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position and the number of the maxima and minima of the 
curve, and shows that all types actually exist. For example: 
for all S > 0 sufficiently small, the curve 

y = (x + ôi)(x - ôi)(x + 1 + ôH)(x + 1 - ÔH)-
Or + 1 + 52 + ôH)(x + 1 + S2 - ôH)(x + 1 + 52 + S4) 

* • 

has six extremes which, read for decreasing values of x, are 
arranged so that the first minimum of y is higher than the 
second maximum, and the second minimum higher than the 
third maximum. 

E. J. MOULTON, 
Acting Secretary. 

FORM OF THE NUMBER OF SUBGROUPS OF 
PRIME POWER GROUPS. 

BY PROFESSOR G. A. MILLER. 

(Read before the American Mathematical Society September 3, 1919.) 

§1. Introduction. 

IT is known that the number of the subgroups of order pa, p 
being any prime number, which are contained in any group G 
is always of the form 1 + kp. When k = 0 for every possible 
pair of values for a and p the group G must be cyclic and vice 
versa. There are two infinite systems of groups of order pm 

containing separately p + 1 subgroups of every order which 
is a proper divisor of the order of the group, viz., the abelian 
groups of type (m — 1, 1) and the conformai non-abelian 
groups. 

These two infinite systems are composed of all the groups 
of order pm involving separately exactly p + 1 subgroups of 
every order which is a proper divisor of pm. Moreover, if a 
group of order pm, p > 2, contains exactly p + 1 subgroups 
of each of the two orders p and p2 it must contain exactly 
p + 1 subgroups of every order which is a proper divisor of 
the order of the group, and if a group of order 2m contains 
exactly three subgroups of each of the orders 2, 4 and 8 it 
must also contain exactly three subgroups of every other order 
which is a proper divisor of 2m. 
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The proof of the former part of this theorem may be based 
upon the fact that when m > 3 such a group has to contain an 
invariant abelian subgroup of order p3 and of type (2, 1). 
The order of each of the remaining operators must be divisible 
by ps and the number of the operators of order p3 is equal 
to pA — ps. Hence G contains exactly p cyclic subgroups of 
order ps and only one non-cyclic subgroup of this order. If 
m > 4, this subgroup of order p4 must again be abelian, and 
by successive similar steps we note that G must contain oper­
ators of order pm~l. 

When p = 2 it is possible to extend the abelian group of 
order 8 and of type (2, 1) by 24 operators of order 4 so as to 
obtain a group of order 32. In this case the preceding reason­
ing fails. If it is assumed, however, that G contains exactly 
three subgroups of order 8 in addition to the three subgroups of 
each of the orders 2 and 4 it may be proved as in the preceding 
paragraph that 6? contains only p = 2 cyclic subgroups of 
order 16, etc. The theorem stated in the second paragraph has 
therefore been established. This theorem may be compared 
with the well known theorem, due to W. Burnside, which 
affirms that every group of order pm, p > 2, which contains 
only one subgroup whose order is a proper divisor of pm is 
cyclic. 

Another simple condition which implies that a group G of 
order pm is cyclic is that all the operators of G which trans­
form into itself one of its subgroups constitute a cyclic sub­
group of G, In other words, a necessary and sufficient con­
dition that a prime power group is cyclic is that it contains at 
least one subgroup whose normaliser is cyclic. This theorem 
results directly from the fact that every non-invariant sub­
group of a group of order pm is transformed into itself by at 
least p of its conjugates including itself. In the following 
section it will be proved that a necessary and sufficient con­
dition that an abelian group of order pm is cyclic is that the 
number of its subgroups of order pa, 0 < a < m, is of the 
form 1 + kp2 for at least one value of a. 

§2. Abelian Groups. 

Let H represent a subgroup of order pa contained in an 
abelian group G of order pm and suppose that H has been so 
selected that its invariants are as small as possible when the 
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order of H is fixed. I t may happen that H is composed of all 
the operators of G whose orders do not exceed the largest 
invariant of H. If this is the case, G contains only one sub­
group of order pa having the same invariants as H. If it is 
not the case, we proceed to prove that the number of sub­
groups of 6? which have the same invariants as H must be 
of the form 1 + p + kp2. 

Let pa+x represent the order of the subgroup of G composed 
of all its operators whose orders divide the largest invariant 
of H. If H has j3 such largest invariants, the /3 independent 
generators of H whose orders are equal to these invariants 
can be selected from the operators of G in a number of ways 
represented by the following product: 

(pa+x - pa-^)(pa+x - p*-^1) • • • (p*+A - p*"1). 

Similarly, these /3 independent generators can be selected 
from the operators of H in 

(pa ~ pa->*)(pa - p*"?*1) . . . (p* - p*-l) 

different ways, and the remaining independent generators 
can be selected in the same number of ways from the operators 
of G and those of H. When X > 0, the quotient of the first 
of these two products divided by the second is evidently of the 
form 1 + p + kp2, and hence the following theorem has been 
established: 

THEOREM. The number of the subgroups of order pa con­
tained in an abelian group of order pm and satisfying the con­
dition that their invariants are as small as possible when a is 
given is either unity or of the form 1 + p, mod p2. 

As a special case of this theorem it may be noted that the 
number of subgroups of order pa contained in an abelian 
group of order pm, m> a > 0, and of type (1, 1, 1, • • • ) is 
always of the form 1 + p, mod p2* In this special case a and 
/3 are always equal to each other. 

Suppose that G contains only one subgroup H of order pa 

such that its invariants are as small as possible and consider 
the subgroups of order pa which have the property that their 
largest invariant is p times a largest invariant of H and that 
a second invariant is equal to one of the largest remaining 
invariants of H divided by p while the rest of the invariants 
of such a subgroup W are the same as those of H. We shall 
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prove that the number of the subgroups of G satisfying the 
conditions imposed on W is always of the form p + kp2, so 
that in this case the number of subgroups of G which satisfy 
the conditions imposed on H and W is 1 + p mod p2. 

It will first be assumed that H contains /3 > 2 largest in­
variants and that the subgroup of G composed of all its oper­
ators whose orders divide this largest invariant multiplied 
by p is of order pa+k. Hence X ̂  /3 ^ a. The number of 
ways in which a set of fi — 1 largest independent generators 
of H' can be selected from the operators of G is expressed by 
the following product: 

(pa+K — pa)(pa — p"-*-**1) • • • (pa — pa-'2). 

The number of ways in which these generators can be 
selected from the operators of H' is represented by the follow­
ing product: 

(pa - p*-1)^"1 - p*-^1) . . . (p**1 - p°-2). 

As the remaining independent generators of H' can be selected 
in the same number of ways from the operators of G and from 
those of H', the quotient of the given products is equal to the 
number of subgroups of G satisfying the conditions imposed 
on H'. This number is evidently of the form p + kp2, and 
hence the theorem in question has been proved whenever 
P>2. 

When j8 = 2 the largest independent generator of H' can 
be selected from the operators of G and from those of H' in 

pCL+\ _ y*. a n d ^a _ pa-1 

ways respectively while the remaining independent generators 
of H' can be selected in the same number of ways from each of 
these two groups. Hence the number of subgroups satisfying 
the conditions imposed on H' is pip*"1 + pk~~2 + ••• + !) 
in this case. 

Finally, when /? = 1 and H' contains y > 1 next to the largest 
invariants, the y largest independent generators of H' can be 
selected from the operators of G in 

(p«+i _ p«)(ps _ p H ) . . . (p« _ p«-2) 

different ways, ps being the order of the subgroup of G com­
posed of all its operators whose orders divide the second 
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largest invariant of H''. These independent generators can 
be selected from the operators of W in 

(pa - p - 1 ) ^ * " 1 - p8~y) • • • (p8-1 - p8~2) 

different ways and hence the number of these subgroups is 
again of the form p + kp2. This completes a proof of the 
following theorem, since the case y = 1 is evidently included 
therein: 

THEOREM. If a subgroup H of an abelian group G of order 
pm is of order pa and composed of all the operators of G whose 
orders divide a given number, then the number of the subgroups 
of G whose largest invariant is p times the largest invariant of H 
and whose second invariant is obtained by dividing by p the 
largest of the remaining invariants of H, while its other invari­
ants are the same as the rest of the invariants of H, is always of 
the form p + kp2. 

The preceding theorems have been established with a view 
to proving that the number of proper subgroups of order pa 

contained in a non-cyclic abelian group G of order pm is always 
of the form 1 + p mod p2. To complete the proof of this 
theorem it is only necessary to establish the fact that the num­
ber of subgroups of order pa having a different type from those 
considered above must always be of the form kp2, k being a 
natural number. As a step in the proof of this theorem we 
note the following fundamental fact which entered the pre­
ceding considerations in a special form. 

An independent generator of order ps of the subgroup H 
of order pa can be selected, if these generators are selected in 
the descending order of magnitude and k of them have already 
been selected, from the operators of G in 

different ways, where pr and p8 represent the orders of the 
subgroups of G composed of all its operators whose orders divide 
p8 and p8"1 respectively. Similarly, this independent gener­
ator can be selected from the operators of H in 

/Y\f _ — / r jS ~T~K 

different ways, where r' ^ r and s' ^ s. To prove the theorem 
in question it is therefore only necessary to prove that either 
some s is at least two units larger than the corresponding 



1919.] SUBGROUPS OF PRIME POWER GROUPS. 71 

s' or at least two s's are each one unit larger than the cor­
responding s"s. 

From this fact it follows that the highest power of p which 
divides the number of the subgroups of order pa and of type 
(«i, a2, * • • , aK) may be found as follows: Determine the 
orders of the characteristic subgroups composed separately 
of all the operators whose orders divide p*1"1, pa2_1, • • • , 
p*\-i j n Q a n c [ ; n a particular subgroup H of type (on, ce2, • • •, ceA) 
respectively. The product of the orders of these subgroups 
of G divided by the product of the orders of the corresponding 
subgroups of H gives a quotient which is the power of p 
in question. For instance, if G is of type (6, 6, 5, 4, 2) and 
H is of type (6, 3, 2, 1) the number of subgroups of G which 
are of order p12 and of type (6, 3, 2, 1) is divisible by 

^21+10+5-11-7-4 

but not by any higher power of p. 
In particular, it may be noted that the number of subgroups 

of order pa and of a given type is always divisible by p2 when­
ever the number of the invariants of G exceeds the number 
of the invariants of such a subgroup if by 2 and at least 
one of the latter invariants exceeds p. If at least two of these 
invariants exceed p, the number of these subgroups is divisible 
by p2 whenever G has at least one more invariant than H has. 
Hence when the number of the subgroups of the same type 
as H has is not divisible by p2 the number of invariants of 
H is either the same as that of G or one less than that of G 
except when H is of type (1, 1, 1, • • •)• 

Morever, when H has one invariant less than G and the 
number of subgroups having the same type as H has is not 
divisible by p2, it results from the preceding considerations that 
either no invariant of H exceeds p, or that only one of these 
invariants exceeds p. In the latter case this invariant is p2 

unless G has also only one invariant greater than p. Hence 
the following: 

THEOREM: Whenever the number of subgroups of the same 
type as H is not divisible by p2 and the number of invariants of H 
is less than the number of invariants of G there is one and only 
one subgroup in G having the same order as H but smaller in­
variants than H has. 

I t remains only to consider the case when the subgroups 
of order pa which have the same invariants as H have as 
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many invariants as G. Suppose that the invariants of G 
arranged in descending order of magnitude are pai, pa% • • •, 
pa\ while those of H arranged similarly are pai', p*2', • • •, 
pax'. I t is well known that ai ^ ai, a2 ^ a2, • • -, aK ^ ce/. 
The number of the subgroups of type (pt\, a2, • • •, aA') is 
evidently divisible by p2 whenever a± is at least two units 
larger than each of two other a"s which are separately smaller 
than the corresponding a's, and also when a / and a2 are 
separately two units larger than some one a! which is less 
than the corresponding a, or a / is at least three units larger 
than such an a! provided this a! is not a2 and a2 = a2 + 1. 

From the preceding paragraph it results that whenever the 
number of subgroups of type (a\, a2, • • •, a/) is not divisible 
by p2 and an a / is less than a$ then there is at most one other 
a! which is two units larger than a/. If there is such an a' 
it is OL\ and ay

f, j8 > 7 > 1, is equal to a / + l . I t was 
noted above that when these conditions are satisfied the 
number of subgroups of G which are of type (a/ , a2, • • •, a/) 
is of the form p + kp2. This is also the case when a / = aA, 
a /_i = aA_i, . . ., Û&' = ots, a2 = a2 — 1, and a\ < a — 2. 

On the other hand, when none of the c/'s is at least two 
units larger than the smallest a / which is less than ap the 
number of subgroups of type (ai, a2, • • •, a/) was proved 
above to be of the form 1 + P + kp2 provided there is at least 
one a' which exceeds ce/. If there is no such a! there is only 
one subgroup of the given type. These results establish, in 
particular, the following: 

THEOREM. In any non-cyclic abelian group of order pm the 
number of the subgroups whose order is a given proper divisor 
of ihe order of the group is always of the form 1 + p mod p2. 
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