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s must be commutative with at least one of the substitutions of 
H besides identity. If a transitive group of degree n is trans­
formed into itself by any substitution in the same letters and if 
the degree of this substitution is not n — 1, then it must be 
commutative with at least one of the substitutions of the tran­
sitive group besides identity. 

7. The object of Professor Allardice's note on the cyelide 
of Dupin was to show that, by means of a transformation 
originally due to Laguerre (see Darboux, Théorie des surfaces, 
volume 1, page 253), a circle may be transformed into this 
cycli de ; and that the principal properties of the surface may be 
obtained geometrically by means of the transformation. 

8. The relation between the radii and distance between 
centers giving the condition that two circles may have a 
simultaneously in- and circumscribed quadrilateral was obtained 
by various mathematicians (Fuss, Steiner, Jacobi, Cayley) in a 
form limited to a special case. The complete formulas are 
found by Dr. McDonald, incidentally giving the interpretation 
of certain results of the theory of elliptic functions. 

9. Professor Dickson's paper appears in full in the present 
number of the BULLETIN. W. A. MANNING, 

Secretary of the Section. 

ON QUADRATIC FORMS I N A GENERAL F I E L D . 

BY PROFESSOR L. E . DICKSON. 

(Read before the San Francisco Section of the American Mathematical So­
ciety, September 28, 1907.) 

1. W E investigate the equivalence, under linear transforma­
tion in a general field F, of two quadratic forms * 

qm£atf, Q=£aX\ {a, * 0, a. * 0). 

An obvious necessary condition is that ay shall be representable 
by g, viz., that there shall exist elements b. in F such that 

n 

* Within any field F, not having modulus 2, any quadratic form of non-
vanishing determinant is equivalent to one of type q. 
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We assume that this condition is satisfied. Applying a suit­
able permutation of the x0 we may set (§ 2) 

W > î > # * 0 ( i - l , . . - ,n ) . 

In view of § 3, the transformation 
n 

xi = hiVi + Wi-iVi ~ 6 i S ^M (i = 1, • • -, n) 

is of non-vanishing determinant and replaces q by 

q' = <Wi + T,<*jWJwJ_1y*J. 
.7=2 

By the theorem proved in § 4 by a consideration of the auto-
morphs of q, the forms Q and q (with like first coefficients) 
are equivalent in F if, and only if, 

n n 

(l) E^î-X^rçrç-i»? 
under a transformation in F on n — 1 variables. Hence the 
necessary and sufficient conditions for the equivalence of the two 
given n-ary quadratic forms q and Q are that ax be representable 
by q and that the (n — l)-ary forms (1) be equivalent in F. The 
ultimate criteria are that av a29 • • -, an be representable by 
forms in n, n — 1, • • -, 1 variables, respectively, whose coeffi­
cients are given functions of the at. For example, if n = 2, 
the conditions are that a1 be representable by q and that aYa2axa2 

be a square in F. If n = 3, the conditions are that a1 be rep­
resentable by <?, a2 by axa2 W2%

2 + a^ W2r)2, and that a^a^a^ 
be a square in .F. 

2. THEOREM.* In a non-modular f field Fthere exists a form 

* Transactions, vol. 7 (1906), pp. 276-8. The present proof is decidedly 
simpler and leads to the explicit expressions (17) for the Aj, as required for 
the present applications. 

t The proof applies to fields having a modulus p> where p + 2 and p gr n. 
I t may be extended to apply to any finite field. To q we apply the trans­
formation 

xi — rVi + s#2> *i = tyi — t-^rsa^ (t =h 0, s + 0), 

and obtain my\ + wic^s2»-^ -2^ + a^J H > where m = axr
2 + <V2 + 0. By 

choice of r and tf, we may give m any assigned value in a finite field. 
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*YLA/y\ equivalent to d given form q = ^ax^ and having as its 
first coefficient A1 any ^reassigned mark =)= 0 which is represent-
able by q. 

By hypothesis, there exist marks ba of F such that 

n 

(2) Z«^x = A + 0-

Not every sum of n —- 1 of the terms t of (2) vanishes. For 
if so, we consider the sum lacking t and the sum lacking tk and 
conclude that t. = th and hence that the n terms are all equal 
and that each is not zero ; but this requires that F shall have 
a modulus dividing n — 1. By applying a permutation on the 
cc's in q, we may set 2 ï = î a ^ n 4= 0* ^ o t e v e r v s u m of n •— 2 
terms of the latter vanishes, since F does not have a modulus 
dividing n — 2, etc. We may therefore set 

(3) W > i > # , * 0 (fc=l,...,«). 
4=1 

Under the transformation 

(4) as, = 2><#, (» = 1, • • -, »), 

g becomes T{Ajy) + 2B.kyjyk)> {j,h=\, • •., n ; h >j), where 

n n 

(5) A.**Y,ab*.., B.h = T\ab..b.,. 
t= l i—l 

To make J?1& = 0, we take 
n 

(6) blh = - a-lb-^ababih (h = 2, .. -, w). 

We insert these values in A = \b.j\, remove the factor a~lb~^ 
from the first row, then multiply the ith row by aibil and add 
to the first row, for i = 2, • •., n. We get 

(7) A - o r V ^ A i » \ i ^ \ K \ ( i , « - 2 , . . . , n ) . 

We introduce the abbreviations, in addition to (3), 

(8) Pu = « M A P ^ = «X«#i + ^ _ i ) , 

so that, in particular, 12M = as W9. We find that 

(9) BJiH-Fl = a,Wr.1Rr,l0 R„PÜ - PisPst = a.W^Pw 
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Eliminating the bl7c from afi\xBjk{2 = j<Jc) by (6), we get 

(10) B?l = T,bjRJ>*+ E rj>A 
i=2 \ t±i / 

Now R22 = a2W2=^ 0. To make the coefficient of b2j zero, we 
take 

( H ) àSh=-B^±Patbth ( f t - 3 , . . . , « ) . 

Set 6.2 = 0 (i > 2). Then B2^ evidently vanishes, while 

(12) AU = 622A22, A 2 2 ^ | 6 , , | ( i , « - 3 , . . . , n ) . 

Generalizing (6) and (11), we shall take 

n 

(13) bik = - P - £ P A (* = « + 1 , • • -, »), 

(14) 6 a = 0 ( * > * > 1 ) , 

and then prove by induction from s to s + 1 that, for 

1 <s^j <k^n, 

the product of Bjk by a non-vanishing factor equals 

n / t=s, . . . , w \ 

(15) J^Zft* (-BA+ S ^AJ-

By (10) this statement is true for s = 2. The coefficient of 6^ 
in (15) is zero by (13), so that we may set i > s. From the 
term given by £ = s, we eliminate 6^ by means of (13). Hence 

Applying (9), we get 

so that the induction is complete. Thus for given values of j 
and k, 1 <cj < k, we may increase s and make s > j " ; then (15) 
vanishes by (14). Hence every BJJc = 0 (&>,ƒ). Finally, if 
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we take each bu 4= 0, the determinant of (4) is not zero, in view 
of (14) and (7) OP (12). 

3. From (13), in combination with (14) and (92), we get 

(16) K=-<w-i,p,pkh («<*). 
Starting with the simple formulas (14) and (16), we may readily 
verify that, in (5), each B.h = 0, and 

(17) A^a.WjW-lb*.. ( j = 2 , . . , » ) . 

THEOREM. For given elements ba satisfying (2) and (3), and 
any elements b.. 4= 0 (J > 1), the transformation, of non-vanish­
ing determinant, 

n 

(18) xt = biXyx + buy. - ba £ ab^W-^ (» = 1, • • -, n) 

replaces ^a.x] by ^A.y1., the A. being given by (2), (17). 
If we employ the special values 6 . = Wj__1 and set ba = b.} 

we obtain the simpler results given in § 1. 
4. Within the field F, let the forms 

(19) e - i X n JE=£etf («, + 0,̂ +0) 
i=l i=l 

be equivalent under the transformation 

n 

(20) 8: X i = i : < r i A . ( i = l , . . . , « ) . 

In view of the formulas 

"** a2/t- %i £î ' ' fy U 3 3% 3 

the inverse of 8 is 

(2i) ^ : ̂ - « r ' E ' M ( i - i , •-,»). 

Eliminating the ^ from Q = F, we get 

(22) i ^ ^ 1 , t ^ A = ° 0***)-
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Next, let E(y) = mE(j;) under the transformation 

(23) C: l = T,m (i=l,...,n). 

Replacing a by m^. and ov by 7^ in (21) and (22), we get 

n 

(24) C-1 : yt = mej1 £ e.y.g. (i = 1, • • -, n), 
i=i 

(25) Z^^- 'w-V» S«rV«-° 0' + *)-
i—1 4=1 

Eliminating the ^ between (20) and (24), we obtain relations 
of the form 

(26) Xt^±^s (» = l , . . - , n ) , 
. 7 = 1 

which imply Q = mE(%). We desire that the first of these re­
lations shall reduce to Xx = fx. By (20), (23), the conditions 
are 

(27) 7„=<r„ C / - 1 , ••- ,»)• 

In view of (22 j and (25j), for j = 1, these require that me1=av 

Conversely, if Q = E under $, and if there exists in F a matrix 
(y.) with the first row identical with that of 8 and such that 
E{y) = e-laxE(Ç) under C, then will Q = e-laxE(%) under a 
transformation (26) with Xx = £v and therefore 

(28) E ^ - f X E ^ 

under a transformation in JP on n — 1 variables.* 
As noted in § 1, it suffices to treat the case | ^ = a]t We 

have therefore to deal with automorphs of E(y). In view of 

*For oH — 0 (i > 1), (222) with j==l gives crM = 0 (k > 1). 
f The general case presents an essential difficulty. By (24), 10_11 — mn | C|, 

so that mn = A—2, where A = | y# |. For w odd, m must therefore be a square 
in F, and hence cannot, in general, be made equal to ejf1^, where a^1 is an 
arbitrary element of the form ^er^ii ; see (22J for j = l. The case n — 2 
is quite simple ; we may take as (y#) the matrix 
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§ 5, we can determine a matrix (7^) satisfying the above con­
ditions. We therefore have the 

THEOREM. If Q and E are equivalent in F under 8 and if 
ex = av then Q is equivalent to E(g) under a transformation in F 
with Xx = |1? so that S ^ o ^ X ? an<^ £™=2

e;£; are equivalent in 
F under a transformation on n — 1 variables. 

Conversely, if the latter forms are equivalent in F, then evi­
dently Q and E, with ex = av are equivalent in F. 

5. THEOREM. For any set of solutions a. in F of 

n 

(29) E e r ^ - f 1 , 

the quadratic form E = ^esy\ has an automorph in F which 
replaces y1 by 2 > ^ . 

Let Y be any skew symmetric matrix, I the identity (unit) 
matrix, E_1 the inverse of the matrix of E. Let Z = E~x Y. 
Then, by Cayley's theorem, E has the automorph 

P^{I+Z)-\I-Z) (A = I I+Z\*0). 

I t will suffice to take as Y the skew matrix in which the ele­
ments outside of the first row and column are all zero, while 
the first row is 

0, c2, • • -, en. 
Hence 

1 ±c 2 6- x zfc^e-1 . . . ±cneçly 

I d b ^ l ^ ^ " 1 1 0 . . . 0 

n z c r 1 0 0 . . . 1 
» ^ ^ n n 

n 

(30) A = l + «, « H ^ E ^ O Î -

The first row of (I + Z)-1 is 

1 
A' 

Hence the first row 

l - « 
A ' 

~ C 2 

*A' 
of the 

- 2 c 2 

exA 

~ C 3 

e,A ' " 

product P 

- 2 c , 
' e,A > 

'> 

is 

•• 

— cn 

exA 

"' " i 
•2c M 

3lA 
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These elements are to be made equal to 

respectively. Hence, by (30x), we take 

2=A(l+<r1), /C=iA(l~cr1) , c . ^ - i A e ^ . ( i=2 , •.., w). 

Eliminating the c{ from (302), and applying (29), we get 

n 

Hence the conditions may be satisfied if 1 + <r1 4= 0. But for 
<rl = — 1, we may first apply the automorph y[ = — yr 

6. Although not employed in the present paper, the follow­
ing generalization of the preceding theorem may be noted : 

THEOREM. Let r be any positive integer ^ n. If the <r t are 
any solutions in F of relations (22), for jy k = 1, • • -, r, and 
a. — e., the form JE has an automorph in F which replaces y. 
by Z ; = 1 TyVj, for i = 1, • • -, r. 

The proof by induction, based on the result of § 5, is similar 
to that in the American Journal, volume 23 (1901), page 344, 
for the special case of a finite field with special values of the e.. 

7. Let jPbe field B of all rational numbers. There exist* 
rational values of bv • • -, 64 such that £*=1a.6* equals + 1 or 
— 1, according as av • • -, aé are not all negative, or all negative. 
Hence, by § 1, any n-ary rational quadratic form of non-vanish­
ing determinant is reducible by a linear transformation with 
rational coefficients to one of the forms 

p n—Z 

i=l i=p-\-l 

in which a, 6, c are all negative if p < n — 3, while fP)aib>c is 
reducible to fPia^iy if, and only if,f the ternary form 

* a , M s s ax2 + by2 + cz2 

is reducible in B to ta^y (see end of § 1). 

* A simple consequence (Transactions, 1. a, p. 279) of a theorem due to 
A. Meyer; cf., Bachmann, Zahlentheorie, IVu p. 266. 

f This part of the result was not given in my former paper. 


