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THE TRANSFORMATION OF ELLIPTIC INTEGRALS. 

BY PBOFESSOR J. H. MCDONALD. 

1. Introduction. Jacobi discovered the transformation of 
the fifth order and proposed the problem of the transformation 
of order n. The solution of a system of algebraic equations 
is required. The number of arbitrary quantities is equal to 
the number of equations, but the direct solution could not be 
effected. The introduction of the inverse functions and the 
periods furnished a transcendental solution which cannot be 
regarded as complete till the transcendental elements are 
eliminated since the periods are not given. Cayley attempted 
an algebraic solution without success, as did also Clifford. 
Cayley says : 

" The extension of this algebraic theory (Jaeobi's determina­
tion of the transformations of degrees 3 and 5) to any value 
whatever of n is a problem of great interest and difficulty: 
such theory should admit of being treated in a purely alge­
braical manner; but the difficulties are so great that it was 
found necessary to discuss it by means of the formulae of the 
transcendental theory, in particular by means of the expres­
sions involving Jacobi's q (the exponential oi—irk'lk), •••. 
In the present memoir I carry on the theory algebraically as 
far as I am able ; and I have, it appears to me, put the purely 
algebraical question in a clearer light than has hitherto been 
done ; but I still find it necessary to resort to the transcendental 
theory." 

In what follows the solution of Jacobi's system of equations 
is given independently of the transcendental theory and the 
foundation laid for a purely algebraic treatment of the whole 
subject of transformations. 

2. JacobVs Problem. Let s, 2 be two conies such that it 
is possible to find a polygon of n sides inscribed in s and cir­
cumscribed about S. Then, by a well known theorem, there can 
be described an infinity of polygons having the same property. 
Let a parameter t be introduced on the conic s; then the 
values of the parameters of the vertices of any polygon of the 
system are given by an equation f(t, X) = 0 of degree n in t 
and of the first degree in X. 
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To see this, let the equation of s be y2 + xz = 0 or x = t2, 
y = t, 2 = 1 . Then any quadratic equation at2 + bt+ c 
= a(t — tfi)(£ — tf2) = 0 may be regarded as determining the 
line joining the points whose parameters are h and tf2. Any 
equation ƒ (^, t2) = 0 may be regarded as defining an envelope, 
viz. of those lines determined by values ti, t2 satisfying the 
equation. If the equation is of degree n and symmetric in 
h and t2 the curve enveloped is of class n, if unsymmetric of 
class n + m where n and m are the degrees in t\, t2. Let 
Ao, - - -, An represent n + 1 points on s; then the equation 
a0/Ao + • • • + oin\An represents for different values of ai 
curves tangent to the lines joining any two of the points Ai. 
This equation may be written in the form 

oti) (t2 — <Xi) ' h — üi t2 — ai ' 

<p(h) (p(h) 

This curve is tangent to the lines joining pairs of points given 
by f(t) + \<p(t) = 0 and is of class n. I t may be seen also 
that when a curve of class n touches all lines joining pairs of 
a system of n + 1 points on a conic it touches the lines formed 
from an infinity of systems of n + 1 points on the conic. 

Suppose a conic S tangent to n + 1 of the lines, the con­
stants ai can be determined so that the curve of equation 
S ail Ai = 0 touches n additional tangents of 2 , or so that 
the curve and S have 2n + 1 tangents in common, or so that 
the curve must decompose and contain S as one part together 
with a residue T. The curve S r is tangent to the lines 
joining pairs of a succession of systems of n + 1 points on the 
conic s and the conic S is inscribed in a polygon of n + 1 
sides connecting the points of each system. The curve Y also 
decomposes into conies or conies and a point when n + 1 is 
odd. For let t\, • • •, tn+i be the parameters of the vertices of 
any polygon circumscribed about 2 and belonging to the systems 
and suppose them taken in order. Then the line joining U 
to ti+p envelops a conic. For the relation between U and U+p 

is doubly quadratic, since to U correspond ti+p and U-v (the 
subscripts taken modulo n + 1). Hence this relation must 
be of the form 

(h-
or 
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A(h2 + ti) + Bhh + CtMh + h) + D(h + h) 
+ Et fa* + F = 0, 

being necessarily symmetric. The envelope of the line must 
be of the second class. If U+p = U-v, the relation must be 
doubly linear and the envelope must be of the first class. 
This would occur if n + 1 = 2m and p = m. 

The polynomial whose roots are h, • • •, tfw+i, as has been seen, 
must be of the form f(t) + \<p(t), or must belong to an in­
volution. The double elements of the involution are 2n in 
number and are the parameters of points in which two vertices 
of a polygon coincide. These polygons are found by starting 
from a common point of s and S or from a point of contact of a 
common tangent. If n + 1 is odd, starting from a common 
point the polygon must consist of a succession of segments 
counted twice, and the tangent at the extremity, which must 
be a tangent of 2. There are four such polygons, and the 
corresponding forms of the involution must be 

/+X^ = {1-aiW (i = 1,2,3,4) 

where ai is the parameter of an intersection. If n + 1 is 
even, the singular polygons connect intersections or connect 
contact points of common tangents, and the forms of the 
involution are 

ƒ + Xi* - (* - ai)(* - c*2)^
2, ƒ + X8* = (* - W)(t - & W , 

ƒ + W = (* - «8)(* - ^)^22, ƒ + X4̂  = (* - M)(t- ft)VA 
where /Si, /?2, ft and ft are the parameters of the points of 
contact. Since the double elements are properly accounted 
for, there are only four branch forms. 

The forms/, <p are seen to be subject to the same conditions 
as are the forms in Jacobi's problem. Conversely, if the 
involution ƒ + X<p possesses branch forms of the same char­
acter as those that are required in Jacobins problem, the forms 
ƒ and <p lead to two conies in the poristic relation, and the 
involution curve decomposes. Suppose n + 1 odd and equal 
to 2 m + 1 . Then to a polygon (t — a)yp2 correspond 
m(m— l)/2 double tangents of the involution curve, or 
2m(m — 1) for the four forms. A curve of class 2m can only 
have this number if it decomposes. Every addition to the 
maximum number of double tangents for a proper curve must 
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be due to a further decomposition. For we have 

1 . (p+q-D(p+q-2) 
l ^ 1 

_ ( p - l ) ( p - 2 ) ( g ~ l ) ( g - 2 ) 
~ 2 "^ 2 " r P 2 , 

and since 
o / IN ( 2 m - 1 ) ( 2 m - 2 ) , 
2m(m — 1) = — s h m — 1, 

the involution curve must consist of m parts. In the special 
case where the curve is an involution curve these must all be 
conies. For let pi, • • *,pm be the classes of the components, 
so that pi + * • • + Pm = 2m; then some class must be equal 
to 2 or to 1. But if a point p forms part of the involution 
curve, the order of the involution is even, since points on s 
collinear with P belong simultaneously to the involution. 
The class of some part must be 2 and a conic S must be 
inscribed in lines of the system. If 2 is tangent to fewer than 
n + 1 lines, the forms ƒ and <p must have a common factor, 
which is excluded by the assumption of a proper solution of 
Jacobi's problem. Then 2 touches n + 1 lines, and by the 
theory given above the involution curve completely decom­
poses into conies. If n + 1 is even the conclusion is similar: 
the involution curve consists of conies and one point. 

3. Closure. To effect the solution of Jacobi's system, it is 
necessary to consider the condition for closure. This is 
known under various forms. It is convenient to use a re­
currence formula. Let there be two conies referred to the 
commoii self-polar triangle (A) x2 + y2 + s2 = 0, (B) ax2 

+ by2 + cz2 = 0. Take M0 a point on A and let Z>i, the 
polar of Mo with respect to B, meet A in Mi, M_i. The polar 
of Mi meets A in M0 and a point itf2 and the polar of M-i 
meets A in M0 and ilf_2. Let D2 be the line M2M~2- In this 
way may be derived a series of points MPM-.P and lines Dp; 
the envelope of Dp may be called Ap. From these definitions 
it follows, letting Jf0 be £77 f, that the equation of D0 is 
%x + VV + f ? = 0, that of Di is a£# + brjy + cfs = 0, and the 
equation of Dn is an%x + 6̂ 772/ + CnÇz = 0, where aw, 6n, and 
cn are functions of a, 6, and c independent of £77 f and deter­
mined by the following relations of recurrence : 
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do = bo = Co = 1, 

b2p + c2p = 2bp
2cp

2, 

C2P + a2p = 2cp
2ap

2, 

a2p + b2p = 2ap
2bp

2, 

ai = a, &i = 6, Ci = c, 

c622?-i + &C2p-i = 2bp-.icp-ibpcP9 

ac2p^-i - r ca2p—i = 2cp—iap—\CpaPy 

ba2p—i + ab2p—i = 2ap—ibp—iapbp. 

There results the system of equations 

h 2 — o 2 

62^n2 ~ C26w
2 

b2 - c 2 _ ~ 

from which follow 

«n2 = ö n a 2 + Hn, b 

Cn Q>n $ n ^w 

c2 — a2 a2 — b2 ' 

c2an
2 — a26'n

2 a26n
2 — &2flw2 

c2 — a2 a2 — b2 ' 

^ - öw62 + ff», cn
2 = Gnc

2 + & 

where C?n and Hn are symmetric functions of a2, b2, and c2, 
with Go = 0 , Ho = 1, öi = 1, # i = 0. They satisfy the 
equations 

Gp~iGp+i = Hp
2, G2p+i = (GpHp+i — Gp+iHp)2, 

G2p = 4tap
2bp

2cp
2Gp, G2 = 4a262c2. 

Hence On is the square of a symmetric function of degree 
n2 — 1 in a, 6, and c; i.e. 6?» = An

2. The sign of An is deter­
mined by the equations A2 = 2abc, Ap-iAp+i = — Hp. 

The envelope of Dn is 

an
2x2 + bn

2y2 + cn
2z2, 

or 
An

2(a2x2 + b2y2 + cV) - Aw_!An+1^2 +y2+ z2) = 0. 

If An coincides with A0 the condition is An = 0. The condi­
tion that a polygon of n sides inscribed in the conic 
x2 + y2 + z2 = 0 is circumscribed about a2#2 + 62i/2 + c2s2 = 0 
is An = 0. 

Involutions of the required character may be constructed 
from the equations of the lines Dp. Taking the cubic involu­
tion, we find that the condition for triangular closure is 

(bc+ ca+ab)(—6c+ ca+ ab) (be—ca+ ab) (bc+ ca—ab) = 0 
or 

b2C2 + C2CI2 + #2^2 = 0. 
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If we set £ = 2t0, rj = 1 — t0
2, f = i ( l + U2), the equation 

ƒ = 0, where 

ƒ * = ( < - <o){4o2W + 62(1 - *o2)(l ~ f) - c2(l + *0
2)(1 + t2)}, 

gives the parameters of the points MQ, M2, and M-2. If we 
suppose 62c2 + c2a2 + a262 = 0, and let t0 vary, the forms of 
a cubic involution are determined. In fact, the factor 

4oaW + 62(1 ~ *o2)U - t2) - c2(l + U2)(I + t2) 

gives the affinity equation of the involution when equated to 
zero. The double elements are found by putting t0 = t and 
they are the roots of the equation 

W + 62(1 - *2)2 - c2(l + t2)2 = 0. 

Let us call these roots Si, 52, ô3, and S4. The branch elements 
€1, e2, €3, and €4 are the values of tQ such that the affinity 
quadratic is a square. Hence they must satisfy the equation 

(c2
2 - b2

2)t* + 2(a2
2 + b2

2 - 2a2
2)t2 + c2

2 - b2
2 = 0. 

The equations for 5 and e are reciprocal equations involving 
only even powers of t, and it may easily be found that the 
branch forms of the involution are of the form 

\f+W=A1(x+e)(x+ô)2, rf+\<p=Az(x+ j ) ( * + y ) * , 

V— u><P-A2(x— e)(x— S)2, fxf+\<p^A4ilx—-)lx—j) , 

where S is a root of the equation for the double elements and e 
is the corresponding value of the branch element. I t is easy 
to complete the solution of the transformation problem. I t 
is seen that Cayley's normal form of the elliptic integral 
appears here. 

If the order is 4, the involution is given by the equation 

ƒ = {4at0t + 6(1 - *o2)(l - t2) - c(l + *o2)(l + *2)} {4aM 

+ 63(1 - *o2)(l + t2) - c8(l + *o2)(l + t2)}, 

with A4 = 4abca2b2c2 = 0, the roots of ƒ = 0 being the par­
ameters of the points Mi, itf-i, -M3, and M-3 . Suppose 
a2 = 0, then a3 = — ab2c2i 63 = bb2c2, and c3 =* eb2c2; hence, 
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omitting the factor b^ci, the involution consists of the forms 

b2(l - *o2)2(l - t2)2 + c2(l + <o2)2(l + t2)2 

- 2be(l - <o4)(l - f) - m%H2, 

with a2 = - b2c2 + <?a2 + a2b2 = 0, or 

[(c - b)t0
2 + c + 6]¥ + [(c + W + c-b]2 

+ 2^Y^ + W + 2(c2 - fe2)^ + c2 + &2]<2, 

or, if we set [(c-b)t0
2+c+bf=\ and [ (C+6)< 0

2 +C-6 ] 2 =M, 
of the forms 

2 TO 

For the fifth order the affinity equation is 

[4a2M + 62(1 - *o2)(l - t2) - e2(l + to2)(I + ?)] 

X [4a4« ~ 64(1 - *o2)(l ~ *2) - c4(l + *o2)(l + *2)] 

with A5 = 0. If we set p = 62c2, q = c202 and r = a262 it is 
found that 

pqr• A5 = (pg + gr — rp)(gr + rP "*" pq)(rp + pq — qr) 

— pqr(p + q + r)s 

and 

a* = g2 + r2 — p2, ft4 = r2 + p2 — g2, c4 = p2 + <jf2 ~ f2. 

The discriminant of the involution is found by putting t0 = t 
in the affinity equation. It must also be given by the resultant 
of the two factors, since a, 6, and c are subject to the relation 
A5 = 0. If we develop the two forms of the discriminant and 
compare the coefficients, a number of forms of the closure 
condition result, but there are extraneous factors. 

This method of constructing involutions is general and 
furnishes a complete solution of Jacobi's problem. The prob­
lem is always possible and determinate. It has been assumed 
that a, b, and c are subject to no other relation than An = 0. 
Such cases are of importance in the theory. Since the present 
purpose is to solve Jaeobi's problem in its general form, they 
are left for further consideration. 
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BACHMANN ON FERMATES LAST THEOREM. 

Das Fermatproblem in seiner bisherigen Entwickelung. By 
Paul Bachmann. Berlin and Leipzig, Walter de Gruyter, 
1919. pp. viii + 160. 
This volume reproduces to a considerable extent most of 

the important contributions which have so far been made 
toward a proof of Fermât's last theorem. It is far more 
complete than anything of the sort heretofore published. In 
particular, a reader of the book will find therein an account 
of the main results of Kummer, with proofs in most cases set 
forth in full. The writer wishes to call attention to the fact, 
however, that a number of references to articles bearing dir 
rectly on some of the work given in the text have been omitted 
by Bachmann, a few of which will be noted, in detail, presently. 
If a better historical perspective is desired, it would be well 
for a reader to examine at° the same time chapter 26, volume 2, 
of Dickson's History of the Theory of Numbers. 

I shall now point out some parts of the text which give an 
account of results not given in detail elsewhere, aside from the 
original articles.* Consider 

(1) a* + yp + z* = 0, 
where x, y and z are rational integers, prime to each other, 
and p is an odd prime. The assumption that xyz is prime to p 

* For an account of the more elementary results regarding the theorem, 
cf. Carmichael, Diophantine Analysis, chap. 5, or Bachmann, Niedere 
Zahlentheorie, vol. 2, chap. 9. 


