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The auxiliary function 0 is the temperature and the obvious 
physical mode of solution is Liouville's method of successive 
substitutions.* 

A case of special interest physically is that in which h is 
defined by 

Jc/c = 1 , 

Is there any method of numerical computation better than 
approximate integration ? 

HAVERFOED COLLEGE, 
March, 1910. 

GRASSMANN'S PROJECTIVE GEOMETRY, 

Projehtive Geometrie der Ebene unter Benutzung der Punkt-
rechnung dargestellt Von HERMANN GRASSMANN. Erster 
Band : Bindres. B. G. Teubner, 1909. 8vo. xii + 360 pp. 
MODERN projective geometry is two-sided. Either use is 

made of algebraic analysis in its development or it is developed 
from the fundamental concepts of point, line, plane by means 
of certain axioms and postulates. In the one case it is analytic, 
in the other synthetic. Usually the two methods of presenta­
tion are more or less combined, with the emphasis laid upon the 
one or the other. If the analytic method is adopted, operations 
are usually carried out in cartesian space with the aid of a 
system of coordinates. The synthetic method makes no use o 
coordinate systems. 

Professor Grassmann's work is analytic in character in that 
use is made of algebraic analysis. It is unique in discarding 
the usual coordinate systems and adopting ideas due to Möbius 
and to the elder Grassmann. These ideas found expression in 
the Baryzentrische Calcul and in the Ausdehnungslehre. 

In the last quarter century a number of writers have made 
use of these ideas; notably, Stephanos, H. Wiener, Segre, 
Peano, Aschieri, Study, Burali-Forti. It is the author's pur­
pose to bring the results of these writers and of others together 
into a connected course covering the fields of binary and ternary 
linear transformations. This is certainly a most worthy pur­
pose and mathematicians will be grateful to the author for the 
evident care and devotion with which he has set about the per­
formance of his task, 

* Maxime Bôcher, An introduction to the study of integral equations. 
Cambridge, Eng., 1909. 
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The present volume is devoted to the binary field and is filled 
with detail much of which must be passed over without notice. 
I t is furnished with a good table of contents and a register of 
material and names, which aid substantially in following the 
main lines of thought. What follows may serve to illustrate 
these. There are three Hauptteile or chapters. In the first of 
these the reader is introduced to the Punktrechnung by means of 
which points and lines are added, subtracted, and multiplied 
and the laws governing these operations formulated. Thus a 
point is represented by two factors, a scalar m called its mass and 
a vector ƒ depending only upon its position. The sum of two 
points ml fx and m2/2 is a point ms whose mass m is m1 + m2 

and which has the position of the center of gravity of the two 

f iven points. Points of zero mass are ideal or at infinity, 
'oints of unit mass are said to be simple points, others are 

called multiple points. 
The process of multiplying one point a by another b is called 

exterior (âussere) multiplication and is indicated by the symbol 
[a&] . I t is non-commutative, [a&] = — [6a] . The product 
is conceived of as a force acting along the segment from a to 6 
and is called a Stab — a designation used by the author in 1894 
(Punktrechnung und Projektive Geometrie, Halle) and since 
quite generally adopted by German writers. I f a and b are 
finite points, the product [a&] vanishes only when a= b. 

The difference between two simple points is the segment 
(Strecke) connecting them. The point calculus will naturally 
be more familiar to the student of vector analysis than to one 
accustomed to think in terms of ordinary coordinate systems. 

In the second chapter one finds an application of the point 
calculus to elementary projective geometry. A group of four 
points on a line in the order a, c, 6, d, is called, after Von 
Staudt, a Punktwurf and its anharmonic ratio is defined as the 
double ratio 

[ac\ [ad] 

This, being the double ratio of four Stabe, on the same line, is 
a numeral quantity. The definition of protectively related 
ranges and pencils follows, together with the generation of curves 
of second class and of second order. The harmonic properties 
of the complete quadrilateral and the Pascal and Brianchon 
theorems are derived easily and thus we have the elementary 
part of projective geometry. 
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I f the point calculus were an end in itself, or if it found its 
chief application in developing this elementary geometry, it 
would be rather more curious than useful. But the advantage 
comes in studying linear transformations in the n-ary field and 
is perhaps increasingly manifest the greater the value of n. 
Hence the reader's interest will be aroused and will increase 
as he reads on in the third and last chapter. This chapter is 
devoted to projectivities on a line and in a plane pencil and 
contains rather more than two thirds the entire volume. 

For the analytic representation of the points of a point row, 
two non-coincident base points ex and e2 are chosen whose 
masses are determined so that a third point e, not coinciding 
with either of the others, but otherwise arbitrary as to mass 
and position, shall be the sum of the other two. This third 
point is the unit point. Any point x of the point row is then 
given by the formula 

X = X^€^ -J- 3?2^2? 

where xi and x2 are numerical quantities. A second point row 
on the same line whose base points and unit point are respectively 
av a2, and a is projectively related to the first when the base 
points and unit point of the one are made to correspond to the 
base points and unit point of the other, each to each. 

So far this is not unlike the usual introduction to the study 
of linear transformations in the binary field. The divergence 
comes in the next step. A factor p * (Abbildungsfaktor) is 
defined so that 

exp = av e2p = a2,ep = a; i. e., (ex + e2) p = ej> + e2p, 

and also 
xp = (xxex + x2e2)p = xxax + x2a2. 

The operation p so defined may be represented formally by 
what the author calls an extensive fraction 

p = ~^—K 

This brings into evidence the base points of the two point rows. 
The operation indicated by p is distributive over the sum of 
any number of points on the line and associative when applied 

* Many of the symbols in the text are expressed by German letters. 
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to the product of a point by a numerical quantity, Similar 
considerations hold for a projectivity established between two 
sheaves of lines belonging to the same plane pencil of rays. 

The commutative and associative laws hold for the sum of any 
number of symbols representing projectivities on the same line 
or in the same pencil. The product of two such symbols p, q 
is called the resultant product (Folgeprodukt) and is defined 
as a third projectivity on the same line obeying the associative 
law 

x(pq) = {xp)q. 

The resultant product is in general non-commutative. The 
method for calculating this resultant product is given, and we 
are led at once to the theorem that all projectivities on a line 
form a group. 

A projectivity p = av a2/ev e2 possesses an inverse 
p~l = ev e2/av a2, provided the exterior product [a,a2] 4s 0 ; 
i. e.} provided the base points of the second point row are not 
coincident. In the opposite case, p is degenerate and does not 
possess an inverse. If p possess an inverse, the equation 

xp = x 
is solvable for x. 

The combination product [yz-pq~\} where y and z are points 
on the line, is defined by the equation 

[y* • ? ? ] = * { [ » ? • « ? ] - [ « p - y ? ] } • 

A number multiplying any one of the letters y> z, p, q may be 
written before the entire expression, and the symbol itself is 
distributive over a sum replacing any one of its constituents. 
The expression 

l>] 
is independent of the particular points y, z used in forming it. 
Hence 

M M L J 

This new symbol [pq] is called the combination product of the 
projectivities p and q, and is always commutative in contra­
distinction to the resultant product. 
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The combination square or power of a projectivity 

r « n - leie2-PPl K M 

is a numerical quantity, since it is the ratio of the two Stâbe 
connecting the base points of each point row. 

A projectivity p is directly or oppositely projective ; i. e., 
the points of the two point rows are arranged in the same or 
in opposite senses according as [p2] is positive or negative. 
I f [p2] = 0, then [cbjCt^] = 0 and the projectivity is degenerate. 

A double point d of a projectivity p satisfies the equation 

dp = rd, 

where r is a numerical quantity, hence it is altered only as to 
mass by the projectivity. This equation easily transforms into 
a quadratic in r whose coefficients depend only upon the base 
points of the two point rows. The roots of this equation are 
termed the principal numbers of the projectivity and the equa­
tion itself its principal equation. 

I f a projectivity leaves every point of the line unaltered as 
to mass and position, it is identity. If it alters the mass 
only, it is a coincidence (Deckung). If the sum of the princi­
pal numbers is zero, the projectivity is an involution. The 
properties of the involution follow together with an application 
to the vector equations of the ellipse and the hyperbola. The 
equation of the ellipse, for example, comes out to be 

x = a(cos w + e sin w) =ae6w, 

where x is any point of the curve, a the semi-major axis, w the 
eccentric angle, e the Naperian base, and e the elliptic involu­
tion which changes one set of diameters into the conjugate set. 

The consideration of projectivities with conjugate imaginary 
principal numbers is introduced by a study of what are called 
positive and negative circular forms (Abbildungen), after a 
designation due to the elder Grassmann. A positive circular 
form in the plane pencil is a projectivity transforming a sheaf of 
lines into a congruent sheaf, i. e., a rotation. A positive cir­
cular form upon a line is a section of the congruent sheaves by 
a line not passing through their common center. Every pro­
jectivity with conjugate imaginary principal numbers is identical 
geometrically to a positive circular form and can differ from it 
analytically only by a numerical factor. 
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A negative circular form in thé plane pencil transforms a 
sheaf into a congruent sheaf, the rays of the two sheaves being 
arranged in opposite senses ; i. e., it is a reflection across one 
of the double rays of the projectivity. A section by a line not 
passing through the common center gives rise to a negative cir­
cular form upon that line. 

A circular form is expressible exponentially in terms of a 
certain involution. For example, the positive circular form on 
a line is 

C ' z>e w 
(a, ö, w) — e ) 

where a, 6 are the base points of the first point row, w is a real 
parameter, e the Naperian base, and e is the elliptic involution 

6, — a 
e== r - . 

a, 6 
For a negative form, the involution in the exponent is 

hyperbolic 
6, a 

h = —f. 
a, b 

The double points of these involutions coincide with the double 
points of the corresponding circular form. 

All positive circular forms with the same point pair a, b form 
a continuous one-parameter group. Negative circular forms do 
not form a group. The totality of all positive and negative 
circular forms with the same point pair a, b forms a discontinu­
ous group which contains the continuous group of positive cir­
cular forms as a subgroup. 

The circular forms are not the only projectivities expressible 
exponentially in terms of an involution. The consideration of 
linear systems of projectivities, in particular a sheaf 

lp + mq, 

where I and m are numerical quantities, leads to the fact that, 
unless all the projectivities of the sheaf are involutions, there is 
but one involution contained in the sheaf. If the projectivity 
q is fixed, say identity, the double points of the involution 
contained in the sheaf coincide with the double points of p, and 
p is expressible in terms of the identity and this involution 
double points. 

A direct (gleichlaufig) projectivity with real and distinct 
double points is then 
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where h is the double point involution and w a real parameter. 
On the other hand an opposite (gegenlâufig) projectivity ex­
pressed in terms of its double points involution is 

q = hehw. 

Group properties follow as in the case of the circular forms. 
Two projectivities for which the combination product [pq] 

vanishes are called harmonic. The name is due to Segre as 
well as many of their properties (Crelle, volume 100). 

The domain of all the projectivities on a line is defined by 
means of four unit fractions (Ausdehnungslehre) 

_ ev 0 _ e2,0 0,et 0, e2 
t/Ji — y ®12 "—~ t ®21 "~~" i 22 ~~" * 

ei) e2 e\) e2 ei) e2 ei> e2 

These are all degenerate projectivities, the second and third be­
ing parabolic involutions, and hence the power of each vanishes. 
Any projectivity 

au a2 p = 
el) e2 

can be expressed as a linear function of these four units. For 
if we put 

ai = a i i e i + a i 2 e2> a2 = a 2 1 6 l + a 2 2 ^ 

then 
P = a i i e n + ai2ei2 + <*21e21 + a22e22. 

The proof consists in applying p , thus expressed, to each of the 
base points ev e2 and showing that they transform into av a2 

respectively. 
The four units are linearly independent. For the assump­

tion of an equation of the form 

C l i e i l + C12ei2 + C2ie21 + C22e22 ^ ^ 

leads to the vanishing of all the c's since e1 and e2 are distinct 
points. 

The above representation of p is unique. For if p could be 
expressed by a set of a's and also by a set of 6's, the difference be 
tween the two expressions would vanish and thus the a'& equal 
the 6's, each to each. 

Of course any four linearly independent projectivities may 
be taken for a base. I t is convenient to choose four which are 
mutually harmonic ; these are, when expressed in terms of the 
unit fractions, 
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1 = e u + e22, hx = e n — e22, h2 = e12 -f e21, e = e12 — e21, 

where 1 is identity, \ and h2 are hyberbolic involutions, and 
e is an elliptic involution. I t is easily shown that they are 
mutually harmonic by means of the laws governing the multipli­
cation of unit fractions and the condition which two projectivi­
ties must satisfy in order to be harmonic. Any projectivity on 
the line is then 

p = a + ajix + a2h2 + a3e. 

This expression of p leads at once to the Stephanos (Mathe­
matische Annalen, volume 22) representation of the projectivi­
ties on a line by the points of ordinary space ; viz., the images 
of the four fundamental projectivities 1, hv hv e are taken to 
be the vertices of a fundamental tetrahedron whose unit point 
is arbitrary. The image of any projectivity p is then the point 
whose homogeneous coordinates referred to this tetrahedron are 
a, av a2, av 

The images of all degenerate projectivities fill the quadric 

a2 — a\ —• a\ + a\ = 0 

with respect to which the fundamental tetrahedron is self-con­
jugate. Two harmonic projectivities are imaged upon the 
points which are conjugate with respect to this quadric. The 
involutions on the line are imaged upon the points of the plane 
determined by the images of the three fundamental involutions 
hv h2, and e* 

A number of details of this representation are given together 
with a discussion of the representation of the involutions on the 
line by the points of a plane. 

The projectivities upon a line form a system of higher com­
plex quantities since they satisfy the four conditions laid down 
by Study (Göttinger Nachrichten, 1889). On comparing the 
multiplication table of the four fundamental projectivities with 
the multiplication table of the four units 1, i, j , h of the Hamil­
ton quaternion system, it follows that any projectivity may be 
expressed as a complex quaternion, viz., 

p = a + axV — H + a2V'— lj — ajc. 

A theorem called Study's theorem (Cf. Encyclopâdie, I . 1) 
brings these results together : 

The group of all the projectivities on a line forms a system of 
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higher complex quantities of quaternion type. It possesses another 
real form which is like the system of ordinary quaternions and 
these two real forms are the only ones in which systems of higher 
complex quantities of quaternion type can appear. 

The work is manifestly a labor of love. An interesting cir­
cumstance in connection is the fact that this first volume was 
brought out on the hundredth anniversary of the birthday of 
the author's father. 

L. W A Y L A N B DOWLING. 

L I N E A R D I F F E R E N T I A L EQUATIONS. 

Vbrlesungen uber lineare Differenlialgleichungen. Von L U D -
WIG SCHLESINGER. Leipzig and Berlin, Teubner, 1908. 

I T is over ten years ago that the author of the present 
" Vorlesungen " completed the publication of his well-known 
Handbuch der Theorie der linearen Differentialgleichungen. 
As every one familiar with the older book well knows, it was 
intended to be, as its name implied, a handbook containing a 
complete treatment of all that was at that time known about 
the subject. I t seemed natural therefore, to expect under the 
title of " Vorlesungen " a briefer version of the same subject, 
adapted to the needs of the younger student and rendered more 
palatable for him by a proper selection of topics and by a more 
elementary treatment. And in a certain sense the " Vorle­
sungen " may indeed be considered as an introduction into the 
theory of linear differential equations, in so far at least as all of 
the most important results of the theory built up by Fuchs and 
his successors are discussed. But the method of treatment is 
so novel and the artistic unity of the book is preserved to such 
an extraordinary extent that we must look upon it as an im­
portant addition to analysis rather than as a treatise of more or 
less pedagogical merit. 

I t is well known that Riemann's discussion of the hyper-
geometric function furnished Fuchs with the fundamental ideas 
which led to the modern theory of linear differential equations, 
which theory may be said to date from Fuchs's paper of 1865. 
But we now know that Riemann himself had intended to con­
struct a general theory of linear differential equations upon the 
same general principles which had led to such brilliant results in 


