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respectively, is equivalent to a transformation To of the 
group, generated by the infinitesimal transformation 

c i x i + - + crXv> 

with finite parameters cv •••, c, ; that is to say, if a system 
of finite values of the c's can be found to satisfy the sym­
bolic equation Th Ta= Tc. On page 282 we saw that the 
composition of the two arbitrary transformations Ta and Tb 
of the family defined by equations (4) was equivalent to a 
transformation Tc of the family, with finite parameters c. 
But equations (4) were not in their canonical form, and 
therefore it did not necessarily follow that the transforma­
tion Tc could be generated by an infinitesimal transforma­
tion of the group, as shown above. Consequently, if the 
finite equations of a group are not in their canonical form, 
the condition that for every finite system of values of the 
a's and è 'sa finite system of the c's can be found to satisfy 
the symbolic equation Th Ta = Tc is a necessary but not a 
sufficient condition for the continuity of the group. 

UNIVERSITY OF CINCINNATI, 
December', 1901. 

SOME APPLICATIONS OF GKEEN'S THEOREM IN 
ONE DIMENSION. 

BY MR. OTTO DUNKEL. 

(Read before the American Mathematical Society, February 22, 1902.) 

GREEN'S theorem ordinarily has reference to Laplace's 
equation in either two or three dimensions. I t has been 
generalized however in the case of two dimensions by re­
placing Laplace's equation by the general homogeneous 
linear differential equation of the second order. In the gen­
eralized form the theorem relates not only to the given differ­
ential equation, but also to its adjoint differential equation.* 
A further extension of the theorem is possible by considering 
a differential equation of the nth order in two or more inde­
pendent variables, and its corresponding adjoint.f 

*Cf. Encyklopâdie, II, A. 7 c , p. 513. 
fCf. Darboux, Théorie des Surfaces, vol. 2, pp. 72, 74, for the case of 

two independent variables. 
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I t is desired here to consider the extension of the theorem 
to differential equations in only one independent variable, 
i. e., to the ordinary homogeneous linear differential equa­
tion of the second and higher orders, and to indicate very 
briefly some results which can be obtained from this exten­
sion, which we may call Green's theorem in one dimension. 

We shall consider the general homogeneous linear differ­
ential expression 

in which px, p2, ~',pn are continuous real functions of the real 
independent variable x in the interval o• = x Ë== 6. We shall 
further assume that such of their derivatives as may be 
needed exist and are continuous. 

If y and z are any two functions oî x with continuous 
derivatives of orders up to and including the nth, then by 
integrating the formula of Lagrange, 

zP(y)-yP(z) = ^P(y,z), 

where P(z) and P(y. z) are respectively the adjoint and bi­
linear differential expressions of P(y),* we shall obtain the 
following integral formula, which we may designate as 
Green's theorem in one dimension, 

(2) f\zP(y)-yP(z)]dx^P(y,z)\t 

P(y, «) f = i W ) , «(*)] - Pb(»), «(«)]• 
When the expression to which Green's theorem is applied 

is self-adjoint,f there is a second associated integral for­
mula which here becomes 

2 ( - i ) K - y ° * ( i ) ^ 

yP(z)dx - 2 2 , ( - l ) V J^=i (P~<«w) 

X& m i—1 d^'-1 

*Cf. Schlesinger's Handbuch, vol. 1, pp. 53, 55, or Darboux, Théorie 
des surfaces, vol. 2, pp. 99, 100. 

f Cf. Sohlesinger's Handbuch, vol. 1, p. 73 ; or Darboux, Théorie des 
surfaces, vol. 2, p. 119, for characteristic form of self-adjoint expressions. 
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where 
n=2m> ^ - S -

This formula is the analogon of the three term form of 
Green's theorem in the potential theory 

rrrdüdv , dUdVi, , 
dy dy , 

--ffUAVdxdy-fu^ds 

= - CCv&Udxdy- fv^ds* 

When n — 2 the general differential expression 

can always be rendered self-ad joint by multiplying by the 
non-vanishing factor 

(5) K= /:pd" 

and we can then write 

(6) KP(y)^^f + Qyt 

where 

Applying Green's theorem to (6) we have 

,~,v rh F dv dz il6 

(2') X j r [ . P ( y ) - » P ( . ) ] * - J f [ ^ - , 7 J | € 

X
bT dy dz 1 d z \ h /»& 

[K£dX-°*¥=KyiX-£KyP{z)dx 

— ÇKzP(y)dx. 
= Kz

dA 
dx 

*Cf. Enoyklopâdie, IT, A. 7 c , for the corresponding three term for­
mula in the case of the general self-adjoint homogeneous partial differen 
tial equation of the second order. 



1902.] GREEN'S THEOREM IN ONE DIMENSION, 291 

Special theorems may be obtained from these last two 
formulae by making different suppositions as to y and z. 
If y and z are solutions of P(y) = 0 and b = x} we shall have 
from (2') Abel's formula 

(7) zfx-y
d£ = i ( C = constant). 

If y is a solution of 

dKxy' 
dx 

and z is a solution of 

+ öl2/ = 0, 

dx 
we have from (3') 

dK2z> 
~ + Gr2*=0, 

1 dx dx\a Ja 

- • • « - * ; > & * 

the formula of Sturm ;* and we may therefore regard 
Sturm's work as an application of Green's theorem in one 
dimension. 

The following theorem results from (2') : 
If there exists a function z of x such that it and its first two 

derivatives are continuous in the interval a=x~b and satisfy 
the relations 

(9) * > 0 , 

(10) POO^O, 

then P(y) = 0 is a non-oscillatory differential equation in the 
interval a = x^.b.f 

*Cf. Encyklopàdie II, A. 7a, p. 442. 
fCf. a paper by Professor Bôcher, BULLETIN, May, 1901, p. 333, for 

definition of non-oscillatory differential equation. In the same paper, 
p. 335, is a different proof of this theorem, and a number of speoial tests 
obtained from it. 
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If we had used in Green's theorem P(y) instead of the 
self-adjoint expression KP(y), the relation (10) would be 
replaced by 

(10') P ( s ) = 0 . * 

A theorem in regard to the non-homogeneous linear dif­
ferential equation of the second order 

( i i ) P(y) = r 

can be obtained, if we suppose r is a function of x that does 
not change sign in the interval a ~ x == 6. 

Suppose y is a solution of (11) that vanishes together 
with its first derivative at a ; and z is a solution of the re­
duced equation 

P(s) = 0 

that vanishes at a and again at c, (a < c = 6), but not be­
tween a and c. Then the theorem is that y will not vanish 
again in the interval a < x = c. f 

The general Green's function in one dimension for equa­
tions of the nth order has been defined by Professor Bôcher. % 
As an example of the use of such a function, we shall con­
sider for simplicity only the equation of the second order 
(4). For a given point £ within the interval a ~ # = &, 
there is in general one and only one Green's function G($, £) 
of the first kind. Applying Green's theorem to G(x, £) 
and any particular solution y of (4), we have 

(12) JT(g) y(g) = - K(x) y(a) ^ ^ 

This corresponds to the integral formula which gives the 
value of a solution of Laplace's equation at any point within 
a closed curve by means of the values that the solution takes 
on along the curve. 

For equations of higher order there are corresponding 
formulae. 

H A R V A R D UNIVERSITY, CAMBRIDGE, MASS. 
February, 17, 1902. 

* A theorem corresponding to this for the elliptic type of the homoge­
neous linear partial differential equation of the second order has recently 
been given by Professor Bôcher in his lectures on partial differential 
equations. 

t This theorem can also be proved by using the formula expressing the 
solution of (11) by means of a solution of the reduced equation. 

% BULLETIN, April, 1901, p. 297. 


