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see that d = 0. Thus (cu + C24) A = 0. Apply x% = x2 + x[, 
whence 

Cl3 = Cis + C2Z, Cu = CU + C24, b[ == &1 + &2 + C]2-

Then cuIi = 0. Hence every c -̂Ii = 0, Ji = L44. But Ii 
is free of At. Hence h = Ö, I = 0, £ = 0. 

THEOREM. Every linear covariant of q± is a linear function 
ofL,A4L,KL. 

Next, let co > 1. After subtracting from C a constant 
multiple of qJJ*"2, whose leader is b^u, we have d = 0 in S. 
Express S± as a polynomial in c^, cw, fei, and call p the coefficient 
of their product. The coefficient of c^Cis in S[ — Si = S, 
found from (1), is p(b4 + ci4), and hence vanishes if h = Cu; 
while # itself vanishes if also c24 = c34

 == 0. Applying these 
two conditions to S = I + 64/i, we find that 

S = (64 + l)&(ra + müT), n, m constants. 

Several tests failed to exclude this leader. Whether or not 
there are covariants with such a leader S is not discussed here. 

In this connection, note the covariant 

Hcij(x&? + xfxj) 0', j = 1, • • -, 4; i < j), 

obtained by replacing the variables in the polar of (x) with 
respect to g4 by xf (k = 1, • • -, 4). 

6. By means of the corollary in § 4, and transformation (1), 
we readily obtain the 

THEOREM. Every quadratic covariant of q± is a linear func­
tion of L2, KL2, Iq±, where I is an invariant. 

UNIVEKSITY OF CHICAGO, 
June, 1914. 

THE CONVERSE OF THE HEINE-BOREL THEOREM 
IN A RIESZ DOMAIN. 

BY DR. E. W. CHITTENDEN. 

(Read before the American Mathematical Society, April 11, 1914.) 

IN various generalized forms of the Heine-Borel theorem* 

* Cf. M. Fréchet, "Sur quelques points du calcul fonctionnel," Rendiconti 
del Circolo Matematico di Palermo, vol. 22 (1906), p. 26; and T. H. Hilde-
brandt, "A contribution to the foundations of Fréchet's calcul fonc­
tionnel," Amer. Jour, of Mathematics, vol. 34 (1912), p. 282. 
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for a class Q of elements q, the condition that O be extremal* 
appears as a necessary condition. It is the purpose of the 
present paper to show that this condition is necessary in any 
domain for which a Fréchet limit is defined; and furthermore, 
that if the property extremal be replaced by the property self-
compact (a class is self-compact if its every infinite subclass 
has a limiting element in the class), more general domains 
may be considered,—notably; those of F. Rieszf for which 
limiting element is the fundamental relation, and those of 
T. H. HildebrandtJ for which a limit of a sequence need not 
be unique.§ 

1. Self-Compact Classes in a Riesz Domain. 
A Riesz domain is formed by a class $ which admits a 

relation " limiting element " between single elements and sub­
classes X of ty with the following properties : 

(1) If X has a limiting element in "5(3, X contains at least 
two elements. 

(2) If p is a limiting element of X, p is a limiting element 
of any class containing X. 

(3) If p is a limiting element of X} and X is divided into 
classes Xi, X2, then p is a limiting element of Xi or £2-|| 

In a Riesz domain an element p is interior (9Î) If to © in 
case @ contains p and a single element (distinct from p) of 
every class X of dt which has p for a limiting element. 

A family [©] of classes © is an extended enclosure of a class O 
if for every element q of Q there exists an ®q of © such that 
q is interior (O) to @. 

* Cf. Fréchet, loc. cit., p. 7. 
t "Stetigkeitsbegriff und abstrakte Mengenlehre," Atti del IV Con» 

gresso Internazionale dei Matematiche, Roma, 1908, vol. 2, pp. 18-24. 
t Loc. cit., p. 241. 
§ It is desired to call attention to the fact that it is self-compactness 

rather than extremality which is essential in many theorems of the calcul 
fonctionnel of Fréchet, and that by the use of this concept most of the 
theorems of Fréchet which involve the hypothesis of extremality may be 
extended to domains for which the limit relation is not subject to the 
uniqueness condition. This has been done to a large extent for classes 
which admit a development A in a paper presented to the American 
Mathematical Society in 1913 by Professor Pitcher and Dr. Chittenden, 
which is not yet published. 

|| The three properties just given are equivalent to the ones stated by 
F. Riesz in his Rome paper already cited. That % contains an infinity 
of elements if it has a limiting element is a consequence of (1) and (3). 
This is established by successive removals of a single element from %. 
There always must remain two at least. 

B Read: interior to <& relative to 9$. This relativity feature was intro­
duced by T. H. Hildebrandt, loc. cit., p. 268 (10). 
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A class O has the Heine-Borel property if every family [©] 
which is an extended enclosure of O contains a finite sub­
family with the same property. 

THEOREM I. If a class O in a Riesz domain has the Heine-
Borel property, O is self-compact 

We have to show that every infinite subclass of G has a 
limiting element in O . Suppose there exists an infinite sub­
class 9? of O with no limiting element in O . From condition 
(2) it follows that 9Î contains a sequence {qn} of distinct ele­
ments with no limiting element in O . We define [®w], an 
extended enclosure of O , as follows: ©n contains all elements 
of O except the elements #n+i, qn+2, • • •. Every element of 
O is contained in some @n. Let q be any element of Q and 
X any subclass of O which has q for a limiting element. 
Let Xi denote the elements of X which are in the sequence 
{qn}, X2 the remaining elements of X. By (2) q is not a 
limiting element of Xi, and by (3) therefore, q is a limiting 
element of SE2. But X2 is contained in every ©n. Hence [@n] 
is an extended enclosure of Q, such that no finite subfamily 
of [@n] contains all the elements of O . This is contrary to 
hypothesis, and the proposition is proved.* 

2. Limiting Element Defined in Terms of Limit. Systems 
OP ; L). 

Following T. H. Hildebrandt,f we denote by L (limit) 
any relation between a sequence of elements and a single 
element. If a relation L holds between a sequence {pn} 
and an element p, we say p is a limit of {pn} and write 

p = Lnpn. 

A class ^ and a relation L defined for that class form a system 
CP;£). 

The following properties are fundamental in the theory of 
the relation L: 

(1) If a sequence has a limit, the limit is unique. 
(2) If a sequence has a limit, its every subsequence, taken 

in the same order, has the same limit. 
(3) The identical sequence {pn}> pn = p(n), has p for a 

limit. A relation L having a property i (i = 1, 2, 3, 12, 13, 
23, 123) will be denoted by L\ An Lm is a Fréchet limita 

* If D» is finite it is compact in a vacuous sense. Every finite class has 
the Heine-Borel property. 

t Loc. cit., p. 241. i Loc. cit., pp. 6-7. 
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In a system ($ ; L), p is a limiting element of class X if X 
contains a sequence {pn} of distinct elements having p for 
a limit. 

The following theorem follows readily from this definition 
of limiting element. 

THEOREM II. In a system ($ ; L2), ty is a Riesz domain. 
As an immediate consequence of theorems I and II we have: 
THEOREM III. In a system (ty; L2), every class O which 

has the Heine-Borel property is self-compact. 
We may extend the result of Theorem III with the aid of 

the following lemma. 
LEMMA. In a system 0J3; i12), every self-compact class O is 

extremal. 
O is compact by hypothesis. We have to show that O is 

closed. That is, if p is a limiting element of X, a subclass of O , 
then p belongs to Ô. If p is a limiting element of X then a 
sequence {qn} of distinct elements of X exists which has p for 
a limit. As an infinite class \qn) has a limiting element q in 
O because Q is self-compact. {qn\ therefore contains a sub­
sequence {g„J of distinct elements with limit q. {gnJ con­
tains a subsequence {qnjc } whose order is the same as that of 
both {qn\ and {gnJ. Therefore by L2, q = Lmqnk and 
p — Lmqn]c . By L1, q and p are the same and therefore p 
belongs to O ; which was to be shown. We have from 
Theorem III and the lemma 

THEOREM IV. In a system ($ ; L12), every class O which 
has the Heine-Borel property is extremal. 

It will be noticed that the character of the result in Theorem 
IV is determined by the definition of interior given in §1 for 
Riesz domains. We will show that in a system (^ ; L2) this 
definition is (except for relativity) equivalent to the definition 
used (implicitly) by Fréchet in the theorem cited at the 
beginning of this paper. It will follow that Theorem IV 
includes as a special case the result of Fréchet. 

The definition of interior used by Fréchet (except for 
relativity) is equivalent to the following: q is interior (3Î) to 
© if © contains q and every sequence {rn} of distinct elements 
of dt which has q for a limit is ultimately* contained in ©. 

* In the sense: there exists n0 such that n g: n0 implies rn is contained 
ïnS. 
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If now p is Fréchet interior to @ and is a limiting element of X 
a subclass of 9Î, then, by definition of Fréchet interior, limiting 
element, and i2 , @ contains an infinity of elements of £ . 
Therefore p is interior to @ in the sense of § 1. Furthermore 
if p is interior (9Î) to © in the sense of § 1, then @ contains 
an element q (distinct from $) of every subclass X of 9Î for 
which p is a limiting element. Then if p = Lnrn (distinct) 
p is a limiting element of the class [rn]. Hence @ contains 
rni distinct from p. Since p is a limiting element of the 
class obtained froïh [rn] by removing rWl (i2) it is evident that 
at most a finite number of elements of [rn] are not in ©. 
Therefore [rn] is ultimately contained in ©. 

T. H. Hildebrandt* has given a definition of interior (9Î) 
which becomes equivalent to the Fréchet interior (9Î) for 
systems ($ ; i123). This definition omits the condition that 
the sequence {rn} consist of distinct elements. If then 
p = Lnrn and rno is repeated infinitely often, in a system 
(çp . jri23^ Tn^ -. p# That rno is contained in any class © to 
which p is Fréchet interior (3Î) is evident. A restatement of 
Theorem IV for systems (ty ; Lm) gives us a generalization of 
a theorem of Hildebrandt.f 

URBANA, I I I . , 
October 28, 1914. 

COMPLETE EXISTENTIAL THEORY OF SHEFFER'S 
POSTULATES FOR BOOLEAN ALGEBRAS. 

BY PROFESSOR L. L. DINES. 

(Read before the American Mathematical Society, December 30, 1913.) 

IN a recent number of the Transactions ShefferJ presented 
an elegant and concise set of five postulates for Boolean 
algebras, and proved them mutually consistent and inde­
pendent. Professor E. H. Moore§ has suggested a further 
interesting problem in connection with such sets of postulates, 
namely the determination of all general implicational relations 

* Loc. cit., p. 268 (10). 
t Loc. cit., p. 282 (2). 
t H . M. Sheffer, "A set of five postulates for Boolean algebras with 

application to logical constants," Transactions, vol. 14 (1913), pp. 481-488. 
§E. H. Moore, "Introduction to a form of general analysis," New 

Haven Mathematical Colloquium, Yale University Press, page 82. 


