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ON T H E RELATION BETWEEN LINEAR ALGEBRAS 
AND CONTINUOUS GROUPS. 

BY PROFESSOR L. E . DICKSON. 

1. T H E aim of this note is to give a very elementary account 
of the mutual relation between any linear associative algebra 
(system of hypercomplex numbers) and a type of continuous 
groups, without presupposing on the part of the reader a 
knowledge of either subject. The relation in question, first 
observed by Poincaré, enables us to translate the concepts and 
theorems of the one subject into the language of the other 
subject. I t not only doubles our total knowledge, but gives 
us a better insight into either subject by exhibiting it from a 
new point of view. Incidentally, we shall obtain several 
other results of general interest. 

2. To begin with the simplest illustration, we set up a 
correspondence between each real number c, not zero, and the 
transformation z' — cz, denoted by Tc, on the real variable z. 
The result of applying in succession Tc and the new transfor­
mation Tc' (which we may express in the form z" — c'z') is 
the same as applying the single transformation z" — (c'c)z. 
Hence we say that the product TCTC' of the two given trans­
formations is the transformation Tc", where c" = c'c. The 
set of transformations which correspond to the system (or 
algebra) of all real numbers, other than zero, is said to form a 
group G since the product of any two of these transformations is 
a transformation of the same set. In particular, G is a one-
parameter continuous group. The relation c" — c'c between 
the parameters in TCTC' = Tc" defines a transformation of c 
into c" with the parameter c'. Since cf ranges over all real 
numbers other than zero, the resulting transformations 
c" = c'c on the parameters form a group which is the same as 
G, apart from the notation of the variables. Hence G is said 
to be its own parameter group. 

Next, let z denote a complex variable x + yi and let c 
range over all complex numbers a + bi other than zero. Then 
Tc is equivalent to the binary transformation 

Ta§ b: x' = ax — by, y' = bx + ay. 
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The set of transformations Ta & in which a and b range in­
dependently over all real numbers (with the exclusion of 
a = b = 0) forms a two-parameter real continuous group 
which is its own parameter group. While these facts can be 
readily verified by use of the binary transformations Tüt & (and 
that method is recommended to the beginner as a desirable 
exercise), they follow at once from the earlier work, in which z is 
now interpreted to be a complex variable and c a complex 
parameter. 

To the linear algebra of ordinary complex numbers a + bi, 
with real coordinates a, b and two units 1, i, therefore 
corresponds a two-parameter group of binary linear trans­
formations Ta b in which the parameters a and b enter linearly 
and homogeneously, and such that the group is its own param­
eter group. Given, conversely, a group of this character, 
we can exhibit a corresponding linear associative algebra, the 
product of any two hypercomplex numbers c and z of which is 
the number z' such that the expanded form of the relation 
z' = cz is that transformation of the group whose parameters 
are the coordinates of c. Additional simple illustrations of 
this statement are given in the following sections. 

3. We shall obtain an important algebra by considering 
the linear transformations which leave unaltered the quadric 
surface S defined by 

I X l X21 = o 
I Xz XA I 

The four variables and the coefficients of the transformations 
may be taken to be real numbers or to be ordinary complex 
numbers; either interpretation may be made by the reader, 
but the one chosen is to be retained throughout the discussion. 

The surface S contains two sets of straight lines 

L]c\ X\ = hXz, X<i = kX4, 

\jc' x\ = Jcx2, x% = hx±. 

A linear transformation which replaces every plane through 
Lk by a plane through Lh is such that 

xi' — hxz = yi(xi - kxs) + yz(x2 — JcxJ, 

xo' — kx± = y2(xi — kxd) + y±(x2 — kx±), 

in which yi, • • •, y A are linear functions of k. Let the trans-
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formation leave unaltered three lines Lk» Then the preceding 
equations, quadratic in &, hold for three values of k and hence 
are identities in k. Since the left members are linear in Jc, 
we see that yi, • • •, y± are independent of k. Hence a linear 
transformation which leaves unaltered three lines Lh leaves 
unaltered every line Lk and is of the form 

T. 
xi = yixi + yzx2, x$ = y\xz + yzx^ 

y 
X2 = y^Xl + yiX2, Xi = y2XZ + 2/4̂ 4, 

in which the parameters y±, • • •, y A are such that 

2/12/4 - 2/22/3 4= 0. 

If two transformations leave every Lk unaltered, their product 
leaves every LJc unaltered. Hence the set of all transformations 
Ty forms a group G. The direct verification of this fact will 
lead also to another needed property. The product TyTy' 
is found to be Ty", where 

2/i" = 2/i'2/i + 2/3,2/2, 

2/2" = 2/2^1 + y*y2, 

2/a" 

2A" 

= 2/i'2/3 + 2/3r2/4, 

= 2/2r2/3 + 2/4^4. 

These equations define a transformation with the parameters 
yi, ' - -, y A from the variables y\, - • •, y± to the variables 
yi'y - • •> 2/4"; under this interpretation, the transformation is 
the same as Ty', apart from the notation of the variables. 
Hence G is its own parameter group. According to the general 
statement at the end of § 2, the group G should correspond 
to a linear associative algebra. As the general element (or 
hypercomplex number*) of the algebra, we may take the 
matrix 

n Xi X2 

Xs X^ 

The product xy is defined to be the matrix x' in which Xi, 
• • •, #4' are given by the equations marked Ty. Hence the 
group G defines the algebra whose elements are the matrices 
x; the general transformation Ty of G is merely the expanded 
form of the relation x' = xy between matrices. 

* For the exhibition of # as a linear combination of four units and the 
resulting linear aspect of the algebra, see the writer's Linear Algebras, 
Cambridge Tracts, 1914, pp. 3-5, p. 59. 



56 LINEAR ALGEBRAS AND CONTINUOUS GROUPS. [Nov. , 

Consider the product £ = yx of the same factors taken in 
reverse order. We obtain the transformation 

£1 = y&i + 2/2^3, & = yix2 + yix^ 

£3 = y&i + y±xz, £4 = y*x2 + yAxé. 

AU such transformations form a group 6r'. This fact can be 
verified as above by forming the product TyTy

f, or by 
showing that the T'y leave unaltered every line X& and give all 
the linear transformations leaving unaltered every X&, or by 
the following third method. The product of T'y, given by 
£ = yx, and Ty

f, given by £' = y'%, is found by the elimination 
of £. Since yf(yx) = {y'y)x, the product is T'y", given by 

Each transformation of 6? is commutative with each trans­
formation of G' since TyT'yi is f = y\{xy), while î^î 7^ is 
£' = (yix)y. The transformations of G and (?' therefore 
generate the group T of the linear transformations x' = yixy. 
Suppose that this transformation is identical with x' = Y\xY, 
Then xA = J3# for every x, where A = yY~1, B = 2/i-1Fi. 
As is easily verified, the identity in x gives 

Then Y = Sc-^y, Y\ = yiSc. Hence T is a seven-parameter 
group. 

To complete the discussion, we shall prove that the only 
linear transformations leaving the quadric surface S unaltered 
(i. e., automorphs of S) are the transformations of T (which 
permute the lines Lk among themselves and the lines X* 
among themselves) and their products by any one trans­
formation, as faxt), which interchanges the two sets of lines. 
Let T be any linear automorph of S. If T replaces only a 
finite number of lines Lk by lines LK, it replaces an infinitude of 
lines Lk by lines \K, so that the product of T by (#2^3) replaces 
an infinitude of lines Lk by lines LK. Hence either T itself or 
its product by (#2^3) is an automorph t which replaces an 
infinitude of lines Lk by lines LK. But we can find a trans­
formation T'y which replaces any three distinct lines Lk by 
any three distinct lines LK. This will evidently follow if we 
prove that there exists a transformation Ty which replaces 
Lo, .Loo, Li by La, Lb, Lc, respectively, where a, b, c are any three 
distinct numbers; the conditions are 
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2 / 2 ^ 2 / 1 , 2/1+2/2 n — = a — = b, — j — = c, 
2/4 2/3 2/3 + 2/4 

and are satisfied when 

i c - a i 

2/4 = 1, 2/2 = a, 2/3 = ft"Zr^> 2/1 = 6 ^ -

The product of t by the inverse of the first T'y leaves un­
altered three lines Lk and hence is a transformation Ty, as 
proved above. Thus t is in the group T and hence either T 
is in r or T is the product of a transformation of T by 0r2£3). 

The group of all linear automorphs of S is therefore of the 
kind called a mixed group. I t is however determined in a very 
simple manner from the continuous seven-parameter subgroup 
T composed of the transformations x' = yixy. As in this 
instance, the introduction of hypercomplex numbers enables 
us to give a very compact and convenient notation for the 
transformations of important groups. 

4. From the preceding algebra whose elements are matrices 
we can derive in a very natural manner the algebra of quater­
nions and deduce as corollaries several important results. To 
this end we take the interpretation which assigns ordinary 
complex values to the variables and coefficients of the trans­
formations in § 3. To transform the equation of the quadric 
surface into 

Zx2 + X2
2 + X3

2 + X4
2 = 0, 

we have merely to write 

x\ — X\ + iX±, #4 = X\ — iX±, X<L = — X2 + iX%, 

xz = X2 + iXz. 
The new form of transformation Ty involves the parameters 
only in the combinations 2/4 ± 2/i> 2/2 =b 2/3. Hence we write 

2/4 + 2/1 = 2 ^ 4 , 2/4 - 2/1 = 2iYi> 2/2 — 2/3 = 2F3 , 

2/2 + 2/3 = 2i7 2 . 

In terms of the new variables and parameters, Ty becomes 

Xi = X4 Y1 — X% F2 + X2 Y s + Xi F4, 

X2 = X3F1 -f- X4F2 — X1F3 + X2F4, 

*y : xt' = - X2Y, + X1Y2 + Z4F3 + z3y4, 

X4 = — X1F1 — X 2 F 2 — X3F3 -f- X4F4. 
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The identical transformation X / = Xi, etc., is obtained by 
taking Y\ = F2 = F3 = 0, F4 = 1. To our group therefore 
corresponds a linear associative algebra whose general number 
is 

X = Xti + X2 j + Xzk + X4, 

where the products of the units i, j , k, 1 are such that 

X F = Xr » Xx'i + X2'j + XJk + X4 ' , 

in which the values of X / , • • •, X4 ' are given by tY. Taking 
Zx = Fi = 1, X8 = Fs = 0 (s = 2, 3, 4), we find that 
ii = — 1. In this way, we get 

ft __ ƒ __ £2 _- ___ ^ ^j = ^ j£ = _ ^ 

jife = i, fcj = - i, ki = j , ik = — j . 

We thus obtain the algebra of quaternions with ordinary 
complex coordinates. In view of its origin it is equivalent 
under a linear transformation on the units to the algebra 
of matrices with complex coordinates (§ 3). I t has as a sub-
algebra the system of real quaternions. 

The transformation tY leaves the quadric surface unaltered. 
By finding the coefficient of Xi2, we see that 

4 4 4 

2Lr Xs — 2~I*S • /Li Xs. 
5 = 1 3 = 1 5 = 1 

The left member is called the norm of the quaternion X'. 
Since the transformation is X' — XY, we conclude that the 
norm of the product of two quaternions equals the product of 
their norms. 

By interchanging X8 and Ys (s = 1, 2, 3, 4) in tY, we obtain 
the transformation tY which has the more compact notation 
X' = FX. The product of the commutative transformations 
tY and tYl is X' — Y^XY. The latter form a seven-parameter 
continuous group T. The determinant of each of its real 
transformations is positive, since the determinant of Ty in 
§ 3 is the square of 

yiy, - 2/22/3 = Fi2 + F2
2 + F3

2 + F4
2. 

To (^2^3) corresponds the transformation r which changes the 
sign of X2 without altering Xi, X3, X4. The only linear 
automorphs of the surface are the transformations of T and 
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their products by r (§3), these products having negative 
determinants. In four-dimensional space these products are 
reflexions, so that the group generated by the rotations around 
the origin and the stretchings from it is formed of the trans­
formations q' = qiqq2, where q and qf are variable real quater­
nions, while qi and q2 are real quaternion parameters. Con­
cerning this group, the corresponding one in three dimensons, 
and references on related subjects, see Linear Algebras, page 61. 

5. Our final illustration will be more typical of the general 
theory since it treats a group not initially its own parameter 
group. Consider any two-parameter binary linear group in 
which the parameters Yi, Y2 enter linearly and homogeneously. 
Its transformations are therefore of the form 

*i ' =(AYi + BY2)Xl + (CY1 + DY2)x2, 

x2' = (EYi + FY2)xl + (6F i + HY2)x2. 

Let Y\ = a, Y2 = b =|= 0 be the values of the parameters giving 
the identical transformation. Introduce the new parameters 

Vi = bYi — aY2, y2 = Y2/b. 

Then the values y\ = 0, y2 = 1 give the identical transforma­
tion. The new equations of our transformations will be of the 
above form, in which now B = H = 1, D = F = 0. Further, 
we set AYi+ Y2 = y2, Y\ = yi. Hence the transformation 
becomes 

Ty: xi = y2xi + cyix2, x2 = ay ixi + (dyx + y2)x2. 

The product TyTy' is seen to be Ty", where 

P'- Vi" = (y* + dyi')yi + yx
fy2, y2" = acy^yx + y2

fy2. 

Hence the totality of transformations Ty forms a group G. 
Regarding y\ and y2 as the parameters, we have the general 
transformation of the parameter group of G. Thus G is its 
own parameter group only when d = 0, c = 1. 

Without loss of generality we may take c = 1. If c 4= 0, 
this may be done by taking cy\ as a new y\. If c = 0, a =)= 0, 
we interchange X\ and x2 and take dy\ + y2 as a new y2, 
obtaining Ty with c 4= 0. If c = a = 0, the case d = 0 is 
excluded since the group has two parameters, so that dy\ + y2 

may be taken as the new y±. Then 

?"• xi = y2xi, x2 = yxx2. 
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Using the new variables X\ — x\ + x2, X2 = x\ — x2 and new 
parameters Yx = (y2 — yi)/2, Y2 = (2/2 + 2/i)/2, we get 

g' : Xi = Y2X1 + F1X2, X2' = YiXx + F2X2, 

which is of type TY with c = a = 1, d = 0. 
There is a general method of selecting new variables X\ 

and X2* such that the group on the new variables will become 
its own parameter group. In the equations for Ty we have 
only to erase the accents in the left members, replace yi, y2 

by Xi, X2 and give to xi, x2 such special values that the result­
ing equations are independent. We may take X\ = 0, x2 = 1, 
and get 

xi = Xi, x2 = dXi + X2. 

Expressed in the new variables, the transformation Tv (with 
c = 1) becomes 

ty\ Xx' = (y2 + dyx)Xi + yxX2, X2' = ayxXx + y2X2. 

In view of P , the group of these transformations is its own 
parameter group. For y\ = 0 , y2 = 1, the transformation 
is identity. Hence we obtain an algebra with units e, e, 
where e is the principal unit, such that, if y = y\e + y2e is 
its general number, Xy = X', where the coordinates of X' 
are defined by ty. The multiplication table is therefore 

e2 — e, ee = ee = e, e2 = de + ^€. 

Taking e — \de as a new e, we have d — 0. Then multi­
plying e by r, we see that a is replaced by r2a, which may be 
made equal to 0 or 1 by choice of r. Hence there are just two 
types of binary algebras with complex coordinates and having 
a principal unit. 

The corresponding groups are composed of the transforma­
tions ty, with d = 0, a = 0 or 1. That with a = 1 is g' and 
was seen to be equivalent to g. Hence every binary linear 
group in which the two parameters enter linearly and homo­
geneously is equivalent to g or to the group h of transformations 
ty with a = d = 0. 

Scheffers proceeded in the reverse order. Making use of 
Lie's determination of all types of binary linear groups, he 
selected the two-parameter groups in which the parameters 

* Lie-Scheffers, Continuierliche Gruppen, 1893, p. 634. 
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enter linearly and homogeneously, found their finite equations, 
and introduced variables such that each group becomes its 
own parameter group. The resulting groups (1. c , page 648, 
bottom, and page 649) are our h and g. From these he derived 
the above two algebras. 

6. Scheffers' determination (pages 654-6) of the algebra of 
quaternions is based upon the existence of the group of trans­
formations t'Y of § 4. In a rather arbitrary manner he selected 
four infinitesimal transformations out of an aggregate of the 
oo6 infinitesimal automorphs of the quadric surface, and 
verified that the four generate a four-parameter group. The 
guide to this seemingly fortunate selection may well have been 
the previous knowledge of the group defined by the algebra 
of quaternions. The above discussion in § 4 not only gives a 
natural derivation of quaternions from the theory of groups 
but leads to the total group of automorphs of a quadric surface 
and not merely to its continuous subgroup. 
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AN ASPECT OF T H E LINEAR CONGRUENCE WITH 
APPLICATIONS TO THE THEORY OF 

FERMAT'S QUOTIENT. 

BY MR. H . S. V A N D I V E R . 

(Read before the American Mathematical Society, August 4, 1915.) 

I N 1903, Professor G. D. Birkhofï communicated to me the 
following theorem: 

If p is a prime integer and a is a positive integer prime to py 

then there is at least one and not more than two sets (x, y) such 
that 

a = ± x/y (mod p) 

where x and y are integers prime to each other and 0 < x < 4p, 
0 < y < Vp. 

Professor Birkhofï has kindly allowed me to use this result, 
and in the present paper I shall give a proof of the theorem 
which involves a continued fraction algorithm for a direct 
determination of each set. Some extensions and applications 
are also given. 


