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ON T H E CLASSIFICATION O F CRYSTALS. 

BY PROFESSOE PAUL SAUREL. 

(Read before the American Mathematical Society, December 29, 1910.) 

T H E determination of the various types of crystal symmetry 
is a problem which has attracted the attention of many physi­
cists and mathematicians. The first solutions of the problem 
are those of Hessel,* of Bravais, f and of Gadolin, { while the 
latest and most elegant is that of Lorentz. § In what follows 
I should like to show that by combining theorems due to Curie 
and to Lorentz it is very easy to enumerate and to remember 
the different types of symmetry. 

A few preliminaries are necessary. In the first place, if the 
line joining two points P and P ' is bisected by a point 0, we 
shall say that P' is the inverse of P with respect to 0. In the 
next place we shall use the phrase inversion with respect to a 
point to denote the operation which consists in replacing every 
point of a figure by its inverse with respect to the given point. 

Let us consider any system of points. If the system is such 
that rotation through a suitable angle about a line O A trans­
forms the system of points into itself, we shall say that O A is 
an axis of direct symmetry. I t is obvious that if rotation 
through an angle a transforms the system into itself, rotation 
through any multiple of a will also transform the system into itself. 
I t follows that the number of different rotations which transform 
the system into itself will be infinite unless a is commensurable 
with 27T. Accordingly, if we limit ourselves to systems which 
admit of a finite number only of transformations, a must be 
equal to 27rm/g, where m and q are integers prime to each other. 

* J . F . C. Hessel, Krystallometrie oder Krystallonomie und Krystallog-
raphie; Gehler's Physikalisches Wörterbuch, vol. 5, 1830, p. 1062; Ostwald's 
Klassiker der exakten Wissenschaften, no. 88. 

f A. Bravais, "Mémoire sur les polyèdres de forme symétrique," Journal 
de mathématiques pures et appliquées, vol. 14 (1849), p. 141; Ostwald's Klassiker 
der exakten Wissenschaften, no. 17. 

% A. Gadolin, " Mémoire sur la déduction d'un seul principe de tous les 
systèmes crystallographiques," Acta Societatis Scientiarum Fennicae, Helsing-
fors, vol. 9 (1871), p. 1; Ostwald's Klassiker der exakten Wissenschaften, 
no. 75. 

\ H. A. Lorentz, "Über die Symmetrie der Kris ta l le" , Abhandlungen 
über theoretische Physik, vol. 1 (1907), p. 299. 
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Morever, it can be shown without difficulty that the different 
rotations about O A correspond to the first q -— 1 multiples of the 
angle 2ir/q. The axis OA is said to be of order q, and the 
rotations about it may be performed in either direction. I t is 
clear that if O A is an axis of direct symmetry of order q, the 
same is true of O A', the inverse of O A with respect to 0. 

The system of points may be such that it is possible to draw 
through a point O two sets of rectangular coordinate axes, one 
right-handed and the other left-handed, in such a way that to 
every point of the system whose coordinates with respect to one 
set of axes are the numbers x, y, z, there corresponds a point 
of the system whose coordinates with respect to the other set of 
axes are the same numbers x, y, z. When this is the case, it 
is easy to see that it is possible to transform the system into 
itself by means of a rotation followed by an inversion. Indeed, 
it is clear that a rotation can be found which will bring one set 
of coordinate axes into coincidence with the inverses of the 
other set ; this rotation, followed by an inversion with respect 
to 0, will obviously transform every point of the system into a 
point of the system. If the rotation is unnecessary, so that a 
mere inversion with respect to 0 transforms the system into 
itself, we shall say that 0 is a center of symmetry. In the 
general case, where a rotation is necessary, we shall call the 
axis of rotation an axis of inverse symmetry. 

If, as before, we limit ourselves to systems which admit of a 
finite number only of transformations, it follows that the angle 
of rotation associated with an axis of inverse symmetry must be 
equal to 'lirmjq, where m and q are integers prime to each 
other. If q is odd, it can be shown that the axis of inverse 
symmetry is equivalent to an axis of direct symmetry of order 
q and a center of symmetry ; if, on the contrary, q is even, the 
various operations connected with the axis of inverse symmetry 
are equivalent to the repetition of a rotation through an angle 
27r/q accompanied by an inversion. 

To establish this, we observe that the rotation about the axis 
of inverse symmetry may precede or follow the inversion ; the 
result in each case is the same. Moreover, two successive inver­
sions always transform a system into itself. Accordingly, q 
rotations through an angle 2irmjqy accompanied by q inver­
sions, are equivalent to rotation through an angle lirm followed 
by q inversions ; if q is odd, the operation is thus equivalent 
to a single inversion and the system possesses a center of sym-
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metry. From this it follows immediately that a mere rotation 
through the angle 27rm/q transforms the system into itself. 
Accordingly, an axis of inverse symmetry of odd order is 
equivalent to an axis of direct symmetry of the same order and 
a center of symmetry. 

Again, the repetition k times of the operation of rotation 
through an angle 2irmjq and inversion is equivalent to a single 
rotation of angle 2firmk/q — 2irl^ where I is an integer, followed 
by k inversions. Since 

— — - 2irl = -- (mk - ql), 

and since we can always choose k and I so that 

mk — ql = db 1, 

it follows that one of the operations connected with the axis of 
inverse symmetry consists in a rotation of angle 2irjq followed 
by k inversions. From the last equation it follows that k must 
be prime to q ; accordingly, when q is even, k must be odd. 
Thus, when q is even, all the operations connected with the 
axis of inverse symmetry are repetitions of a rotation through 
an angle 2irjq accompanied by an inversion. There are q — 1 
different operations and no one of them is an inversion. 

I t is now easy to see that the crystallographic problem of the 
determination of the various possible types of crystal symmetry 
is equivalent to the problem of determining the various sets of 
axes of direct and of inverse symmetry passing through a com­
mon point, which a system can possess ; the point of intersection 
of the axes may or may not be a center of symmetry. 

For this purpose it is sufficient to recall that crystals possess 
two kinds of axes of symmetry. An axis of symmetry of the 
first kind is characterized by the fact that the physical proper­
ties of the crystal with respect to any fixed directions in space 
remain unchanged when the crystal is turned through a suitable 
angle about the axis. Accordingly, if we consider a portion of 
the crystal bounded by a spherical surface and if we draw the 
axis of symmetry through the center of this sphere, we may say 
that a rotation about the axis transforms the crystal into itself. 

An axis of symmetry of the second kind is characterized by 
the fact that if the crystal is turned through a suitable angle 
about such an axis, its physical properties in its new position 
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and with respect to any fixed directions in space are identical 
with the properties of the crystal in its first position and with 
respect to the fixed directions which are the inverse of those 
just mentioned. Accordingly, if, as before, we consider a por­
tion of the crystal bounded by a spherical surface, and if, 
through the center, we draw an axis of symmetry of the second 
kind, we may say that a rotation about this axis, followed by 
an inversion with respect to the center of the sphere, transforms 
the crystal into itself. 

We shall now proceed to the enumeration of the different 
sets of axes of direct and of inverse symmetry, passing through 
a common point, that a system can possess. From what pre­
cedes, it is obvious that this problem is identical with the 
problem of finding all the finite groups of operations that can 
be generated by rotations about a point and inversion with re­
spect to it. 

Let us begin by finding the groups that consist of rotations 
only; it will then be easy to find the groups that contain inver­
sions also. In the first place, it is clear that, if O A be an axis 
of direct symmetry of order q, the different positions which O A 
takes when the system is subjected to all the rotations of the 
group are also axes of direct symmetry of order q. Every axis 
thus belongs to a definite set of equivalent axes and the various 
axes of the system can be grouped into one or more sets of 
equivalent axes. In enumerating the axes of direct symmetry 
we must distinguish between O A and its inverse O A' ; O A and 
O A' will belong to the same or to different sets of equivalent 
axes according as it is or is not possible to bring O A into coin­
cidence with OA'. 

We can now establish the following two theorems which are 
due to Curie* and which suffice to determine the possible 
groups of rotations. 

THEOREM I . If n be the number of different rotations, includ­
ing the identical rotation, which transform a system of points into 
itself, and if p be the number of different positions which an a,xis 
of order q assumes when the system is subjected to these n rotations, 
then 
(1) pq = n. 

* P . Curie, " S u r les questions d 'ordre," Bulletin de la Sociétéminêralogique 
de France, vol. 8 (1884), p. 89 ; Oeuvres, p. 70. "Sur les répétitions et la 
symétrie, ' ' Comptes rendus de l'Académie des Scùnces, vol. 100 (1885), p. 393 ; 
Oeuvres, p. 114. 
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THEOREM I I . If a system possesses a set of p equivalent axes 
of order q, a set of p equivalent axes of order q, a set of p" 
equivalent axes of order q\ • • •, and if h be the number of these 
sets, then 

(2) p(q - 1) + p\q' - 1) + p"{q" - 1) + . . • - 2(» - 1), 
or 
(3) p +p +p" + • • • = (* - 2)w + 2, 
or finally 

1 1 1 T c 2 (4) - + -, + - + • • • = * - 2 + --x J q q q n 

To establish equation (1) it is sufficient to observe that for each 
of the p positions which the axis of rotation under considera­
tion can assume, the system can assume any one of q positions 
obtained by rotation about this axis ; the system can thus be 
transformed into itself by any one of pq different operations. 
Moreover, it is obvious that the pq different positions thus ob­
tained are the only ones which the system can take ; thus pq is 
equal to n. 

To establish equation (2) we observe that the system can be 
transformed into itself by any one of q — 1 rotations about each 
of the p axes of the first set, by any one of q — 1 rotations 
about each of the p axes of the second set, by any one of q"—l 
rotations about each of the p' axes of the third set, • • •, and 
that in this enumeration every rotation, except the identical 
rotation, has been counted twice ; O A and its inverse O A may 
belong to the same or to different sets of axes, in either case the 
rotations about A A' have been counted twice. Equation (3) 
follows without difficulty from equations (1) and (2,) and in like 
manner equation (4) follows from equations (1) and (3). 

The solutions of equations (1) and (4) will give us all the sets 
of axes of direct symmetry that can coexist. There is no dif­
ficulty in finding these solutions ; it is found that when k = 1 
or h > 3 there are no solutions, and the results for h = 2 and 
h = 3 are given in the following table : 
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k 

2 

3 

P 

1 

m 

6 

12 

30 

P' 

1 

m 

4 

8 

20 

ff 

p 

2 

4 

6 

12 

? 

n 

2 

2 

2 

2 

f 

1 

n 

2 

3 

3 

3 

4' 

m 

3 

4 

5 

n 

n 

2m 

12 

24 

60 

We shall now show that corresponding to each solution in 
the above table there exists one and but one arrangement of the 
axes of symmetry in space. When k = 2, there are two sets 
of equivalent axes each consisting of a single axis of order n ; 
it is obvious that these two axes must be inverses of each other. 
The geometric configuration corresponding to this solution thus 
exists and it is unique. The corresponding groups of rotations 
are called the cyclic groups. 

When h = 3, let us draw a unit sphere about O as a center 
and let us mark on the sphere the points where the three sets 
of axes of symmetry pierce it. I t is well known that if we 
construct any spherical triangle ABC, a rotation about O A 
through an angle 2 A, followed by a rotation about OB through 
an angle 2B, is equivalent to a rotation about 00 through an 
angle 2 G Accordingly, if O A and OB are axes of symmetry 
of orders q and q and if the angles A and B are respectively 
equal to irjq and irjq, the line O C will also be an axis of 
symmetry of the system and the half-angle of rotation associated 
with it will be equal to C or to some aliquot part of G We 
shall establish the following theorem: 

THEOREM I I I . If O A and OB are axes of symmetry of orders 
q and q belonging to different sets of equivalent axes and if the 
angle between OA and OB is not greater than the angle between 
any two axes of symmetry belonging to different sets, then, if we 
construct the spherical triangle ABC with angles A and B respec­
tively equal to irjq and 7r/q, the line O G will be an axis of sym­
metry of order q' belonging to the third set of equivalent axes and 
the angle G will be equal to 7r/q". 

In the first place, the half-angle of rotation associated with 
the axis O G is equal to the angle Cand not to an aliquot part 
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of (7. For if an aliquot part of G were the half-angle of rota­
tion associated with the axis OC, we could draw through Can 
arc making this angle with A G and thus form a triangle A CD ; 
the line OD, lying between OA and OB, would thus, contrary 
to hypothesis, be an axis of symmetry. 

In the next place, it is obvious that if the angle C differs from 
the angles A and B, the axis of symmetry OC belongs to the 
third set of equivalent axes. I t remains to prove that this is 
the case even when the angle G is equal to one of the angles A 
or B. Accordingly, let us suppose that in the triangle ABC 
the angles B and G are equal and that OB and OC belong to 
the same set of equivalent axes. I t is easy to see that no axis 
belonging to the third set of axes can pierce the sphere within 
the triangle ABC or on either of the sides AB and AC, for 
any such axis would make with O A a smaller angle than does 
OB. This becomes evident if we remember that no one of the 
angles of the triangle is greater than \TT and that consequently 
the perpendiculars from the vertices to the opposite sides do not 
fall without the triangle. Further, no axis of the third set can 
meet the side BG The reason just given applies here also 
except when AB and AG are quadrants ; but in that case the 
arc BG cannot be greater than a quadrant since the angle A is 
not greater than \ir, and consequently any axis meeting the 
side B G would form with OB an angle less than the angle be­
tween OB and O A. Thus, no axis belonging to the third set 
can pierce the sphere within the triangle ABC or on its 
perimeter. 

Let us now construct a triangle BCA1 equal to BCA and 
having the side BG in common. The vertex Ax corresponds 
to an axis belonging to the same set as O A, for O A, is the 
position which O A takes when it is revolved about OB through 
an angle 2J3. In like manner, we can construct triangles ACBX 

and ABGX equal to ABC; the vertices JS1 and C1 will corre­
spond to axes belonging to the same set as OB and 0(7. By 
repeating this construction we obtain a network of triangles the 
vertices of which correspond to axes belonging to the same sets 
as OA, OB, OG This network must cover the sphere com­
pletely and there can be no overlapping. Indeed, it is obvious 
that the construction can be continued as long as any portion of 
the surface is uncovered. On the other hand there can be no 
overlapping, for, if there were, there would lie within a triangle 
such as ABC a point D corresponding to an axis belonging to 
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one of the first two sets. I f we remember that the angles A} 

B, C are not greater than \ir and that consequently the per­
pendiculars from the vertices to the opposite sides do not fall 
without the triangle, it is clear that DA and DB are each less 
than AB. We should then have, contrary to the hypothesis, 
an axis nearer to O A or to OB than these two are to each 
other. 

The sphere has thus been covered by a network of triangles 
equal to ABC, the vertices of which correspond to axes of the 
first and second sets. Moreover, it has been shown that no 
axis of the third set can pierce the triangle ABC In like 
manner it can be shown that no axis of the third set can pierce 
a triangle belonging to the network of equal triangles. There 
is thus no place for the axes belonging to the third set. We 
must therefore abandon the hypothesis that OC is an axis 
belonging to the second set and our Theorem I I I is established. 

Let us now consider a triangle ABC of the kind described in 
Theorem I I I . By means of the construction described above 
we can obtain a set of triangles equal to or symmetrical with 
ABC and the vertices of these triangles will correspond to axes 
belonging to the three sets of axes. Moreover, it can be shown 
as above that this network of triangles will cover the sphere 
completely and that there will be no overlapping. We are 
thus led to the problem of determining the values of q, q, q 
such that we can cover the sphere with a set of triangles whose 
angles are TT/^, ir/q', irjq'. Since the area of one of these 
triangles is 

7T 7T 7T 
~ + -} + -7> — W, 

q q q 

we must have, if N denote the number of triangles, 
N[ - + -, + -77 — 7T ) = 4?T, 

\q q q J 

1 1 1_ 4̂  

As this equation differs from equation 4 for k = 3 only in the 
substitution of N for 2u, its solutions can be at once written 
down. They are given by the following table 

or 

(5) 
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9 

2 

2 

2 

2 

f 

9 

2 

3 

3 

3 

1 

m 

3 

4 

5 

JV' 
Am 

24 

48 

120 

I t is obvious that if there exists a network of triangles cor­
responding to any one of these solutions it is unique ; for the 
triangle ABC is determined when its angles are given and the 
other triangles are determined without ambiguity when ABC is 
given. Now it is well known that there exists a set of triangles 
corresponding to each of the above solutions. The 4m triangles 
corresponding to the first solution are obtained by dividing the 
circumference of a great circle into 2m equal parts and connect­
ing the points of division with the poles of the circle. The 
radii to the poles of the great circle form a set of 2 equivalent 
axes of order m, while the 2m radii to the points of division of 
the great circle fall into two sets of m equivalent axes of order 
2. The groups of rotations corresponding to this case are 
called the dihedral groups. 

The configuration corresponding to the second solution in the 
table is found by inscribing in the sphere a pair of polar tetra­
hedrons. Each vertex of the first tetrahedron lies within a 
triangle formed by vertices of the other ; by connecting each 
vertex of the first tetrahedron with the vertices and the mid­
points of the sides of the surrounding triangle we find 24 tri­
angles whose angles are TT/2, TT/3, ir/3. The vertices of the 
two tetrahedrons correspond to the two sets of 4 equivalent 
axes of order 3, while the remaining vertices of the triangles 
correspond to the 6 axes of order 2. The corresponding group 
of rotations is called the tetrahedral group. 

The configuration corresponding to the third solution in the 
table is found by inscribing in the sphere a cube and its polar 
octahedron. Each vertex of the octahedron lies within a quad­
rilateral formed by vertices of the cube ; by connecting each 
vertex of the octahedron with the vertices and the mid-points 
of the sides of the surrounding quadrilateral we find 48 triangles 
whose angles are 7r/2 ; TT/3, TT/4. The vertices of the octahe-
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dron correspond to a set of 6 equivalent axes of order 4, the 
vertices of the cube correspond to a set of 8 equivalent axes of 
order 3, while the remaining vertices of the triangles corre­
spond to the 12 axes of order 2. The corresponding group of 
rotations is called the octahedral group. 

Finally, the configuration corresponding to the last solution 
in the table is found by inscribing in the sphere a regular 
dodecahedron and its polar icosahedron. Each vertex of the 
icosahedron lies within a pentagon formed, by vertices of the 
dodecahedron ; by connecting each vertex of the icosahedron 
with the vertices and the mid-points of the surrounding 
pentagon we find 120 triangles whose angles are TT/2, 7r/3, TT/5. 
The vertices of the icosahedron correspond to a set of 12 equiva­
lent axes of order 5, the vertices of the dodecahedron corre­
spond to a set of 20 equivalent axes of order 3, while the re­
maining vertices of the triangles correspond to the 30 axes of 
order 2. The corresponding group of rotations is called the 
icosahedral group. 

Thus the only groups of rotations are the identical rotation 
and the cyclic, the dihedral, the tetrahedral, the octahedral, and 
the icosahedral groups. 

As Lorentz * has shown, we can now obtain without difficulty 
the groups of operations that contain inversions as well as rota­
tions. In the first place, we may associate an inversion with 
each of the groups of rotations ; the system will then possess in 
addition to the axes of symmetry a center of symmetry. 

In the next place, since an axis of inverse symmetry of odd 
order is equivalent to an axis of direct symmetry of the same 
order and a center of symmetry, we may now limit ourselves 
to the consideration of axes of inverse symmetry of even order. 
Furthermore, since the inversions and rotations about the axes 
of inverse symmetry must, like the rotations about the axes of 
direct symmetry, transform the group of axes of symmetry into 
itself, it follows that the only admissible configurations for the 
axes of symmetry are the configurations which we found in 
studying the groups of rotations. The groups of operations 
containing operations corresponding to axes of inverse sym­
metry will therefore be found by replacing one or more sets of 
axes of direct symmetry by axes of inverse symmetry of the 
same orders. Finally, if we consider a triangle of the kind 

* L. o. 
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described in Theorem I I I , it is easy to see that if one of the 
three axes O A, OB, OC be replaced by an axis of inverse 
symmetry, one other must also be replaced by such an axis 
while the third will remain an axis of direct symmetry. 

With these remarks in mind it is easy to enumerate the 
groups of operations which contain operations corresponding to 
axes of inverse symmetry. In the first place, wTe obtain from 
every cyclic group of even order a new group by replacing the 
axis of direct symmetry by an axis of inverse symmetry of the 
same order. In the next place, we obtain from every dihedral 
group a new group by replacing the two sets of axes of order 2 
by axes of inverse symmetry of order 2. Moreover, we obtain 
a new group from every dihedral group of order 2m, when m 
is an even number equal to or greater than 4, by replacing the 
pair of axes of order m and one set of axes of order 2 by an 
axis of inverse symmetry of order m and axes of inverse sym­
metry of order 2. Finally, we obtain a new group from the 
octahedral group by replacing the axes of orders 2 and 4 by 
axes of inverse symmetry of the same orders. The tetrahedral 
and icosahedral groups furnish no new groups. 

Our results are summarized in the following table, in which 
the letters C, I), T, 0, / are used to recall the cyclic, the dihe­
dral, the tetrahedral, the octahedral, and the icosahedral groups 
and the subscripts are used to indicate the orders of the corre­
sponding axes of symmetry. A bar over a subscript indicates 
that the corresponding axes of direct symmetry have been 
replaced by axes of inverse symmetry. 

T Y P E S OF SYMMETRY CHARACTERIZED BY THE EXISTENCE OF 

Axes of Direct 
Symmetry. 

No axis 

cn 

Dz, 2, m 

T2, 3, 3 

0-2, 3, 4 

1 ^2, 3, 5 

Center of Symmetry 
and Axes of Direct 

Symmetry. 

No axis 

Cn 

Ih, 2, m 

7T2, 3, 3 

O2, 3, 4 

I2, 3, 5 

Axes of Direct and of 
Inverse Symmetry 

C2^i 

2^2~ m 
T) — .rv 

- ^ 2 , 2, 2(K + 2) K ^ O 

°2-8,4 
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Not all of the types of symmetry enumerated in this table 
are available as types of crystal symmetry, for the law of 
rational indices limits the acceptable axes of symmetry to those 
of the orders 2, 3, 4, 6. With this limitation the table furnishes 
the 32 types of crystal symmetry, 11 from each of the first 
two columns and 10 from the third. 

N E W YORK, 
December 4, 1910. 

HORNER'S M E T H O D O F A P P R O X I M A T I O N 
A N T I C I P A T E D BY R U F F I N I . 

BY PROFESSOR FLORIAN CAJORI. 

(Read before the Southwestern Section of the American Mathematical 
Society, November 26, 1910. ) 

BEFORE the nineteenth century no simple elementary prac­
tical process was known of computing the coefficients of an 
equation whose roots are less by a given constant than the roots 
of a given affected numerical equation f(x) = 0. Such a proc­
ess was invented in the early part of the last century and is 
contained in the so-called " Horner's method of approxima­
tion." 

The history of Horner's method, as developed in England, 
has been traced in detail by Augustus De Morgan.* He 
quotes extensively from original sources and shows that, of 
English rivals (among whom were Theophilus Holdred, Peter 
Nicholson, and Henry Atkinson), none except perhaps Nichol­
son advanced methods of approximation that equalled Horner's, 
and none was entitled to priority over Horner. I t is well-
known that the popularization of Horner's process of approxi­
mation in England was due to De Morgan and J. R. Young. 
Except for the efforts of these men, Horner's paper of 1819 
in the Philosophical Transactions might have been lost sight of 
and forgotten. De Morgan was an enthusiast on Horner's 
method. He taught it with great zeal ; he made sport of Cam­
bridge tutors who were not familiar with it ; f the preparation 
of his historical tract, alluded to above, was evidently a labor 

* Companion to the [British] Almanac for 1889, Art. " Notices of the 
progress of the problem of evolution," pp. 34-52. 

f A. De Morgan, A Budget of Paradoxes, London, 1872, pp. 292, 375. 


