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Replace 2x by x — y and 2y by x + 2/. 

S(s - y) - S(a)C(y) - C(a)S(y). 

If y is replaced by — y, 

S(x+y) = S(x)C(y) + C(x)S(y). 
Therefore 

S2(z + y) - S2(x - 2/) = 4S(x)C(x)S{jj)C{y) 

= i8(2»)S(?»). 

Replace 2a; by a; + 2/ and 2ybyx — y. Then 

^ + t / ) S ( o : ~ 2 / ) = S2W-S2(2/) . 

Substituting the relations found, it follows that 

C(x + y)C(x - y) = C2(z) + C%) - 1, 

that is, the odd component of F{x) satisfies (5) while the even 
component (except for the factor F(0)) satisfies (4). 

STATE UNIVERSITY OF IOWA, 
December, 1919. 

THE EQUATION ds2 = dx2 + dy2 + dz2. 

BY PROFESSOR E. T. BELL. 

1. THIS equation,* being of geometrical importance, ha& 
attracted several writers, including Serret (1847), Darboux 
(1873, 1887), de Montcheuil (1905), Salkowski (1909), Eisen-
hart (1911), and Pell (1918). The simple parametric solution 
of de Montcheuil, which is the starting point of considerable 
work in differential geometry, was not noticed by Serret or 
Darboux. It is somewhat remarkable that the latter over­
looked this solution, as he himself makes use (Surfaces, 

* Full references to earlier writers are given by Eisenhart, Annals of 
Math. (2), vol. 13 (1911), pp. 17-35. Pell's paper will be found ibid. (2), 
vol. 20, pp. 142-148. The substance of the present note, with the exception 
of section 8, is from an unpublished A.M. thesis, presented to the Uni­
versity of Washington in 1908, dealing with the general algebraic problems 
on which solutions of this kind depend. I wish to emphasize that § 8 
was written only after I had read PelFs paper. 
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volume III, § 584, page 11) of the ' élégant artifice de calcul ' 
upon which the solution ultimately depends. Pell's recent 
solution follows from the same source. Here, without going 
into the theory of such equations of any degree which may be 
similarly solved, we shall merely show that the solutions of de 
Montcheuil and Pell are contained in another, from which 
any number of solutions of the same kind, viz., free from 
quadratures, may be found by inspection. Some of these 
may possibly be of use in geometry as are the known solutions. 

We remark, however, that this equation is the simplest of a 
very wide class, to which the device given below is applicable. 
For the gist of that device lies in finding a rational integral 
algebraic function of several variables which reproduces itself 
in form with respect to multiplication, and the simplest such 
function, as remarked in 1202 by Fibonacci, is a sum of two 
squares. From one point of view the next simplest cases are 
Euler's four-square, and Degen's eight-square theorems. 
In connection with differential equations, Euler's theorem is 
of particular interest at the present time, giving, as will be 
shown elsewhere, a simple parametric solution of the funda­
mental equation in the Einstein-Grossmann theory of gener­
alized relativity and gravitation. 

And to call attention to an algebraic problem of importance, 
we may mention that the next and much more difficult class 
of differential equations solvable by algebraic methods analo­
gous to that illustrated here, depends upon those algebraic 
forms which are transformable into a power of themselves 
by an algebraic substitution on the variables. The finding 
of all such forms, as was strongly emphasized by Eisenstein, 
is of the first importance arithmetically. Beyond a few 
isolated functions, such as the discriminant of a binary cubic 
(Eisenstein), and the Hessian of this discriminant (Cayley), 
little progress has been made toward a complete solution. 
The problem on several occasions attracted Cayley. It 
seems singular that arithmeticians have ignored Eisenstein's 
lead, especially after the beautiful uses which he made of his 
own result in his investigations on the binary cubic repre­
sentations of integers. The principal object of this note is 
to attract attention once more to this problem, in showing 
that even its simplest solutions are also of use elsewhere. 
We may add that the algebraic problem seems to present 
great difficulties. 
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2. Fibonacci's result gives the identity 

(1) (a<p - MY + W + M2 = {cap + M)2 + ( ^ - M2. 
Hence a solution of 

(2) ds2 = dx2 + dy2 + dz2 

is given by, (i = V— 1), 

s = f(a<p - M)dt, x = ƒ(«? + M)dt, 

2/ = i /(o^ + j8 )̂d<, s = /(ax// — j8^)^, 

in which a, /3, ^, ^ now denote functions of a parameter t, 
arbitrary except as to obvious restrictions of analyticity in 
some domain. 

3. For most purposes it is desirable to have (3) free from 
quadratures. Let ƒ denote an arbitrary function of t, and 
ƒ', ƒ", • • •, ƒ(n) its successive ^-derivatives. Then it is clear 
that, on repeated integrations by parts, 

ffn)tn-cdt 

wherein c > n is an integer > 0, is readily reducible to a form 
free from all integral signs. Thus 

s rut = t2r - w+2f, ir™ = tr - /', 
etc., and it is unnecessary to write out the general formula. 
Hence if g is a polynomial of degree n — c in t, ff(n)gdt is at 
once reducible to a form free from quadratures. 

Applying this remark to (3), we choose for a, /3 polynomials 
in t of respective degrees a, b, and replace <p, x[/ by <p(c+m), 
<p(c+n)y where c denotes the greater of a, b, or if a = 6, either; 
a, by m, n are integers > 0, and <p, \f/ arbitrary functions of t, 
analytic in some domain. Upon performing the integrations 
by parts as indicated, (3) is reduced to a form free from quad­
ratures. If in the result only derivatives of either function 
<p, \[/ appear, an obvious change of notation will reduce the 
solution to one containing <p, \f/ and their successive derivatives. 
Or this reduction may be obviated in the first place by assign­
ing either a, b or m, n in advance, and noting by inspection 
the least values for the unassigned pair which will give a result 
of the desired kind. 

4. A slightly different way of obtaining solutions free from 
quadratures depends upon the following obvious remark. 
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Write 

and <p — P, \p = Q, where Ar, B8, P, Q are polynomials in t of 
respective degrees rar, ns, p, q, and/, g are arbitrary functions 
of t Then each of a<p db /3^, a^ ± j3<p in (3) is of the form 

(4) £i^+£v«\ 
r = l 5=1 

wherein J.r, P s are polynomials in t, some of which may reduce 
to constants, whose degrees are linear functions of the mr, nsy 
p, g. Obviously for either the ar, b8 or the mr, nB, p, q pre-
assigned, the other set of values may be assigned by inspec­
tion (in any infinity of ways) so that, as in § 3, the values of 
a, j3, <p, \p above given furnish an infinity of solutions of (2) 
free from quadratures. 

5. To illustrate § 3, we choose a = 1, /? = t in (3), at the 
same time replacing <p, yp by <p", \p". On integrating the 
resulting forms of (3) by parts as indicated, we find 

s = y ' — t\[/' + $, x = <p' + tip' — \p, 

iy = <p — t<p' — yp', z = <p — t<p' + yp', 

which is de Montcheuil's solution. Discussions of the gen­
erality of this solution, with applications to geometry, will 
be found in the papers of de Montcheuil, Salkowski and 
Eisenhart. 

6. In illustration of § 4 it is seen at a glance that 

a = (ait + ft)/'" + 7ljf", <p = Plt + qi, 
(5) 

P = (a2t + ft)/ '" + y2g"f xP = p2t + q2, 
where the a%, ft, y%, p%, qi (i = 1, 2) are independent of t, 
give a solution (3) free from quadratures. On performing the 
integrations by parts we get such a solution involving the ten 
arbitrary constants a\, •••, q2; and on assigning special 
values to these constants an infinity of solutions. One of 
the latter is Pell's. Instead of directly assigning the values 
of ai, • • •, q2 which give Pell's solution, we shall briefly examine 
the more general solution, showing by other means that it 
actually contains Pell's. 
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7. Substituting the values (5) in (3), reducing the a<p zh (3\p, 
<x\p ± (3<p to the form (4), and integrating by parts, we get 

s = (AJ2 + Bd + d ) f ' - (2A1t + Bi)f' 
(6) + 2A1f+(K1t+L1)g'-Klg, 

and precisely similar forms for x, —• iy, z with the respective 
suffixes 2, 3, 4 in place of 1, where the twenty constants 
Au - * *, L± are as follows: 

A\ = « i p i — « 2p 2 , J?l = «101 ~ «2#2 + jSipi — /32P2, 

Ci = jSigi — /32g2, 

^ 4 = <xip2 — «2Pi, 5 4 = axq2 ~ a2qi + fiip2 — j82pi, 

0 4 = /3ig2 — j82?i, 

and the rest are obtained from these thus: the letters with 
suffix 2 from those with suffix 1 by changing all the signs to +, 
similarly for those with suffix 3 from 4; Ki, Li from Ai, Ci 
respectively on replacing a by y, j3 by y respectively (i = 1, 
2, 3, 4). From these twenty constants we find by a straight­
forward calculation that a necessary and sufficient condition 
that four functions of the form (6) shall give a solution of (2) 
is that the following indeterminate system of twelve equations 
be satisfied: 

Ax2 + A3
2 = A2

2 + A4
2, 

in which A represents A, C, K or L; 

AiZi + A3Z3 = A2Z2 + A4Z4, 

where (A, Z) = {A, B), (B, C), {G, L), (K, L), or {A, K); 

B1
2+B3

2+2(A1C1+AzCs) = £22+£4
2+2(^2C2+^4C4), 

A1L1+AsLd+B1K1+BsKs = A2L2+A,L,+B2K2+B,Kh 

JBiii+Bsis+CiZi+CsXs = B2K2+B,L,+ C2K2+C,L4. 

The similarity of these conditions to those occurring in the 
Gaussian theory of the composition of binary quadratic 
forms is noticeable, and may be traced to the common source 
that the norm of an algebraic integer, here quadratic, is self-
reproductive in form with respect to multiplication. By 
various artifices the set of twelve can be reduced to more 
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elegant forms; but as the interest of these is chiefly arith­
metical, we pass them over. 

8. It is easily seen that the indeterminate set of § 7 is 
satisfied by 

^ i = 5 1 = C 1 = 0 ; # i = 0 , L i = l ; 

A<L = — 2> B2 = 0, C2 = 2> K2 = — I; L2 = 0; 

A* = h Bz = 0, C3 = h Kz= 1, Lz = 0; 

AA = 0 , 5 4 = 1, C4 = 0 ; Z 4 = 0, i 4 = 1. 

Putting these in the sçt (6), we get a particular solution 
of (2), 

s=g', z = tf"-f' + g', 
x = 1-~f" + tff-f-tg' + g, 

-iy = ±±*f"-tf'+f+t9'-g, 

which is Pell's solution. 
9. The extension of solutions of this kind to those con­

taining any number of constants connected by sets of identi­
ties is immediate and need not be followed farther here. But 
we may briefly consider why it is possible, from the present 
point of view, to find solutions of (2) free from quadratures. 
A little consideration will show the ultimate source to lie in 
the fact that in (3) the integrands are bilinear in (ce, j6), (<p, xf/). 
This in turn is referable to the fact that Fibonacci's identity 
is the simplest case of Lagrange's theorem, viz., the norm of 
any algebraic integer reproduces itself with respect to multi­
plication. In Fibonacci's identity the integer is quadratic; 
taking the simplest case in a cubic field, we find, in exactly 
the same way, solutions free from quadratures for 

dxz + dyz + dzz - Uxdydz = dXz + dY* + dZz - MXdYdZ, 

the differential form on the left being the norm of dx + &dy 
+ o)2dz, where co is a complex cube root of unity. Until such 
equations present themselves in geometry or elsewhere there 
is little use in writing out their solutions. But we may 
glance at a trigonometric device which frequently is applicable 
when the integrands are quadratic. It is of interest in the 
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simplest case because it leads to a famous solution due to 
Euler, also to the solution of a special case (constant coef­
ficients), of an important equation considered by Weingarten 
and others. It is interesting to note that these solutions 
correspond to Lagrange's theorem for the general quadratic 
integer, so that in a sense they are generalizations of (2), 
which depends upon a special quadratic integer, viz., the 
complex unit i. 

10. For a, 6, k constants, <p, \p arbitrary functions of t, we 
have the identities 

ƒ (<£>'" + k2<p') sin Jctdt = ip" sin kt — kip' cos kt, 

ƒ (<p'" + k2<p') cos ktdt = (p" cos kt + k<pf sin kt, 

(<p2 + acp^ + bx/s2)2 = 3>2 + a $ # + 6^2, 

where <Ê> = <p2 — b\p2, ^ = 2<p\J/ + a\f/2. Hence, on putting 
a == f" _|_ 4j?/̂  where ƒ is an arbitrary function of t, and 

<p = Vcë sin t, \[/ = Vce cos £, 

we find, on integrating by means of the first identities, that 
the solution of 

ds2 = du2 + ad^dfe + bdv2 

given by 
s = ƒ (<P2 + tt^ + b\p2)dt, 

u = ƒ (<p2 - 6i//2)^, * = ƒ ( 2 ^ + affîdt, 
is 

2^ = 4(6 + 1 ) / + [2(6 - 1) sin 2t - 2a cos 2t]f 

+ [(6 + 1) + a sin 2* + (6 - 1) cos 2t] ƒ", 

2^ = 4(1 - 6)/ - 2(1 + 6)f sin 2* 

+ [ ( 1 - 6 ) - (1 + 6) cos 2*]/", 

2v = 4a/ + (2a sin 2 2 - 4 cos 2t)f' 

+ (a + 2 sin 2t + a cos 2t)f'. 

On putting a = 0, 6 = 1 we get for a solution of Euler's 
equation 

ds2 = du2 + cfo2 

a form equivalent to his. 
UNIVERSITY OF WASHINGTON. 


