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ON T H E CONDITION T H A T A POINT TRANSFOR­
MATION O F T H E P L A N E BE A PRO­

J E C T I V E TRANSFORMATION. 

BY MR. ELIJAH SWIFT. 

(Read before the American Mathematical Society, October 31, 1903.) 

1. W H I L E it is well known that all projective transforma­
tions are collineations, the converse has, I believe, never been 
proved in all its generality. Möbius, in his " Barycentrischer 
Calcul " proves by means of his net of lines that if we start from 
any four independent * fixed points in the plane, we can either 
reach any point of the plane, by means of constructions with a 
ruler alone, or else come as near it as we please. Thence he 
infers that there cannot be more than one coUineation which 
carries four given independent points into four other given 
positions. Since we know that there exists a projective trans­
formation which carries over four arbitrarily given independent 
points into four other arbitrarily given independent points, we 
infer that every coUineation is a projective transformation. In 
this reasoning, however, Möbius clearly assumes that he is 
dealing only with transformations which are in general one-to-
one and continuous. There are, however, points in the two 
planes (the points on the vanishing lines) where the transfor­
mation is, strictly speaking, not defined. Thus two questions 
present themselves : 

(1) Is it necessary to require that the coUineation be con­
tinuous in order that Mobius's theorem be true ? 

(2) Throughout what part of the plane may we leave the 
transformation undefined ? 

I t is my object in this paper to prove the following theorem, 
which answers the first question, and goes a long way toward 
answering the second. 

Suppose we have a one-to-one correspondence between the points 
of two plane point sets S and S', each of which has an interior 
point, such that any three collinear points in either set have collinear 
images. Then the transformation of S into S' is a projective 
transformation. 

* By four independent points in a plane we understand four points no three 
of which lie on a straight line. 
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2. I t should be clearly understood that the points referred to 
in this theorem are actual geometric points, neither imaginary 
points nor points at infinity being considered. There is, how­
ever, no objection to our using the term " points at infinity " 
in the course of the proof to avoid long circumlocutions. In 
fact we shall find it convenient for this purpose to use the term 
" projective plane," which plane we understand to contain not 
merely the actual geometric points, but also an infinite number 
of points at infinity regarded as lying on a line according to the 
ordinary conventions of projective geometry. 

I shall denote the images of points, etc., by primes, thus P' 
is the image of P, etc. I shall call the first plane I, the 
second I I . 

3. Before passing to the proof of the general theorem, it 
will be convenient to prove two special cases of it. The first 
is this :— 

CASE A. Suppose we have a one-to-one correspondence of the 
points of two planes, such that to every finite point of one corre­
sponds one and only one finite point of the other, and, moreover, 
the images of collinear points are collinear. Then the transfor­
mation is projective. 

Before we can speak of a line L having a line L' as its 
image, we must make sure that not only do all the points on L 
correspond to points on a certain line L', but that they corre­
spond to all of these points. This, however, is obvious when 
we recall that all the points on L' have images on L. 

In the first place if two lines meet in I their images must 
meet in I I , since their point of intersection has a finite image, 
and accordingly the images of parallel lines are parallel. 

If we have three collinear points A, B, and O, such that 
AB^BG, then A'B' = B'C'. For if we draw two pairs of 
parallels through A and O we have a parallelogram, and the 
point B is determined by the intersection of its diagonals. In 
I I we have a parallelogram with A' and G' for two opposite 
vertices and B' for the intersection of its diagonals. Therefore 
A'B' = B'C', and the image of a point midway between two 
points is midway between their images. 

The necessary and sufficient condition that six points lie 
on a conic is that the intersections of opposite sides of the 
hexagon formed by joining them should lie on a line. Since 
this condition involves nothing but coUinearity of points, if it 
is true of one set of six points it is true of their images. Take 
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any conic in one plane, select any five points on it, and consider 
the conic through their images. If we take a sixth point and 
let it describe the first conic, its image must always lie on the 
second conic. Therefore every point on the first conic has an 
image on the second, and, similarly every point on the second 
has an image on the first. Therefore one conic is the image of 
the other, and the image of a conic is a conic. 

Since the center of a conic bisects every chord through it, its 
image possesses the same property and is, therefore, the center 
of the transformed conic, and the image of a central conic is a 
central conic. Since every line through the center of an ellipse 
cuts the ellipse, but this is not the case for the hyperbola, an 
ellipse goes into an ellipse. 

If we have two points A and B on opposite sides of a straight 
line L, A' and B' lie on opposite sides of L\ For if they did 
not we could pass an ellipse through A' and B' which did not 
c u t i ' . I ts image would be an ellipse through A and B not 
cutting L, which is impossible. If therefore, a point B lies 
between two other points A and C, B' lies between A' and C'', 
since A and C lie on opposite sides of any line through B. 

I f we have a set of collinear points equally spaced, their 
images are equally spaced and follow each other in the same 
order. For if L, M, N are any three points, L'', M', N' are 
in the same order, for if L and N are on opposite sides of M, 
L' and N' are on opposite sides of M'. If A, B, G are three 
consecutive points, since AB = BO, A'B' = B'C''. 

Now take any line in I and an origin O on it. Let P 
and A be any two points on the line, such that OP and O A 
are commensurable. Take the common measure of OP and 
O A and lay it off along O A. Suppose it is contained in O A 
n times and in OP m times. By laying off this common meas­
ure, we obtain a set of points equally spaced on OA. Their 
images must be a set equally spaced on 0'A'. There must 
be n of these spaces in 0'A' and m in O'P'. Accordingly 
O'P' : O'A' = m : n = OP: OA. 

Now suppose that OP and O A are incommensurable. Using 
as a measure of OP a sub-multiple of O A, which we ultimately 
allow to approach zero as its limit, we can use the familiar 
method to show that O'P' : 0' A' = OP: OA, for we know that 
if P lies between the points reached by applying this measure 
h times and h -f 1 times respectively, P ' will lie between their 
images. Hence distances along a fixed line from a given point 
are altered in a fixed ratio. 



250 POINT TRANSFORMATIONS OF THE PLANE. [Feb . , 

Now suppose in the first plane we have a pair of rectangular 
axes with origin 0, and a point P whose coordinates are (x, y). 
Consider their images in the second plane. We shall have a 
pair of axes, in general oblique, and a point P' referred to 
them. Denoting by A and B the orthogonal projection of P 
on OX and O Y respectively, we have O A = x, OB = y. The 
image of the rectangle OAPB is a parallelogram O'ALP'B'', 
and the coordinates (x, y) of P ' are x = 0''A', y = O'B'. 
Then if I and m are the ratios by which distances are altered 
along O A and OB respectively, x = lx, y = my. I f P' be re­
ferred to any pair of rectangular axes in the second plane, we 
have, by a transformation of coordinates, 

x' = axx + bxy + cv y = a2x + b$ + c2. 

And this is a projective transformation. Thus the theorem A 
is proved. 

4. Another special case is the following : 
CASE B. Suppose we have a one-to-one correspondence of all 

the points of two projective planes, such that to any three collinear 
points of one, correspond three collinear points of the other. Then 
the transformation is a projective transformation. 

I f every point of I has a finite image, we have practically 
Case A. For by that case we see that the transformation of 
the finite points is effected by a projective transformation ; and, 
since the points at infinity may be determined as the vertices of 
pencils of parallel lines, it is clear that this same projective 
transformation carries over the points at infinity to their new 
positions. 

Now suppose that the image of the line at infinity in I is a 
line, Ly in I I . Apply to I I any projective transformation that 
will throw L to infinity in a third plane I I I . To every point 
of I corresponds one and only one point of I I I . To any point 
at infinity in I corresponds a point in L in I I , and, therefore, 
a point at infinity in I I I , and vice versa. Moreover any three 
collinear points in I have collinear images in I I and hence in 
I I I , and vice versa. Then we have just such a transformation of 
I on I I I as we considered in the first case under Case B. There­
fore the transformation of I on I I I is a projective transforma­
tion. Hence, since the inverse of a projective transformation 
is a projective transformation, and the succession of two pro­
jective transformations is a projective transformation, it follows 
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that the transformation of I on I I is projective. Thus theorem 
B is established. 

5. Before proving the general theorem, I shall present a 
couple of lemmas. 

Suppose we have three lines, av av a3 (Fig. 1). Draw any other 
two lines, fiv /32, cutting av a2, aB in the points A and B, QX 

and Q2, Ê and F respecti vely. Let Px be the intersection of B Qx 

F I G . 1. 

and A Q2, P2 of EQ2 and FQV P 3 of fix and /32. Then a neces­
sary and sufficient condition that av a2, a$ be concurrent is that 
Pv P2 , P 3 be collinear. This can be proved very easily by a 
projection, or is at once evident when we observe that PXPS is 
the polar of the intersection of av a2, and P2PB that of the in­
tersection of a2, a3 with regard to the degenerate conic consist­
ing of /3X and /?2. 
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I t is easy to obtain from this a condition for the collinearity 
of three points. I f the points are Pv P2 , P3, choose any two 
points Qv Q2. Let A be the intersection of QXPB and Q2PV 

B that of Q2P3 and QXPV E that of Q^ and Q2P2, and F that 
of Q2P3 and §XP2. We have just the same figure as we had 
before for the three lines, and since the collinearity of Pv P2 , 
P 3 was both necessary and sufficient for the concurrence of av 

a2, a3, the converse is true. Therefore the necessary and suf­
ficient condition for the collinearity of Pv P2, P 3 is the concurrence 
of AB, QXQ2, EF. I t should be noticed that since /32, PBPV 

fiv and the line joining the intersection of axa2 with P 3 form an 
harmonic pencil, if Qx and Q2 are on the same side of P^P^ 
the intersection of av a2, az will lie between Qx and Q2. 

6. We are now in a position to prove the general theorem 
stated at the beginning. Suppose A is the interior point of 
the first plane ; then we can describe a circle with A as center, 
which contains only points of the point set 8. Call this circle 
C; all points of C have images. 

My purpose is first to extend the definition of the transfor­
mation to all points of the projective plane, and thus to prove 
that it is a projective transformation by Case B. 

Take any point P in the projective plane outside of (7. We 
may determine it as the point of intersection of two lines 
cutting G The points in C of either line have collinear 
images in I I . Let us define the point P ' , the point of inter­
section of the two lines on which these images lie, as the image 
of P . To prove this definition permissible we must show that 
any two lines through P cutting G lead to the same point P ' , 
or, what is evidently equivalent, that any three lines through 
P , which cut (7, determine in I I three lines through P ' . Call 
our three lines av a2, av and apply our first test. Draw fix 

and /32 so that they meet each other and also av av a3 inside of 
(7. Then evidently the points P x and P 2 lie within (7, for 
A9 -B, Qv Q2, E, F9 are vertices of non-reentrant quadrilaterals, 
which must have the points of intersection of their diagonals 
within O. Then since the points P , , P2 , P 3 are in C and colli­
near, their images in I I are collinear, and the three lines deter­
mined by the images of points on av <z2, a3 meet in a point P ' . 

I f P is a point of 8, it is evident that the image thus defined 
is the same as the image originally given. For if we take any 
two points in C collinear with it, their images are collinear with 
its image. 
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Now consider any three collinear points Pv P2 , P 3 ; we wish 
to prove that their images, as we have just defined them, are 
collinear. If the line PXP2PB cuts C, these points are deter-

FIG. 2. 

mined by the intersection of the line PXP2PS and any other lines 
through them cutting (7. Consequently their images must lie 
on the line determined in I I by the images of points on PxP2Pr 
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I f P^zP^ does not cut C, choose any two points Ql and Q2 

in C and apply our second test. The lines joining the inter­
sections of QXPZ and Q2Pl and Q2PZ and QlPv also of QYPZ 

and Q2P2 and Q2PS and ÇXP2 must meet in a point on QlQ2. 
This point must lie between Qx and Ç2 since PXP2PB does not 
cut Qx Q2 between Qx and Q2, and accordingly lies in O. Since 
6 1 ^ $ 2 ^ P a s s through P. their images must pass through P\. 
Since P x Q2, QXP^ O A cut (7 and meet in a point, their images 
must meet in a point. Similarly P[ Q'v P's Q2, O'B' meet in 
a point. Similarly E'F' passes through 0'. Then evidently 
the condition for the collinearity of P[P2P'Z is satisfied, and the 
images of eollinear points are coUinear. 

Now since S' has an interior point we can apply all our rea­
soning to I I and define an image of every point of it in I , and 
show that these images are eollinear when the original points 
are. Have we thus established a one-to-one transformation of 
I and I I ? That is, if P is any point of I and P' its image 
in I I , and if in turn P " is the image in I of P ' , will P" neces­
sarily coincide with P ? In the first place there is a one-to-
one correspondence, by hypothesis, between 8 and 8'. Take 
any point P not in 8. We define P' by means of the images 
of sets of two points in 8} each set eollinear with P . Any 
two points eollinear with P ' must have images eollinear with 
P". Take the four points by which we defined P ' . Their images 
in I determine P " uniquely. But since they are points of 8', 
they have as images the same points we started with, and P" 
must coincide with P . Accordingly we have a one-to-one cor­
respondence between the points of the projective planes I and 
I I such that the images of three eollinear points are eollinear. 
Then by theorem B it follows that the transformation is pro­
jective, and thus the general theorem stated near the beginning 
of this paper is proved. 

In conclusion I wish to express my gratitude to Professor 
Bôcher for aiding me in the preparation of this paper, by valu­
able suggestions and criticisms. 
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