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courses to provide both the medical and the engineering train
ing which such officers require. But it is not expected that 
these courses should be a part of the training of every phy
sician and of every engineer, nor even that every school of 
medicine or of engineering should establish such courses. 

There already exist under university or government control 
several stations or institutions devoted to research in the 
problems of engineering. This research is naturally largely 
experimental, and these stations provide the opportunity of a 
career for the man who has the aptitude and the desire for this 
work. If such stations enter upon the field of the mathe
matical problems of engineering the door will be opened to a 
career in this line also. 

With a definite demand for men competent to attack the 
mathematical problems of engineering will come the induce
ment for men to train themselves for the work, and with this 
inducement, a demand for suitable courses. To meet this 
demand a few institutions, already strong in both mathematics 
and engineering, may well organize graduate courses analogous 
to those which now lead to the degree of Doctor of Public 
Health. 

FUNCTIONS OF LINES. 

Leçons sur les Fonctions des Lignes, Par VITO VOLTERRA. 
Recueillies et rédigées par JOSEPH PÉRÈS. Paris, Gauthier-
Villars, 1913. 8vo. vi+230 pp. 
THESE lectures were delivered by Volterra at the Sorbonne 

during the months from January to March, 1912, and were 
later published as one of the Borel series of monographs on 
the theory of functions. It would be difficult to determine 
precisely the historical origin of functions of lines. Special 
cases of such functions, for example the ordinary definite 
integral or the integrals of the calculus of variations, have 
occupied a large share of the attention of mathematicians 
since the beginnings of the calculus itself. But the conscious 
formulation of the definition of a function of a line and its 
derivative, and the study of a general theory, belong to a 
recent period of investigation in which Volterra has been an 
earliest pioneer. The development of our knowledge of 
functions of lines and their applications, since Volterra's 
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first published papers on the subject in 1887, has been due 
largely to his enthusiasm and to his confidence in the future 
importance of the theory. 

A function of a line may be conceived as a generalization 
from a function F(yi, y^ • • •, yn) of a finite number of variables 
to a function 
(1) F\[fa(x)]\ 

depending upon the infinity of ^/-values belonging to a curve 
V = ƒ(#) over an interval a ^ x ^ b. This process of passing 
from a conception involving a finite number to a conception 
involving an infinite number of mathematical symbols or 
operations is one of the most striking features of the mathe
matical thought of the present time. It is a process whose 
numerous possibilities of application Volterra repeatedly em
phasizes in his Leçons, and which has been a favorite instru
ment in the prosecution of his varied researches. 

Perhaps the most familiar example of such a process is the 
definite integral, the limit of a sum of a finite number of terms 
as the number of terms is indefinitely increased and the mag
nitude of each of the terms suitably diminished. Many 
centuries elapsed while this notion was haltingly developed 
into the basis of the modern integral calculus, and two more 
were required before the full importance was realized of the 
generalization in a similar way of other processes than sums. 
Then within a period of twenty-five years came the theories 
of functions of lines, of linear integral equations as general
izations from a finite to an infinite number of linear equations, 
of integro-differential equations as limiting conceptions cor
responding to finite systems of simultaneous partial differ
ential equations, and of other generalizations of the same sort 
with which the reader is doubtless familiar. It is with the 
three conceptions just mentioned specifically that the Leçons 
of Volterra are primarily concerned. 

In an introductory chapter of great interest he has sketched 
the historical development of the fundamental principles of 
the integral calculus, and has shown how inevitably the tend
encies of modern analysis and mechanics, but especially the 
mechanics of heredity, have led to the study of functions of 
lines. The theory of these functions is as yet in its infancy, 
and no final classification or complete discussion of its various 
branches can at present be made. But Volterra indicates 
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briefly at this point the directions of the researches which have 
hitherto been made, and some of the questions which must be 
answered in the future. 

In Chapters II, III, and IV the fundamental properties of 
functions of lines are developed. Let AF be the difference 
between the value of the function (1) taken along the curve 
V = ƒ(#) + <p(x) with the hump shown in the figure, and the 
value of F along the curve y = f(x) without the hump; and 
let ex be the area of the hump. Then Volterra defines the 
derivative of F at the value £ to be the limit 

(2) 
AF 

F'\[Pa(x), 8\ = lim —, 
A=0, e=0 & 

where h is the length of the interval over which <p(x) is different 
from zero, and e is the maximum of the absolute value of <p. 
If F satisfies suitable restrictions this derivative will exist, 
and for a family of variations y = f(x, a) containing the 
curve y = f(x) for a = 0, the formula 

SF= fV|[/(*),a|tf(&0)#, 

so important in the calculus of variations, can be proved. 
The differentials in this formula are taken with respect to a. 
If F has also higher derivatives of all orders 

whose definitions will be readily inferred, and satisfies other 
suitable conditions, it will have an expansion of the form 

F\[f(x) + Ux)]\ = F\[f(x))\ + fhF'\[f(x), ÉdlfGOdêi 

a generalization of Taylor's formula* 
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It is not always true that two arbitrarily chosen functions of 
x and y will be the first partial derivatives of a third such 
function. The derivative (2) is really the partial derivative 
of F with respect to only one of the infinitely many variables 
which it involves, namely the value of y corresponding to 
x = £. It is not to be expected, therefore, that an arbitrarily 
chosen function (2) will always be the derivative of a function 
(1). Volterra deduces the conditions under which a function 
of the form (2) will be the derivative of a line function, and 
shows how the anti-derivative may be calculated with the aid 
of a generalization of Stokes' theorem. 

If a curve y = f(x) minimizes a line function F, the deriva
tive (2) of F must vanish identically along the curve. For the 
line functions of the calculus of variations this condition 
leads to the usual ordinary differential equations due to Euler, 
but, as Volterra shows, it is easy to give an example for which 
the equation so found is of the type of a linear integral equation, 
or an integro-differential equation. The state of the theory at 
present does not justify a complete classification of all of the 
types which may arise. 

Another interesting type of equations is met with when one 
attempts to generalize for double integrals the Jacobi-Hamilton 
theory associated with an integral of the form 

F= I V(x,yh • • • ,2 /n , y[> •-•>y'n)dx-

The minimizing curves for such an integral are a family con
taining 2n parameters, and the parameters may in general be 
determined so that the resulting curve passes through two 
arbitrarily selected points, (x0, y\, • • •, y°n) and (x, yu • • •, yn). 
The integral F is then a function of the coordinates of these 
points, called the extremal integral. It satisfies a partial 
differential equation of the form 

( 3 ) te = H\X>V*mm-'y*>Wl'm'm'Wn)-
For a double integral 

SJV{X'V'S'fx'fy)dxdy 

the minimizing surfaces are solutions z = f(x, y) of a partial 
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differential equation of the second order, and are determined by 
initial values f0(s) assigned arbitrarily to ƒ on a closed contour 
L with length of arc denoted by s. The extremal integral is 
then a function F\\fo, £]| of the contour L and the values/o, 
and the equation corresponding to (3) has the form 

F'L\Uo,L,s]\ = \(^£j -\F'f:\Uo, L, s]\. 

Equations of this type have been studied quite recently by 
Hadamard and Levy, and are called by Volterra "equations 
aux dérivées fonctionelles." 

The problem of determining the minimizing curves for a 
function of a line suggests the generalizations of the theory of 
implicit functions which are studied in Chapter IV. The 
equations 

Fiifhfc, • • ',fn; <Pl, <P2, • • *, <Pm) = 0 (i = 1, 2, • • -, ft), 

which determine the variables ƒ in terms of the <p's, correspond 
to a single equation of the form 

(4) F\[fa(x),<pb
a:(x),C\\ = 0 

when indices ranging over discrete integers are replaced by 
the index x ranging over the two continua a ^ x ^ b, 
a! ^ x fS b'. The forms of this equation studied in detail 
by Volterra are, first, one corresponding to the linear equations 
which give rise to the theory of linear integral equations with 
variable upper limits; second, the case when the function 
F in (4) is the sum of two parts, one involving ƒ and the other 
<p, and each part expansible by the generalization of Taylor's 
formula described above; and, finally, an equation (4) whose 
first differential has a special form. There remain, apparently, 
many cases yet to be studied, but the methods used by the 
author and the results which he has found are most interesting 
and suggestive. 

In Chapter V Volterra begins his study of integro-differ-
ential equations with a special case. The equation considered 
is 

(5) AMO + Jo l-teTf<t> r) + -QyTVit, r) 
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where 

Au~~ dx2+ dy2+l)z2 

and u(x, y9 z, t) is to be determined, an equation which he 
designates as the simplest integro-differential equation and the 
most important from the point of view of physics. The equa
tion may be regarded as a generalization from a finite system 

A2u.i+ g | ^ y - ~ ! + bij-~ + en-—- J = 0 (i = 1,2, • • -,w) 

when the indices i and j are replaced by continuous variables 
t and r, and the sum by the corresponding definite integral. 
The methods of treating this equation and the results found are 
analogous to those of the potential theory. There is an equa
tion adjoint to (5) whose solutions satisfy a law of reciprocity 
with those of (5). There is a fundamental solution corre
sponding to the quotient 1/r in the potential theory, which 
Volterra determines with the help of the process of passing 
from a finite to an infinite system, so often mentioned above. 
Finally, formulas analogous to those of Green are deduced, 
expressing the values of a solution f or t = 0 at an arbitrarily 
selected point in the interior of an xyz-dom&in, in terms of its 
values for 0 ^ t ^ 0 on the boundary of the domain. 

Chapters VI-VIII are devoted to the theory of elasticity 
and to concepts concerning functions of lines which have 
applications in this theory. The displacements in the interior 
of an elastic body are determined, in the classical theory of 
elasticity, as solutions of a system of partial differential equa
tions, with initial conditions on the bounding surface defined 
by tensions or displacements there prescribed. This is for 
the case when displacements at a given time are supposed to 
depend only upon the tensions which exist at the same instant. 
For the hereditary theory of elasticity, when the displacements 
at a time t are supposed to depend upon the tensions at all 
times preceding t, Volterra shows that the former may be 
expressed in terms of the latter by means of line functions, 
and that the differential equations for the displacements then 
become integro-differential equations. For the case when the 
body is isotropic and the line functions mentioned above 
linear, an assumption analogous to the customary neglect of 
terms of an analytic function of degree higher than the first, 
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Volterra sketches the theory with some detail. Theoretically 
the elastic problem so formulated involving heredity is com
pletely solvable when displacements on the contour are given. 
The steps in the theory are analogous to those outlined for the 
integro-differential equation of Chapter V. 

In Chapter VII a principle which Volterra calls "la condition 
du cycle fermé " is developed at length, and the importance of 
its applications in the theory of heredity is emphasized. If 
the condition of the closed cycle is satisfied in a problem in
volving heredity, the so-called coefficients of heredity will be 
functions permutable with unity in the sense described in 
Chapter IX, where the theory of such functions is systematic
ally treated. The remainder of Chapter VII is devoted to a 
discussion of heredity in electromagnetic theory, and an 
application in this connection of the integro-differential equa
tion of Chapter V. 

In Chapter VIII a solution is given of the problem of the 
isotropic elastic sphere under the influence of heredity, when 
displacements on the contour are prescribed. Many of the 
principles involved in this special though very important 
problem are illustrations of the more general developments of 
later chapters. 

The problem of the isotropic elastic sphere under the in
fluence of heredity presents much greater difficulty when the 
tensions instead of the displacements on the surface of the 
sphere are the data given in advance. In order to attain a 
solution Volterra introduces a theory called the composition 
and permutability of functions, and he is led thereby to results 
which far surpass in generality the needs of this special problem. 
There are two kinds of composition, that of the first kind with 
its applications being developed in Chapters IX-XI. For 
two functions F\ and F2 the result of a composition of the first 
kind is a new function 

F&(z,y) = rFfaQFt&yW. 

The two functions are said to be permutable if 
* * * * 

F1F2 = F2F1. 

For a given set of functions the operation of composition 
applied to elements of the set is always associative and, if 
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every pair is permutable, commutative. If the set so found 
is extended to contain all linear combinations of its functions 
of the form 

Co + ciFi + h cnFn 

the properties of associativity and permutability of com
position in the set are still preserved, provided that com
position for two functions ci + F\, c2 + F2 is defined by the 
equation 

(ci + FM* + F2) = cxc2 + c2Fx + ClF2 + F A. 

But the set permits also a further important extension without 
disturbing these properties. For if in a convergent series the 
variables z±, z2, • • •, zn are replaced by functions JPI, F2, • • •, Fn 

of the set, and multiplications replaced by compositions, the 
new series will be convergent provided only that the moduli 
of JPI, F2, • • -, Fn are finite. Furthermore the series function 
will be permutable with the ones previously defined. 

By means of these sets of permutable functions, whose com
positions obey the laws of algebra described above, a large 
variety of integral and integro-differential equations may be 
solved. For if the equation F(zi, z2, • • •, zn) = 0, where F 
is analytic at the origin, has a solution zn = f(zi, z2, • • •, zn-i), 
the corresponding integral equation 

* * * 
F(FhF2, . . . , f n ) = 0, 

formed by replacing the variables z by permutable functions 
as described above, has the solution 

Fn = f(Fi, F2, • • «, JFV-i). 

Furthermore an algebraic differential equation 

*( vdF dF \ o 

with a solution F(zi, z2) • • •, zn) analytic at the origin, takes 
the form 

^ ( Zl, • • '> %n | £o, £b " * •> %n | ƒ, Q^, * * * ) = 0 

when Zi is replaced by &s* (i = 1, 2, • • -, ri), and F by //£0 . 
If £o> £i> • • * 9 £n are in turn replaced by permutable functions, 
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and multiplications involving these quantities or ƒ and its 
derivatives by compositions, then the last equation becomes 
an integro-differential equation 

whose solution is 
* * * * 

ƒ = FoF(ziFi, ' • •, znFn). 
The function so defined has the remarkable property that it is 
convergent for all values of the variables z. Volterra shows in 
particular that the solutions of the integral or integro-differ
ential equations considered in the preceding chapters can be 
reduced in this way to the solutions of ordinary algebraic or 
differential equations, the solutions of the latter being in many 
cases already known. 

An interesting example is the equation 

with the known solution 

After substitutions of %z for z, and F/£0 for U, the differential 
equation becomes 

dV c.xr , .. 

If £0 is replaced by unity, and J by a function F, as agreed 
above, the new integral equation and its solution are 

wMfiÈ. = F(x> y) + £F(X> mZ) 5> m> 

V(z \x,y)= zF(x, y) + ^ F f e y) + • • •. 

Further the addition formula 

U(z + u) = 17(a) + U(u) + U(z)U(u) 

gives rise to an integral addition formula 
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V(z + u I x, y) = V(z | x, y) + V{u \ x, y) 

+ (VV{z\xyÇ)V{u\$,y)di; 

for the solution of the integral equation. The integral tran
scendental function V(z \ x, y) so defined plays an important 
rôle in the solution of the problem of the elastic sphere with 
displacements on the surface given. The solution of the 
problem when tensions are given may also be effected with the 
help of the theory of permutable functions 

The above results form the content of Chapters IX and X. 
In Chapter XI further questions concerning permutable 
functions of the first kind are discussed. Among them may 
be mentioned a definition of order of a function, the deter
mination of all functions permutable with a given function of 
a given order, and the application of these results to the 
solution of integral equations at critical points. 

In Chapters XII and XIII composition and permutability 
of the second kind are defined and applied to the solution 
of integral and integro-differential equations with fixed limits. 
The result of a composition of the second kind on two functions 
Fi and F2 is defined by the equation 

F1F2(x>y) = I Fi(.x,QF,(j;,y)dZ. 
Jo 

While the fundamental properties of such compositions are 
similar in many respects to those of composition of the first 
kind, there are still important differences, as one would expect 
from the analogy with the theories of integral equations with 
variable or fixed limits. It will perhaps be sufficient here 
to say that the underlying idea is again to pass from algebraic 
or differential equations to integral or integro-differential 
equations, but this time with limits fixed instead of variable. 
The solutions of the former types of problems will go into 
those of the latter by the substitution of compositions for 
multiplications. 

The final chapter of the Leçons is devoted to a historical 
summary of the more recent developments in mathematical 
theories of mechanics, and a discussion of the place which the 
theory of heredity should take in this domain. Some writers 
have questioned the importance of discussions of heredity on 
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the ground that the behavior of an elastic body, for example, 
is completely determined after a time U by its state at t = t0. 
According to this view the discrepancies between theory and 
observation are due to inadequate experimental facilities for 
the determination of interior initial conditions. Volterra, on 
the other hand, contends that just as bodies react upon each 
other at a distance, so it is possible that tensions and displace
ments separated by an interval of time may be related. Even 
if the contention of those who question the philosophical basis 
of the theory is granted, nevertheless the agreement between 
experimental results and the elastic theory involving heredity 
is in itself a justification. It seems clear to Volterra that, in 
view of the difficulty of determining initial conditions ex
perimentally, and in the absence of other theories agreeing 
with experiment, the theory of heredity offers the only ex
planation at present possible of a large class of phenomena. 
He cites the experiments of Webster and Porter in the theory 
of sound as a cogent illustration, and his own success in the 
mathematical solution of problems in the theory of elasticity 
with heredity must be regarded as a potent argument in favor 
of his point of view. 

G. A. BLISS. 

SHORTER NOTICES. 

List of Prime Numbers from 1 to 10,006,721. By D. N, 
LEHMER. Washington, D. C, Carnegie Institution of 
Washington, 1914. xvi+133 pp. 
THERE are several reasons why number theorists will wel

come most heartily the publication of this volume. 
First, it answers with utmost directness the question, 

arising at almost every stage of number theoretic computation, 
whether or not a proposed number (under ten millions) is 
prime. Here the question of absolute accuracy of a table is 
paramount; the user of such a table has no practical means of 
checking the accuracy of an entry and if he relies upon an 
erroneous entry his conclusions will be wholly wrong. It is 
thus quite different from the case of ordinary tables (those of 
the values of a continuous function), since it is there only a 
question of approximation and a grossly erroneous error should 
be detected by the user of the table. The present table prob-


