over­
sight the last paragraph of the paper is inaccurate. We list 
the necessary corrections below. 

Page 264, lines 4-10: Instead of " Note the lineal . . . <p^\ 
read "On I we mark the eventual points (Xyi a s well as the 
points where either arg G{z) = arg G(z±) + IT or 6S = <p0 

(mod7r). Lets 2 = 22(<£>o) be the first of these points, different 
from z\, which we encounter when proceeding along the ray, 
the rest of which we leave out." 

Page 264, line 13: Instead of "an analytic curve", read 
"either of two analytic curves, namely -4(21) which is the 
locus arg G(z) = arg G(zi) + TT, and". 

Page 264, lines 24-27: Instead of "l(<pi) . . . respectively", 
read "l(<pi), considered as a double ray if necessary, from 
z2~ to £2 and from z2 to z2

+, we make the boundary curve 
continuous at <p = <pi'. 

Page 264, line 28: Instead of "cu ts" , read "straight lines". 
Page 264, line 30: After " the part of", insert i(A(zx) and". 
Page 265, first line: Leave out "on the cuts". 
Same page, lines 6-10: Replace "Then . . . depends upon 23" 

by "Then we can find an angle â such that the two inequalities 

<15> U < 0 < 2 V + W ; e -•*["»«—0*1 
will hold for all interior points on the segment (z\, z%), where 
Jc is some integer". 

PRINCETON UNIVERSITY 

* See Lemma I I I of the paper to which reference has already been 
made, and also TRANSACTIONS OF THIS SOCIETY, vol. 23 (1922), pp. 67-88, 
Theorem I I . 


