
40 STOLZ'S THEORETICAL ARITHMETIC. [Oct., 

ON A N E W EDITION OF STOLZ'S ALLGEMEINE 
ARITHMETIK, W I T H AN ACCOUNT OF 

PEANO'S DEFINITION 
OF NUMBER. 

Theoretische Arithmetik. Von O. STOLZ (Innsbruck) und J. 
A. GMEINER ( Wien). I. Abtheilung : Allgemeines. Die 
Lehre von den rationalen Zahlen. Leipzig, B. G. Teubner, 
1901. iv + 98 pp. 

T H I S publication of about 100 pages is the first instalment of 
a new and revised edition of Stolz's Allgemeine Arithmetik 
(1885-86), — a work which has long since proved indispensable 
to all who desire a systematic and rigorous development of the 
fundamental elements of modern arithmetic. 

The revision thus far completed (probably about one seventh 
of the entire work) covers the first four chapters : 

I. On quantities (Grossen) and operations (Verkniipfungen) 
in general. 

I I . On the natural numbers and the four fundamental oper­
ations. 

I I I . On the general properties of any direct operation 
(Thesis, a o h) and its inverse (Lysis, a ~ 6), as deduced from 
certain fundamental formal laws ; in particular, the analytic 
theory of (absolute) rational numbers. 

IV. On the synthetic theory of (absolute) rational numbers, 
with a treatment of systematic fractions. 

The remaining chapters in the first part will contain (if the 
order in the old book is preserved) the theory of negative and 
irrational numbers, with an account of euclidean "ratios," 
followed by an elaborate treatment of the theory of limits as 
applied to functions of a real variable and to infinite series of 
real terms. The second part will then contain the theory of 
operations on complex numbers, including chapters on infinite 
series, infinite products and continued fractions. The complete 
work will belong to the Teubner series of mathematical text­
books. 

As one turns the pages of the new edition one is struck first 
of all by the great improvement in the general appearance of 
the book. The title itself, " theoretical arithmetic," is much 
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more lucid than the old title of " general arithmetic," which 
to the uninitiated might mean common algebra; the notes, 
historic and other, which used to be difficult of reference, are 
now placed conveniently as footnotes on the proper pages ; and 
best of all the paragraph numbers in the several sections are 
now placed at the top of each page. All these changes will be 
appreciated by those who have had to refer often to the older 
book. The addition of some thirty problems or exercises is also 
very welcome. 

In the body of the text there are numerous changes which 
greatly enhance the clearness of the presentation. The intro­
duction of the rational numbers (III, 7) and the opening para­
graph of IV should be especially mentioned. We notice that in 
I I I no attempt is made to prove the mutual independence of 
the postulates A) — JE), and as a matter of fact if JE, 2) is 
made to read : " when b > V then aob > aob' " the postulate 
D1 can be at once deduced as a theorem. 

The only radical change from the plan of the first edition, 
however, is found in the second chapter, where the treatment of 
the natural numbers is now based on Peano's definition. The 
details of Peano's theory are here for the first time made acces­
sible to readers unfamiliar with his mathematical language. 
Since, however, no systematic treatment of Peano's method is 
obtainable in English, it may be not without interest to devote 
the remainder of our space to a connected account of its principles. 

PEANO'S THEORY OF THE NATURAL NUMBERS.* 

The fundamental concepts which form the starting-point of 
Peano's theory are three : (1) a class or assemblage, denoted by 
N\ (2) a special object, denoted by E\ (3) what we may call a 
u rule of succession," (denoted by o ), according to which every 
object, a, of the given class N determines uniquely another 
object, a o, called the successor of a. 

The nature of the assemblage N, of the special object E, and 
of the rule of succession o is left wholly undetermined, except 
for the following five restrictions, or postulates : 

* G. Peano : Arithmetices principia nova methodo exposita, Turin, 1889 ; 
" S u l concetto di numero," Bivista di Matematica, vol. 1 (1891), pp. 87-
102, 256-267 ; Formulaire de Mathématiques, vol. 2 (1898), no. 2, pp. 1-59 ; 
vol. 3 (1901), pp. 39-44. Where I have written iVand E, Peano uses Nx and 
1 or later N0 and 0 ; and for a o, Peano uses a + or later a + 1. I have also 
changed the wording of postulate 5. Stolz and Gmeiner use " Zahl ," 1 and 
a + 1, for N, E and a o, and add another postulate, to the effect that every 
number shall be called equal to itself. 
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1. The special object E shall belong to the class N. 
2. If an object a belongs to N then its successor ao shall also 

belong to N. 
3. If an object a belongs to N then its successor ao shall be 

different from E. 
4. If ao = bo then a == b. 
5. If a is any given element of JV", then a can be found in 

the sequence E, E'o, (JE'O)O, . . . 

The meaning of these postulates will be clearer, if we con­
sider at once the following systems, in which iV", E and o are so 
chosen that all the postulates, or all but one, are satisfied. 

(a) i V = class of positive integers ; E=l; a o = a + 1. 
(b) JVr= class of positive integers with 0; E=0 ; a o = a + 1. 
(c) i V = class of positive integral powers of 2 ; 

E=2l; ao = 2a. 

Each of these systems (a), (6), (c) satisfies all the five postu­
lates. 

(S^ JV= class of positive integers ; E=Q ; a o = a + 1. 
(S2) N= class of positive integers from 1 to 9 ; 

E = 1 ; ao == a 4- 1. 

(#3) iVr= class of positive integers from 1 to 9 ; 

E~1; a o = a + l , except that 9 o = 1. 

($4) iVr== class consisting of two elements 0 and 1 ; 

E=0; 0o = l , l o = l . 

(S5) iVr= class of positive integers ; E = 1; a o = a + 2. 
Here the system Sk (k = 1, 2, 3, 4, 5) satisfies all the other 

postulates, but not the &th. 

The possibility of constructing such systems as (a), (6), (c) 
proves that £^e postulates 1-5 are consistent ; and the con­
sideration of the systems Sl—S5 shows us that the postulates 
1-5 are independent of one another. This proof of independ­
ence, by the way, which forms a most interesting feature of 
Peano's work, is not reproduced by Stolz and Gmeiner. 

Further, it can be easily shown that any two systems, S and 
AS7, which satisfy all the postulates 1-5 can be brought into 
one-to-one correspondence with each other in such a way that 
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E will correspond with Ef, and whenever a in S corresponds 
with a' in Sf then a o will correspond with a'o. This fact may 
be stated in the theorem : All systems (iV", E, 6) which satisfy 
postulates 1-5 are equivalent to one another (cf. the systems 
a—c above). On the basis of this theorem Peano then states 
his definition : 

A " system of natural numbers " shall mean any system 
(iV, E, o) which satisfies the postulates 1-5. 

I t is clear that such a definition is a very different thing from 
a psychological analysis of the process of counting. I t is rather 
the construction of a symbolic u calculus of operations," which 
contains indeed the arithmetic calculus as a special case when a 
special interpretation, viz,, (a), is given to its symbols, but in 
which the validity of the deductions is quite independent of any 
such interpretation. 

The first step in the development of the theory is the defini­
tion of the symbol a + b as follows : Let a and b be any two 
natural numbers, that is, any two elements of a system (iV, E, o) 
which satisfies Peano's ûve postulates ; then a + b denotes the 
number determined by the following recursion formulae : 

a + E=ao; a + (Eo) = (a + E)o ; • •; 
(6) 

a + (ko) = (a + k)o. 

Thus, in order to compute the value of a + b we must compute 
in succession the values of 

a + E, a+ (Eo), a + [(Eo)o], • • -, (6') 

until we strike the desired element a + b. 
The statement of Stolz and Gmeiner, defining a + b as that 

number which is obtained by starting from a and proceeding b 
steps forward in the series of numbers, would seem to imply 
that the ability to count is after all involved in this process. 
Such is, however, not the case. In order to find the number 
a + b by Peano's definition we require simply the ability to de­
termine from any given element a the element a o ; we can thus 
compute one after the other the elements of the sequence (67), 
and we know by postulate 5 that this sequence will contain 
the element a + 6. How far we shall have to go to find this 
element we do not know ; we do not count the steps already 
taken at any stage, nor do we ask how many more there are to 
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take ; it is sufficient to know that if we persevere, one step at a 
time, the desired number will surely be reached.* 

The element a + b thus determined is called the u sum" of 
the given elements a and b ; when the system bears the inter­
pretation (a) then a + b will clearly be the sum of a and b in 
the ordinary sense. 

Similarly, the " product," a&, of two elements a and b is de­
fined by the recursion formulae 

aE = a ; a{Eo) = {aE) + a ; . • • ; a{ho) = {ah) + a. (7) 

From the definition of + follows next the theorem 

a + (b + c) = {a + b) + c 

the proof of which we give in full as a typical illustration of the 
use of postulate 5 (method of mathematical induction). Thus : 
the theorem is obviously true when c = E, by (6). And if it is 
true when co is any particular element h then it will be true 
also when c = ko.f Therefore, being true for e = E, it is true 
for c = EO, and hence for c = (Eo)o, etc. But by 5 any given 
element can be reached in this way ; hence the theorem is true 
for all values of c. 

In a similar way the theorems 

a + b = b + a, (ab)c = a(bc), ab = ba, 
and 

(a + b)c = ac + be 
are established. 

The definition of the symbols > and < depends on the follow­
ing theorem, which is proved also by the use of (6): If a 4= & then 
there is either a number X such that a = b -f X or else a num­
ber fi such that b = a + fjb (and not both). In the first case a 
is called " greater than " b {a > 6), in the second case " less " 
(a<h). ^ # (8) 

When the system bears the interpretation (a) the use of the 
symbols > and < as thus defined will clearly agree with the 
ordinary use of them. 

* Of course this implies unlimited time at our disposal—an assumption 
not explicitly stated by Peano or by Stolz and Gmeiner. 

f For on the given assumption we have, by 6, 
(a + 6) + (ko) = [(a + ft) + fc]o -= [a + (ft + *)]o 

= a+ [ ( f t + * ) o ] = a + [ & + ( * o ) ] . 
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From the definition of > and < we have at once that 
a + 6 > a, and also the theorems : If a > a! then a + b > a' + b 
and aó > a'b. For example, from a > a' follows a = a' + xr 

whence ab == (a' + œ)& = a/6 + x6, or ab > a76. This proof of 
Peano's is simpler than the induction proof used by Stolz and 
Grmeiner. 

After these fundamental definitions and theorems have been 
established the further development of the theory—including 
the introduction of the rational, irrational, negative and com­
plex numbers — proceeds along lines already familiar and need 
not be enlarged upon here. 

In a sense, the five postulates of Peano may be said to con­
tain, implicitly, all the results of algebra and analysis, including 
the theory of functions of a complex variable. I t should be 
clearly understood, however, that the business of the mathe­
matical theory is solely to draw logical deductions from these 
postulates, not to discuss the question whether the results 
possess any real significance in the objective world. On this 
deeper question, Peano's work merely reduces the problem to 
its lowest terms ; if we can show that his fundamental postulates 
are capable of real interpretation in the objective world, then 
all their consequences will likewise be capable of such interpre­
tation. Whether, however, a real interpretation of the postu­
lates—(for example, the system (a) on p. 42)—is psychologically 
possible or not, is a problem of epistemology with which the 
mathematical theory has nothing whatever to do. 

A precisely similar remark applies to any deductive theory 
such as that contained in Hubert's Grundlagen der Geometrie 
(1899). At the basis of Hubert's theory stand certain symbols 
such as u point," " line," " between," etc., whose meaning is left 
wholly undetermined except for the imposition of certain 
postulates. The development of the theory consists in deducing 
the theorems which follow from the fundamental postulates by 
the laws of formal logic, quite independently of any special 
interpretation of the undefined symbols. To be sure, when 
the undefined symbols are interpreted as meaning point, line 
between, etc., in the ordinary sense then the whole theory be­
comes identical with our ordinary geometry of space. But 
the question whether such an interpretation is possible or not 
is a question which the deductive theory leaves wholly un­
touched. Hence Hubert's theory cannot be said to give us 
any new knowledge of the real nature of space, any more than 



46 LAZARUS FUCHS. [Oct., 

Peano's theory gives us any new knowledge of the real nature 
of the natural numbers. Both these theories, however, enable 
us to state the philosophical problem with a definiteness which 
has not heretofore been possible. 

Further comment on Stolz and Grmeiner's book is impossible 
in the space at our disposal. The remaining instalments of 
this great work will be awaited with keen interest. 

E. V. HUNTINGTON. 
HARVARD UNIVERSITY, 

June 12, 1902. 

LAZARUS FUCHS.* 

FUCHS is dead. This announcement must have caused deep 
sorrow in the heart of many American mathematicians. For 
many of us have been his pupils, and to some of us his example 
has been the greatest inspiration of our lives. The writer of 
this little sketch is one of these. He remembers how he looked 
forward to the time when he would be fitted to attend Fuchs's 
lectures. He remembers the small and crowded lecture-room in 
the University of Berlin, poorly ventilated, stuffy and hot in the 
summer days, but so full of meaning and inspiration to the 
earnest and thoughtful student. Fuchs was not a brilliant lec­
turer. He spoke in a quiet, undemonstrative manner, but what 
he said was full of substance. To the student there was the 
inspiration of seeing a mathematical mind of the highest order 
full at work. For Fuchs worked when he lectured. He was 
rarely well prepared, but produced on the spot what he wished 
to say. Occasionally he would get lost in a complicated com­
putation. Then he would look around at the audience over his 
glasses with a most winning and child-like smile. He was 
always certain of the essential points of his argument, but 
numerical examples gave him a great deal of trouble. He 
was fully conscious of this failing, and I remember well one 
occasion when, after a lengthy discussion, he laid considerable 
emphasis upon the fact that " in this case, two times two is four." 

The mathematical papers of Fuchs are very numerous, but 
excepting a few of his earliest attempts, they are all connected 
directly or indirectly with the theory of linear differential equa­
tions. This was the province which, to quote the words of 
Auwers when he introduced Fuchs to the Berlin Academy of 

* Immanuel Lazurus Fuchs, born in Moschin, near Posen, May 5, 1833, 
died at Berlin, April 26, 1902. 


