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I t now becomes necessary to show that the normal series E, 
Ev E2, • • • ; E} Ev Fv F2y • • • define the same complementary 
series, and similarly for Ey E[, E'2,>>>) E, E[, Fv F2, • • •. 
This amounts to proving the theorem for the algebras Ex and 
E\y which involves a finite number of repetitions of the above 
proof. 

A chief or principal series E, Pv P2 , •. • of an algebra being 
defined as one in which Ps is the maximal subalgebra of Ps_x 

which is invariant is E(PQ = E) it is easily shown in the 
symbolic notation, by exactly the same process as for the nor­
mal series, that the system o f complementary algebras Cv C2, • • • is 
independent of the chief series selected. 

In the case of the normal series the complementary algebras 
Kv Kv • • • are necessarily simple, but this is not true of the 
complementary algebras Cv 02, • • • in the case of the chief 
series. 
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SUPPOSE that the force acting on a particle whose coordinates 
are cc, yy z} produces an acceleration having the components 
<£ (Xy y y z), i/r (x, y y z), x (œ, y, z). The equations of motion are 
then 

(1) x=ct> (x, yy z), y=y}r (x, yy s), s=% (x, y, z), 

where dots denote differentiation with respect to the time t 
In such a field of force the initial position and initial velocity 
completely determine the trajectory. The totality of trajectories 
thus constitutes a quintuply * infinite system of space curves. 

Consider now those trajectories obtained by starting the par-

* The only exception arises in the trivial case where the force is every­
where zero. Then the trajectories are the fourfold infinity of straight lines. 
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t ide at a given point P in a given direction. These form a 
simply infinite system since the initial speed v is arbitrary. 

The osculating plane at P must contain both the given direc­
tion and the direction of the force acting at P ; hence the oo] 

trajectories have the same osculating plane. The osculating 
sphere, however, varies from trajectory to trajectory. We now 
prove that, no matter what the law of force, the locus of centers 
of these oo1 osculating spheres is a straight line. 

The formulas for the center of the osculating sphere of any 
space curve are f 

(2) 

X i 2 / / f/ f ff f / / \ 

= x + rzx — prr [yz — zy ), 
F i 2 tf / / / / / f ff \ 

= y + 7 y — prr \zx — x z )> 
Z = z + r2z" — prr(xy" — y 'x"), 

where accents denote differentiation with respect to the arc s ; 
r is the radius of curvature, and p the radius of torsion. These 
are determined by the familiar formulas 

(3) 

(4) 

l/r2 = *"2 + 2/"2 + *"2=2x"2, 
I / // //, 

JU X X 
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y y 

Z Z 
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Differentiating (3), we find 

(5) T = — TÓ2LX X 

To apply these formulas to the trajectories of dynamics, it is 
necessary to replace arc derivatives by time derivatives. The 
transformation formulas are 

x = x/v, 

(6) x' = (vx — vx)/vs, 

x" = [y(yx — vx) — 3v(vx — vx)"] /v5, 

with similar results for y and z. 

*See Schefïers, Theorie der Curven, Leipzig (1901), p. 234. 
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Here v denotes the velocity, so that 

(7) v2 = 2cb2, vv = *2xx, vv + v2 = 2diB + 2œ2. 

By means of formulas (2) to (7), the coordinates of the 
center of the osculating sphere may be expressed in terms of x, 
y, z and their time derivatives of first, second and third orders. 

We now simplify the discussion by means of a particular 
choice of axes. Let the given point JP be taken as origin ; 
the given direction, as axis of x ; and let the fixed osculating 
plane be the plane xy. Since the initial1 velocity is directed 
along the axis of x, we have 

» , V9 *> = v> °> ° -
The force acts in the plane xy, hence the acceleration components 
are 

x\ y, 'i = cf>, f, 0, 

where (f>, yfr are constants since x} y, z, = 0, 0, 0. The third 
derivatives are 

S, y, z, = vcf>x, v^x1 vXx. 

From (6), we can now find the arc derivatives 

«'> y> « ' = i , o, o, 

(8) ^ ^ ^ = 0 , f/v2, 0, 
x'", if, z" = ( - ^ 2 , v2y}rx - 3<W, v2

Xx)/v\ 

Substituting these values in (3), (4), (5), we have 

<9) >'=>> ' - - £ f — ? r — • 
Finally, from (2), we find 

(io) x = o , r = - , ^ ^ ^ 

Here we note that X , JT, Z are linear functions of the para­
meter v2. Elimination thus gives the straight line 

(11) X=0, Z = ^ - ^ F 

as the required locus of centers. 
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Incidentally, the value of p obtained in (9) shows that the 
torsion, unlike the curvature, is independent of v. 

An arbitrary field of force (1) produces oo5 trajectories, of 
which oo1 pass through a given point in a given direction. These 
oo1 trajectories have, at the given point, a common osculating 

plane and a common torsion. The locus of centers of their oscu­
lating spheres is a straight line. Thus every field of force gives 
rise to a correspondence between the direction elements and the 
straight lines of space, 
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ON THE POSSIBLE NUMBERS OF OPERATORS 
OF ORDER 2 IN A GROUP OF ORDER 2™. 

BY PROFESSOR G. A. MILLER. 

(Read before the American Mathematical Society, September 7, 1905.) 

I t is well known that every group of order 2m which con­
tains only one operator of order 2 is either cyclic or it is 
composed of the cyclic group of order 2m_1 and 2m~l operators 
of order 4 transforming each operator of this cyclic group into 
its inverse.* There are exactly two such groups for every 
value of m > 2. When m == 3 the latter of these two is the 
quaternion group, and when m < 3 the cyclic group is the only 
one that contains only one operator of order 2. 

The groups of order 2m in which the number of all the 
operators of order 2 is = 1 mod. 4 have been determined inci­
dentally in a recent paper.f Such groups exist only when the 
number of operators of order 2 is of the form 2h + 1, and there 
are exactly two possible groups for every arbitrary value of k. 
One of these is the dihedral rotation group of order 2k+\ and 
the other is obtained by adding to the cyclic group of order 
2k+l an operator of order two which transforms each of its 
operators into its (2* — l)th power. Just half of the additional 
operators are of order two and the others are of order 4. 

For instance, there are just two groups whose orders are of 
the form 2m and which contain just five operators of order two; 

* Burnside, Theory of groups, 1897, p. 75. 
f Transactions Amer. Math. Society, vol. 6 (1905), p. 62. 


