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T H E SELF-DUAL PLANE RATIONAL QUINTIC. 

BY PROFESSOR L. E. WEAR. 

A SELF-DUAL curve is defined to be a curve which has the 
same number of cusps and double points as it has inflexional 
tangents and double tangents respectively; and furthermore 
there are correlations—including polarities—which send the 
curve into itself. 

Haskell, in this BULLETIN, January, 1917, found the maxi­
mum number of cusps of an algebraic plane curve, and enumer­
ated the self-dual curves. The well known binomial curves 

Xin = #o n~ r#2 r 

have been extensively studied and shown to be self-dual.* 
The case of the rational plane quartic has been considered in 
my dissertation at the Johns Hopkins University.f 

We here consider briefly the quintic. Since the class of the 
curve is to equal the order, we have as the fundamental 
equation, 

n = n(n — 1) — 2d — 3c, 

where d is the number of double points and c the number of 
cusps. Hence we have for the quintic, 

2d + 3c = 15, 

an equation which has three solutions, as follows : 

(1) d = 0, c = 5, 

(2) d = 3, c = 3, 

(3) d = 6, c= 1. 

Case (3) may arise from the degenerate quintic composed of a 
conic and a cuspidal cubic. 

The second case, that of the rational quintic, is the one to 
be considered here. Furthermore, we consider the curve which 

* Loria, Spezielle Ebene Kurven, p. 308; Wieleitner, Algebraische 
Kurven, p. 136; Snyder, American Journal, vol. 30; Winger, American 
Journal, vol. 36. 

f "The self-dual plane rational quartic," Dissertation, Johns Hopkins 
University, May, 1913. 
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is self-dual in all possible ways, which will be invariant under 
the largest possible group of transformations. The cusps then 
will be distinct. By taking the products of the correlations 
two at a time we obtain the collineations of a coUineation 
group under which the curve is self-projective. These must 
interchange cusps, say, in all possible ways, and hence the 
curve must be invariant under a 6r6 composed of a cyclic g%, 
the elements of which interchange the cusps cyclically, and 
three elements, obtained by adding to the #3 an element of 
period two, and which leave one cusp fixed while interchanging 
the other two. 

Now the equations of the rational quintic invariant under 
the dihedral 6?6 are* 

(1) x0 = tb + 5f, xi = 5*3 + 1 , x2 = f + t. 

The flexes are ts + 1, and the cusps tz — 1. The Cr6 is gen­
erated by the elements 

(2) V = œt, if = 1/t, (co3 = 1), 

with the appropriate ternary transformations 

(3) XQ = Xo, Xi = OOXi, # 2 ' = ^ 2 ^ 2 . 

(4) Xçf = Xi, Xi = Xo, X2 = X2. 

Let us now add a correlation which will send any point of 
the curve into a line of the curve, and vice versa. In par­
ticular we desire a correlation that will interchange cusps and 
flexes, and likewise double points and double lines. 

In order to obtain the correlation we need the line equations 
of the curve, which are obtained by taking the Jacobians of 
(1) two at a time, and are 

(5) £ 0 = 5 r 3 - l , £ I = T V - 5 ) , ?2 = - 10r(r3 - 1). 

The binary transformation tr = — 1 will send the cusp 
t = 1 into the flex line r = — 1, and conversely. Let us ask 
that this send any point of the curve into a line of the curve. 
Now any point of the curve is 

(6) uth + m + U5tz + 1 ) + ut' + 0 = 0 
and any line is, 

(7) Zo(5r3 - 1) + XX(TZ - 5) - x210r(r3 - 1) = 0. 
* See Winger, 1. c , p . 73. 
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Making the substitution t — 
simplifying, 

(8) £o(5r3 - 1) + Mr5 - 5r2) + £2(r - r4) 

1/r in (6), we have, after 

0. 

By identifying (7) with (8) there results the polarity 

(9) £o — xo, £i = xl9 $2 = 10^2. 

Combining (9) with the elements of the collineation group 
G&, we obtain altogether six correlations which leave the curve 
unaltered. The latter statement is true since elements of the 
G& send any point of the curve into a second point, and this 
transformation followed by (9) must send the original point 
into a line of the curve. The correlations, with the elements 
of the 6r6, make up a Gu of collineations and correlations under 
which the curve is invariant. The following table gives the 
elements of the group, binary and ternary: 

1: 
8: 
S2: 
T: 
ST: 
S2T: 

n„: 
n0S: 
n0s2: 
ILoT: 
Uo-(ST): 

n0-(S2r): 

Xo' 

= Xo, 

x0, 
Xo, 

Xi, 

Xl, 

Xl, 

?0 
= Xo, 

x0, 
Xo, 

Xi, 

Xi, 

Xi, 

Collineations. 

Xi 

= Xi, 

COXi, 

C02£i, 

Xo, 

CûXo, 

O)2X0, 

Correlations. 

Hi 
= Xi, 

WXi, 

U)2Xi, 

Xo, 

O)X0, 

oPxo, 

Xz 

= x2, 

C02X2, 

C0X2, 

X2, 

0)2X2, 

œx2, 

& 
= 10#2, 

lOco2^, 

10OXE2, 

10^2, 

lOco 2 ^ 

10axr2, 

f 
= t. 

œt. 
uH. 

Ht. 
œ/t. 

CO2/*. 

r 

= - lit. 
- œ/t. 

- OJ% 

- t. 

- wH. 

— Oit. 

It is easily verifiable that these elements have the group 
properties. Only the first four of the correlations are polari­
ties, and of these IIoT7 alone refers to a real conic, the equation 
of which is 

#o#i + 5x2
2 = 0. 
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This conic is tangent to the curve at t = 0,2 = oo, and inter­
sects the curve at six other points. At one of the latter points 
a tangent to the conic is tangent to the curve at some other 
point. We may summarize with this theorem: The self-dual 
plane rational quintic admitting of the greatest possible number 
of correlations is invariant under a Gu consisting of collineations 
and correlations. 

THROOP COLLEGE, 
Februaryj 1919. 

GROUPS CONTAINING A RELATIVELY LARGE 
NUMBER OF OPERATORS OF ORDER 

TWO. 

BY PROFESSOR G. A. MILLER. 

(Read before the American Mathematical Society March 29, 1919.) 

§ 1. Introduction. 

IT is well known that every group which contains at least 
one operator of order 2 must contain an odd number of such 
operators and that there is an infinite number of groups such 
that each of them contains exactly 2m + 1 operators of order 
2, where m is an arbitrary positive integer or 0. It is also 
known that if exactly one half of the operators of a group 
are of order 2 then the order of this group must be of the 
form 2 (2m + 1) and it must be the dihedral or the gener­
alized dihedral group of this order. Moreover, it has been 
proved that a group G of order 

g = 2a(2m + 1) 

cannot contain more than 2am + 2a — 1 operators of order 2, 
a being an arbitrary positive integer, and whenever G contains 
this number of operators of order 2 it is either the abelian 
group of order 2tt and of type (1, 1, 1, • • •) or it is the direct 
product of the abelian group of order 2a"~1 and of type (1,1, 
1, • • •) and the dihedral or the generalized dihedral group of 
order 2(2m + 1).* 

* G. A. Miller, this BULLETIN, vol. 13 (1907), p. 235. 


