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ON THE DEVELOPMENTS IN BESSEI/S 
FUNCTIONS. 

BY PROFESSOR CHARLES N. MOORE. 

(Read before the American Mathematical Society, January 1, 1916.) 

IN studying the developments in BessePs functions it is 
found that the behavior of the series at the origin and in a 
neighborhood including the origin is, in certain cases, difficult 
to determine. For example most of the proofs of the con­
vergence of these developments leave unsettled the question 
of the convergence at the origin of the developments in BessePs 
functions of order zero. Also, most of the discussions of the 
uniform convergence of these developments leave unsettled 
the question of the uniform convergence of the developments 
in a neighborhood including the origin. Yet for many of the 
applications to mathematical physics it is essential to settle 
both of these points in order to be sure that we have a solution 
of the physical problem we are discussing. 

It was a consideration of these facts that led the writer 
several years ago to devise a method of establishing the 
convergence of the developments in BessePs functions that 
would settle both of these questions under conditions suf­
ficiently wide for the applications.* The method referred to, 
however, serves only to establish the convergence or uniform 
convergence of the developments, and it is necessary to 
determine the value to which they converge by means of other 
considerations. In the paper just referred to this was done 
by using the results of previous writers in connection with 
the value of the developments. As these results are obtained 
by means of long and complicated discussions, it seems highly 
desirable to have some fairly simple method of determining 
the value of the development when we know it converges. 
Such a method is given in the present paper, and consequently 
this paper combined with the previous one gives the first 
complete discussion of the convergence and value of the 
developments in BessePs functions under conditions that are 
usually satisfied in the applications. 

* Cf. Transactions, vol. 12 (1911), p. 181. 



1916.] DEVELOPMENTS IN BESSEl/S FUNCTIONS. 19 

The method used here was first suggested by Sturm and 
Liouville in connection with the Sturm-Liouville expansions, 
and the application of it to these expansions was sketched 
out by them.* Some forty years later Heine attempted to 
apply this method to the developments in Bessel's functions, f 
His treatment of this case is inadequate, however, for by 
omitting practically all the details he avoids all the diffi­
culties. Moreover, it is apparent that he did not himself 
examine the details of the proof with sufficient care, for he 
fails to note the presence of an extra term in the development 
in certain exceptional cases, a fact first observed by Dini.J 

The cases just mentioned are not essentially exceptional 
but only appear so on account of the notation ordinarily 
employed. As pointed out before,§ they can be included in 
the general treatment by means of adopting the following 
notation. We set 

m vr\ w ^ V v - ( - D ' W J r . , 

(i) *,(x, x) - ^ ) g * * iv + i + i) - r<™ 
and consider the series 

xf(x)FvÇKn, x)dx „ 
(2) ZFvÇKn, x) ^ = £ AnFv{\n, x), 

W=1 1 xlF»0<n, x)]*dx W=l 

where the X's are the successive roots, positive or zero of the 
equation 

(3) w(X) = [lÈcFvÇK' x) + hF^' ^ L i * °' 
arranged in increasing order of magnitude. 

The object of the present paper is to show that whenever 
the series (2) converges or is summable at all points of the 
interval 0 S a ; â l at which f(x) is continuous, then under 
certain conditions to be stated subsequently the value of the 
series at each of these points will be f(x). We will begin by 
establishing some lemmas. 

* Cf. Liouville's Journal, vol. 2 (1837), p. 220. 
t Cf. Crelle's Journal, vol. 89 (1880), p. 35. 
Î Dini, Serie di Fourier, Pisa, 1880. 
§ Cf. Transactions, vol. 10 (1909), p. 420, and vol. 12 (1911), p. 182. 
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LEMMA 1. The integrals 

-• f 
zFv(z, x) 

dZj )Bn (z - a)co(s) 
(4) 

^—: I —7 TTrTT—7̂ —dz {a a real constant), 

where co(s) is defined by (3), Z notf being zero, and the path of 
integration is a rectangle in the complex plane with vertices at 
the points (k, V&), (— k, Vifc), (— k, — Vï) and (k, — V&), 
A; &£m# chosen equal to 

2*> + 3 2*> + 1 
(5) nx -\ T—7T or mr-\ r—TT (n a positive integer), 

according as we are considering the first integral or the second 
integral, will approach zero as n becomes infinite, provided x 
lies in the interval 0 < x < 1. 

We shall give the proof in detail for the first only of the 
integrals in (4), the treatment of the second integral being 
analogous. 

We have for Jv(z) the following asymptotic expansion* 

(6) JM = - = [é^\i + e,{z, v)) + e-^-y\i + *,(«, „))], 
-\2irz 

where y = \{2v + 1)T and 

(7) \e,tz,v)\<w \e2(z,v)\<V] {m>0)9 

K\ and K^ being positive constants for a fixed value of v. 
Making use of (1) and the well-known relation 

(8) / / ( * ) = - Jv+i(z)+-Jv(z), 

we obtain 
* Cf. H. Weber, "Zur Theorie der^ Bessel'schen Functionen," Math. 

Annalen, vol. 37 (1890), p. 404. Equation (6) above results from a combi­
nation of equations (19), (30) and (33) of the paper referred to, and is 
established there for all values of v > — J, and for all values of z whose real 
part is positive. It can be at once extended to values of z along the axis of 
imaginaries, the origin being excepted, on account of the continuity of all the 
functions involved, and for values of z to the left of the axis of imaginaries 
we can get a corresponding expression by means of the relationship Jv(—z) 
- ( -1)"J„(«) . 

file://-/2irz
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(9) W(») = ^ [{lv + h)JM - lzJv+1(z)]. 
z 

For the sake of brevity we set 

0i = 0i(± *, *0, 0i' = 6X(± zx, v), 02 = 02(± 2, *), 

<V = 02(± *z, *>), 03 == 0i(± z> v + 1), 04 = 02(db z, v + 1). 

Then if we further set z = p + qi and make use of (1), (6), 
the extension of (6) indicated in the previous footnote and (9), 
we see that the integrand of the first integral in (4) may 
be written in the form 

zle^^-v^q + gjQ + e - ^ - ^ ^ l + 02')] 

-£(* - <x)[=F fe{e*[±*-v-^2V*(l + 03) 

+ a-*t**-*-<**V*(l + 04)} + O + A) 

X { ^ ' - ^ ( l + 00 + <r^-v)^*(i + Ö2)}]. 

For points on the sides of the rectangle Rn that are parallel 
to the y-axis, i. e., for values of z of the form db k + iq, where 
k has the first of the values (5), (10) reduces to 

: :F^{±((?^ + |)7^+7)"-"^ + ^gî(^+^«)(l + 05), 

where for large values of | z |, 0s is an infinitesimal of the same 
order as the other 0's. It is readily seen from this latter form 
that if n is chosen large enough to make 0i', 02' and 0s each 
less in absolute value than | , the integrand in (4) will for the 
values of z under consideration be less in absolute value than 

6 
ZVâ*{(rc+ !)*•+ y - a) ' 

Hence the contributions to the first integral in (4) from the 
integrations along the sides of the rectangle parallel to the 
y-axis, will be less in absolute value than 

JL 24V(n + |)7T+T 

and therefore will approach zero as n becomes infinite. 
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For points on the sides of the rectangle Rn that are parallel 
to the œ-axis, i. e., for values of z of the form p ± i 
having the same value as above, (10) reduces to* 

6<(*J»»-Y)^(*)>^(1 + g/) + e~
i{é:px-^eM:h)Vïx{l + ö2') 

where for large values of | z |, ö6 is an infinitesimal of the same 
order as the other d's. It is readily seen from this form that 
if n is chosen large enough to make 0i, 02, and 6Q each less 
in absolute value than J, the integrand of the first integral 
in (4) will for the values of z under consideration be less in 
absolute value thanf 

6 

Hence the contributions to the first integral in (4) from the 
integrations along the sides of the rectangle parallel to the 
#-axis, will be less in absolute value than 

Q2) i - 2 4 { ( n + j > + 7 } 
^ ; 2TT ' I V<e((n + ±)T + y^1-*^»™"» ' 

and therefore will approach zero as n becomes infinite. 
Combining the previous results it is seen that the first 

integral in (4) is for large enough values of n less in absolute 
value than the sum of (11) and (12). Hence it approaches 
zero as n becomes infinite, and thus our lemma is proved for 
this case. As stated before, the proof for the other case is 
analogous. 

LEMMA 2. The function Jv{ax), where a is a real constant 
=)= 0, can be expanded into a series of the form 

(13) E BnFvÇKn, x), 

* The ambiguous signs enclosed in parentheses form an independent set 
from those not so enclosed. 

t For the corresponding values of z the integrand of the second integral 
in (4) can be shown to be less in absolute value than 

12 



1916.] DEVELOPMENTS IN BESSEl/s FUNCTIONS. 23 

FVÇK, x) 
(X-a)w'(X)' 

where Xi, X2, X3, • • • are the roots, positive or zero, of equation 
(3) for the case I 4= 0, arranged in increasing order of magni­
tude, the B's are constants, and the series converges uniformly 
in the interval O S a j ^ l . 

Let us set 

CM) !f-»«-^' 
Then if we make use of Cauchy's theorem of residues, we ob­
tain for the first integral in (4) 

1 r Fv(z, x) Fv(a, x) v 
{lö) 2nJBn{z-*)u{z)dZ- ti(«) + ^ 

where the summation on the right-hand side is extended over 
all values of X that are roots of the first order of uÇK) and lie 
within the rectangle Rn. 

Since for every positive root of (3) there is a corresponding 
negative root, equal in numerical value, there will be two 
terms on the right-hand side of (15) corresponding to each 
positive root of (3). We shall now combine these two terms 
into one of the same type as the general term of (13). 

Since from (14) any positive root of œ(z) is also a positive 
root of u(z) and v(z), we have for any positive root X of (3) 

nn , , m *&) __ (" + D'OO ^ft) 
V-J-W U \h) — \v+l \ v-j-2 ~~ \ v + l • 

But from (14) and (9) 

</(X) = (h + h)J/(X) - Uv+i(X) - l\J'v+i(\), 

which by means of (8) and another well-known formula, 

v+ 1 
J'v+i(z) = Jv(z) — Jv+i(z), 

z 
may be put in the form 
(17) v'ÇK) = - hJv+1(X) + Kp2~^) + hvJv(X). 

Moreover, since X is a positive root of (3) and the I of (3) has 
been assumed to be not zero, it follows from (9) that 

(18) JWiOO = Z i ^ ^ ( X ) . 
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Combining (16), (17) and (18), we obtain 

(19) «M-*** ~$~ * J.V). 

It follows from (1) and (19) that 

Fv(- X, x) = Fv(\, x), u'{- X) = u'Qi). 

Hence the two terms on the right-hand side of (15) corre­
sponding to X and — X combine into the form 

2alk2 

( 2 0 ) (X2 - a2) {l2(v2 - X2) - h2}Fv(\ 1) ^ ( X ' X)' 

We know from Lemma 1 that for values of x in the interval 
0 < x < 1 the left-hand side of equation (15) approaches 
zero as n becomes infinite. Hence the right-hand side does 
also, and if we take limits we obtain for Jv(ax) a series of 
the form (13),* where 
, 2 n B 2a^u{aW 
VI) Bn - (X2 _ a2)[Z2(X2 _ „2) + h2]Fv(\, 1) ' 

and we know that the series converges to Jv(ax) in the interval 
0 < x < 1. It follows at once from the form of Bn and well-
known properties of the roots of (3) that the series converges 
uniformly throughout the interval 0 Si x Si 1, and hence it 
represents Jv(ax) throughout that interval. Our lemma is 
therefore proved. 

LEMMA 3. The function Jv(ax) — xvJv(a), where a is a 
real constant 4= 0, can be expanded into a series of the form (13) 
where Xi, X2, X3, • • • are the successive positive roots of equation 
(3) for the case 1=0, arranged in increasing order of magni­
tude, the B's are constants, and the series converges uniformly 
in the interval 0 ë ( c S 1. 

If we treat the second integral in (4) in the same way as we 
treated the first integral in the proof of Lemma 2, we obtain 
for the function Jv(ax) — xvJv{a) a series of the form (13) 
where 

* It is apparent from (9) and (14) that u(z) will have a zero root of the 
first order when and only when (3) has a zero root. As would be expected, 
the coefficient of the general term of the series (2) for the case where 
f(x) = Jv(ax) may be reduced to the form (21), 
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(22) B „ - . * - * ' " < * « 
X2(X2-a2) JPv + 1(X,l) , 

and we know that the series converges to the function in 
question throughout the interval 0 < x < 1. I t follows 
directly from the form of Bn and well-known properties of 
the roots of «/„(A) that the series converges uniformly through­
out the interval 0 ==j x ^ 1. Hence it represents Jv(ax) 
— xvJv(a) in that interval, and our lemma is proved. 

LEMMA 4. If in the interval 0 S a; = 1, \(/(x) is defined 
and such that x\p(x) has a Lebesgue integral in this interval, 
and if furthermore 

I xip(x 
t / 0 

(23) xrP(x)FvÇKn, x)dx = 0 (n = 1, 2, 3, • • •)* 
•A) 

where Xi, X2, X3, • • • are the successive roots, positive or zero, of 
equation (3), then yp(x) is zero at every point of the interval 
0 < x < 1 at which it is continuous; it is zero forx~l if 
continuous for that value and the I of equation (3) =)= 0, or if it 
is continuous at that point and at an infinite number of points 
in its neighborhood; it is zero for x = 0 if it is continuous at 
that point and at an infinite number of points in its neighborhood. 

The proof is somewhat different in the two cases where 
the I of equation (3) is different from or is equal to zero. 
We shall consider first the former case. 

By Lemma 2 the function Jv(ax) may be expanded into a 
series of the form (13) that converges uniformly in the interval 
O ë x S 1. Multiplying the series by x\//(x) and integrating 
term by term* from 0 to 1, we obtain in view of (23) 

(24) \ x\f/(x)Jv(ax)dx = 0. 
Jo 

If in this equation we replace Jv(ax) by its development in 
a power series, integrate term by term, f and divide through 
by av, we obtain 

» (— 1 V/v2* r1 

0-S2^ilV+<+l)J.a!H-H^(^ 
* It follows from the uniform convergence of the series for Jv(ax) and 

the fact that x\l/(x) has a Lebesgue integral in the interval 0 ^ x :fg 1 
that we may obtain the value of the integral on the left hand side of (24) 
by integrating term by term. 

t The justification is the same as before. 
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and this equation is known to hold for all real values of a 
except zero. Since both sides of the equation are analytic 
functions, it follows that the equation holds for all values 
of a and therefore that the right-hand side is identically zero. 
Hence we have 

(25) f xv+1+2ix[/(x)dx = 0 (i = 1, 2, 3, < • •), 
Jo 

and therefore \[/(x) is zero at every point of the interval 
0 < x ^ 1 at which it is continuous,* and is zero f or x = 0 if 
continuous at that point and at an infinite number of points 
in its neighborhood. 

Let us now consider the case where the I of equation (3) 
is zero. Making use of Lemma 3 in the same way as we made 
use of Lemma 2 in the discussion of the previous case, we 
obtain in place of equation (25) the relation 

f xv+1(x2i - l)y//(x)dx = 0 ii = 1, 2, 3, • • •)• 
Jo 

From this we readily obtain 
l 

xv+i+2i(x2 _ i^^dx = 0 (i = 0, 1, 2, • • •) . 

Hence \p(x) is zero at every point of the interval 0 < x < 1 
at which it is continuous, and is zero for x = 0 or x = 1 if 
continuous at these points and at an iijfinite number of points 
in their respective neighborhoods. Thus our lemma is com­
pletely proved. 

We are now ready to prove the following theorem. 
THEOREM: If the function fix) defined for the interval 

0 ^ x ^ 1 is such that xf(x) has a Lebesgue integral in this 
interval, and if the series of the form (2) corresponding to fix) 
converges or is summable at all points of the interval 0 ^ x ^ 1 
at which f(x) is continuous, defines a function p(x) that is 
continuous at those points^ and such that x<p(x) has a Lebesgue 

* Cf. Lereh, Acta Mathematica, vol. 27 (1903), p. 347. Also the writer, 
BULLETIN, vol. 14 (1908), p. 368 and vol. 15 (1908), p. 116. The proof 
of the theorem referred to is given in these papers for Riemann inte­
grability; it applies equally well for Lebesgue integrability except at the 
point x — 0, where our added condition is necessary to complete the 
proof in the same way as it is completed in the writer's footnote on p. 371 of 
the first reference above. 

t The point x = 1 is to be excepted for the case I = 0, unless ƒ(!) = 0. 

X 
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integral in the same interval, and can be integrated term by 
term over this interval after being multiplied through by a func­
tion that is continuous there, then the series will converge or be 
summable to f(x) at all points of the interval O < x < 1 at which 
f(x) is continuous;* it will converge or be summable to f(x) 
for x = 1 if f(x) is continuous there and I #= 0, or if f(x) is 
zero for x = 1, and is continuous at that point and at an infinite 
number of points in its neighborhood; it will converge or be sum­
mable to f(x) for x = 0 if the function is continuous at that 
point and at an infinite number of points in its neighborhood. 

We have 

„ J xf(x)FvÇkn, x)dx 
<p(x) = £ FV(K, x) -~n . 

z[FpQin, z)Tdx 
Jo 

Multiplying by xFvÇkny %) for n = 1, 2, 3, • • • and integrating 
from 0 to 1, we obtain, in view of the fact that the F's form 
an orthogonal set, 

f x[<p(x) - f(x)]FvQin, x)dx = 0 (n = 1, 2, 3, • • •)• 

From this equation and Lemma 4 our theorem follows at once. 
UNIVERSITY OF CINCINNATI, 

June, 1916. 

SECOND NOTE ON REMOVABLE SINGULARITIES. 

BY DR. W. E. MILNE. 

IN a "Note on removable singularities"f the writer stated 
a theorem J concerning removable singularities for functions 
of several complex variables. An analogous theorem, with 
less restrictive hypotheses, is the following 

* The convergence or summability to %[f(x + 0) + f(x — 0)] at points 
where f(x) has a finite jump does not follow directly from the present 
method. It can be obtained from the convergence or summability to f(x) 
at points of continuity by a method given by the writer on pp. 428-429 
of the paper in volume 10 of the Transactions, referred to above. 

t BULLETIN, vol. 21 (1914), pp. 116-117. 
j The proof there given for this theorem is incomplete, as Dr. Dunham 

Jackson pointed out. The gap is filled by the proof here given. 


