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cases being that this value may actually be attained in the 
latter case for one or more special values of 0* 

Finally, it may be observed that the values of the so-called 
absolute minima for the cases where area may be passed over 
four, five, six, • • • times are respectively |P0, \l2d, \l26, 
The consideration of these cases, however, on the geometrical 
side again presents serious difficulties, but tends to the opinion, 
as in the case of triplication, that in general the smallest area 
that can be swept over by any actual movement of angle 0 
is %l20 rather than any of these smaller values. 
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CONVERGENCE OF SEQUENCES OF LINEAR 
OPERATIONS f 

BY T. H. HILDEBRANDT. 

Let Un be a sequence of linear continuous operations on the 
class F of functions ƒ, continuous on the interval (a, b), i.e., 
suppose that every U satisfies the two conditions: 

(1) UiCifi + C2f2) = cJJUl) + C2Ü(f2) 

for every pair of constants (e?i, c2) and every pair of functions 
(fi> ƒ2) of the class F; 
(2) There exists a constant M depending on U such that if 
Nf is the maximum value of |/1 on (a, b) then 

\U(f)\ SsMNf. 

The greatest lower bound of all possible values M might be 
called the modulus of U. 

* Thus, in case 0 — ir and triplication is allowed, the corresponding 
value |Z27T may be attained as follows: Construct the hypocycloid of three 
cusps obtained by rolling the circle of radius JZ within the circle of radius 
f I and let the given segment (of length 21) move so as to be always tangent 
to this curve and yet be everywhere entirely within it. The resulting 
area swept over as 0 passes from 0 to T is entirely triplicated, as is well 
known, and is equal to the amount above stated, §l2ir. See, for example, 
F. Gomes Teixeira, Traité des Courbes Spéciales Remarquables Planes et 
Gauches, vol. II, p. 193. (Coïmbre, 1909.) 

t Presented to the Society, September 4, 1919. 
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Helly* has shown that a necessary condition that limw Un 

exists for every ƒ of F is that the Un be uniformly bounded, 
i.e., that there exist a constant M independent of n such that 

\Un(f)\^MNf. 
Then 

l i m n C 7 „ ( / ) = U(f), 

where U( ƒ ) is a linear continuous operation whose modulus is 
less than or equal to M. In order to obtain sufficient condi­
tions, it is necessary to make use of the classical theorem of 
Riesz, that every linear continuous operation on the class F 
is expressible in the form of the Stieltjes integral, ffda, 
where a is of bounded variation. If a is regular, i.e., such 
that at every point x on (a, b) a(x) lies between a(x — 0) 
and a(x + 0), which can always be assumed to be the case 
without changing the value of the integral (and we shall 
restrict ourselves to this case), then the total variation 
C/*|da|) of a is exactly the modulus of U, so that Helly's 
condition would be, that there exists a constant M independent 
of n such that 

f\dan\ < M, 

for every n, i.e., the an are uniformly of bounded variation. 
This condition is not sufficient. Hellyf has shown that if 

(1) the an are uniformly of bounded variation and (2) there 
exists a function a of bounded variation such that 

limn an = a for every x, 
then 

limn ffdoin = f f da for every ƒ of F. 

BrayJ has shown that a weaker second condition is that there 
exists a function of bounded variation a and a denumerable 
everywhere dense set of points: xi, •••, xm, ••• including 
a and b, such that for every xm 

limn an(xm) = a(xm). 

This condition is not necessary. I t is the purpose of this 
note to derive necessary and sufficient conditions. 

* Helly, WIENER SITZUNGSBERICHTE, vol. 121 (Ha) (1912), p. 268. 
t Loc. cit., p. 288. 
Î ANNALS OP MATHEMATICS, (2), vol. 20 (1919), p. 180. 
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We derive first an additional necessary condition. Since 
the an are necessarily uniformly of bounded variation, it 
follows from a theorem by Helly* that the an are a compact 
set, i.e., there exists a subsequence anm of the sequence an 

and a function a (necessarily of bounded variation) such that 

limm anm = a for every x. 
Consequently 

limw ffda.nm = f f da 

for every ƒ of F. Since limn Sfdan exists, it follows that 

limn ffdccn = f f da, or limn ffd(an — a) = 0 

for every ƒ of F. Let 
Pn(x) = an(aO — ot(x) — a»(a) + a (a). 

Then our condition becomes: 

limn yydjSn = 0 

for every ƒ of F. If we take ƒ = 1 then 

(a) Km» [j8n(6) - (3n(a)] = limn j8»(6) = 0. 

Again take ƒ = # for a S # = £ and ƒ = £ for i; ̂  x ^àb. 
Then if we apply the integration by parts formula valid for 
Stieltjes integrals: 

SfWn = tfn\\ - r / M f = WnQ>) - X * /»*€&. 

Consequently, since limw j8n(&) = 0, we must have 

(b) limn S
 xfindx = 0 for every x of (a, 6) 

or the equivalent condition: 

(b') limn X?1 Pndx = 0 for every subinterval («i, &i) of (a, 6). 

We transform this last condition as follows: 
LEMMA I. If @n is a sequence of functions uniformly of 

bounded variation such that 

limw Sal1 Pndx = 0 
for every subinterval (ai, b{) of (a, b), and if Ufi vS the greatest 
lower bound of |j3n(#) I for x on (a, 6), then limn un = 0. 

* Loc. cit., p. 283. See also Radon: WIENER SITZUNGSBERICHTE, vol. 
122 (Ha), p. 1377, and Fischer, this BULLETIN, vol. 27 (1920), p. 12. 
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If limn un is not zero, then there will exist an e > 0 and a 
subsequence unm of un such that unm > e for every nm, i.e., 
for every rim and every a: we have 

\PnJx)\ > e. 

Since the /?Wm form a compact set, there exists a subsequence 
Pk' approaching a limiting function (3 also of bounded variation. 
This function /3 will obviously be such that |j3(#)| ^ e for 
every x of (a, 6). Consequently there exists a subinterval 
(ai, fei) of (a, 6) such that either 

j3(tf) < - e or j8(aO S e 

for every # of («i, &i), i.e., 

| 0? £(*)<** I >«(6 i -a i ) . 
But the j8j/ are uniformly bounded. Hence* 

limkX1
hPk(x)dx = f£p(z)dx, 

which is not zero. Then we have reached a contradiction to 
the hypothesis of the lemma. 

A direct consequence of this lemma is: 
LEMMA II. If /?n is a set of functions uniformly of bounded 

variation such that 
Y\mnfa

h
l^n{x)dx^ 0 

for every subinterval (ai, fei) of (a, b), then in every subinterval 
(ai, bi) of (a, 6) there exists a sequence of points xn such that 

limn pn(xn) = 0. 

For, any subinterval (ai, b{) of (a, b) may replace (a, b) in 
the hypothesis of Lemma I. Moreover, since limn un = 0, 
it follows that there will exist a point xn such that 

|j8w(»n)| = Un + ~> 

i.e., limn i8„(^n) = 0. 
The conclusion of this lemma together with the fact that 

the an are uniformly of bounded variation is also sufficient 
for the convergence under consideration, i.e., we have: 

* Cf. Lebesgue, Leçons sur V'Intégration, p. 114. 
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THEOREM. Necessary and sufficient conditions that the limit 
limn JZbfdan exist for every f of F are that 

(1) the an be uniformly of bounded variation, 
(2) there exist a function a of bounded variation such that if 

Pnfa) = OLn(x) — OLn(a) — a(x) + « ( a ) , 

then 

(a) limn £»(&) = 0, 

(b) in every subinterval (ai, 61) of (a, b) there exists a set of 
points Xi, • • • xn, • • • such that 

Kmn $n(Xn) = 0. 

The function a of the theorem may be taken to be the func­
tion which is the limit of a subsequence of an(x). 

To prove the sufficiency, we show that, under the hypotheses 
of the theorem, limn ffd$n = 0 for every function ƒ of F. 
From a theorem of Bray* it follows that 

\Sfdpn ~ Z fitoWnbi-!) - j8»(*,)]| S OèM, 

where XQ — af X\, * • *, Xffir-.\, x<ffi — 0 is a subdivision of (a, 6), 
£* lies in the interval (#;_i, #»•), 08 is the maximum oscillation 
of f(x) in (ari-i, #»•) and ƒ \ d$n | ^ M f or every n. Since ƒ is 
uniformly continuous in (a, 6), for every e, there will exist a 
de such that if | Xi — #1-1 | =̂ d6, then 05 S e/2ilf. Take a 
subdivision of (a, 6) by the points £1 = a, &, • • •, f m = b 
such that for every i, | & — £i_i | =§ §de. Let 4d0 be less 
than the minimum of & — &_i. We apply the hypothesis of 
the theorem to the intervals (& + d0f &+i — do), i-e., select 
a set of points X{tn i n each interval such that limn j8n(ff*\n) = 0. 
We take #o,n = a, X\yn, • • •, #m,n = 6, as points of division. 
Then since these points are finite in number, we can find an 
ne such that if n S ne 

2 / ( & ) [ | 8 n ( 3 » \ n ) ~ j8n(a?*-l, n)] 
< = 1 

6/2. 

* Loc. cit., p. 179. 

file:///Sfdpn
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Since we also have 

ffdfin - £ffa) lPn(Xi ,n) ~ fti(**-l, »)] S * / 2 , 

we have for n^ ne 

| ffdpn | 2 * or limn ffdpn = 0. 

The conditions of the theorem may be simplified, if we note 
that the converse of Lemma II holds in the following form. 

LEMMA II ' . If ]8n is any set of functions uniformly of 
bounded variation, then a sufficient condition that limn S*$ndx— 0 
for every x of (a, b) is that in every subinterval {a\, b\) of (a, b) 
there exist a sequence of points x\, • • •, xn, • • • such that 
Hmn j3n(#n) = 0. 

The proof of this can be made along the lines of the suffi­
ciency proof above. 

As a consequence our theorem may be stated as follows. 
Necessary and sufficient conditions that limn ffdan exist for 

every f of F are that: 
(1) the an be uniformly of bounded variation; 
(2) there exist a function a of bounded variation such that 

if fin(x) = otn(x) — an(a) — a (a;) + a (a), then 

limw Pn(b) = 0, and limn SaX$ndx = 0 for every x. 

In this form it contains the following theorem of Lebesgue* 
as a special case. Necessary and sufficient conditions that 
limn Sf<pn = 0 for every ƒ of F, the <pn being summable on 
(a, b), are: 

(1) f\<pn\dx be bounded as to n; 

(2) (a) limnfa
b<Pndx= 0; 

(6) for every y, limn fy
h(y — x)<pn(x)dx = 0. 

This results from the above theorem if we put 

Pn(x) — faX<Pn{x)dx. 

THE UNIVERSITY OF MICHIGAN. 

* Sur les intégrales singuliers, ANNALES DE TOULOUSE, (3), vol. 1 
(1909), p. 57. 


