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THE STRENGTH OF MATERIALS. 

The Strength of Materials. By J. A. EWING, M.A., B.Sc, 
F.R.S., M.Inst.O.E. Professor of Mechanism and Ap
plied Mechanics in the University of Cambridge, Fellow of 
King's College, Cambridge. Cambridge, The University 
Press, 1899. Pp. vii-xii + 1-246, with 150 illustrations 
in the text. 

THIS work is intended to supply to students " i n modern 
schools of Engineering" a "knowledge of the Strength of 
Materials and of its application in design * * * which to be 
effective must be supplemented by laboratory and drawing-
office work.,J I t is desirable that the mathematical elas-
tician should learn what light modern experimental research 
throws on the validity of the hypotheses at the basis of the 
mathematical theory, and also that he should know what 
parts of his subject possess most interest for his more prac
tical contemporaries. On the other hand, it is conceivable 
that the practical man may derive some advantage from 
realizing how the mathematical treatment which passes cur
rent in everyday life strikes the mathematician. This re
view thus naturally divides itself into two principal parts, 
the first dealing with the more experimental portions of the 
book, the second with the mathematical methods. A pre
liminary description of the contents of the book will facili
tate comprehension. 

After a brief preface and a table of contents, pp. vii-xii, 
chaps. I and I I , pp. 1-23, define stress and strain, ex
plain their simpler common types, and treat of the ordinary 
moduli, or elastic constants, for isotropic material. Chap. 
I l l , pp. 24-58, treats of ultimate strength and non-elastic 
strain, dealing mainly with simple tension and compression, 
describes the phenomena presented during the loading of 
steel and iron up to rupture, and discusses experiments on 
the effects of rest or of heating after over-straining. I t also 
gives an account of Wohler' s experiments on the 'i weaken
ing '? of material under very frequent repetitions of loading 
and unloading. Chap. IV, pp. 59-95, describes—with ex
cellent illustrations—a number of testing machines and 
instruments for measuring extensions and compressions, 
discusses some methods of determining the modulus of 
rigidity and gives some numerical results. 

Chaps. V, VI, and VI I , pp. 96-153, deal mainly with the 
application of the ordinary Bernoulli-Euler mathematical 
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theory to beams. Analytical methods are generally followed, 
but the ordinary graphic methods are also illustrated. 
Chap. VI I I , pp. 154-170, treating of "frames," may be 
regarded as part of a text book on ordinary statics. Chap. 
IX , pp. 171-186, treats of struts and columns, first on 
Euler's mathematical theory, and then from the more em
pirical standpoint of Gordon or Rankine's formula. Chap. 
X, pp. 187-203, is denominated "Torsion of Shafts." 
I t is however not confined to this, but touches upon the 
theory of spiral springs and the " whirling" of rotating 
shafts. Chap. XI , pp. 204-217, treats of shells and thick 
cylinders under pressure, with a discussion of rotating rings 
and thin discs. Chap. X I I , pp. 218-237, is devoted to 
"Hanging Chains and Arched Ribs," including parabolic 
chains, the common catenary, etc. An appendix, pp. 239-
242, gives numerical data as to strengths and densities of 
ordinary building materials ; and an index occupies pp. 243-
246. 

Experiment.—The fundamental fact underlying the ordi
nary mathematical theory, and therefore all ordinary girder 
theory, whether its outward form be graphical or analytical, 
is Hooke's law that stress is proportional to strain, or—as 
Professor Pearson puts it—that the stress-strain relation is 
linear. On this point we are told (Art. 15) " A material is 
elastic * * * if the strain disappears when the stress is re
moved. Strain which persists after the stress * * * is re
moved is called permanent set. * * * Actual materials are 
in general nearly perfectly elastic with regard to small 
stresses * * * if the applied stress is less than a certain 
limit, the strain * * * disappears wholly or almost wholly 
when the stress is removed. * * * The limits of stress within 
which strain is wholly or almost wholly elastic are called 
limits of elasticity * * *. (Art. 16) Within the limits of 
elasticity the strain * * * is proportional to the stress. " 
Later we have the following statement (Art. 32) : " Within 
these limits (of elasticity) we may without serious inaccuracy 
take the strain as * * * proportional to the stress and as 
disappearing when the stress is removed. Strictly speaking, 
absolute proportionality of strain to stress is never found, 
and probably there is no stress, however small, that does 
not produce some permanent effect. There is always some 
slight hysteresis or lagging in the relation of strain to stress. 
* * * Butin general this imperfection of elasticity is so slight 
that * * * up to a certain limit, which is in general pretty 
well defined, Hooke's Law may be taken as substantially 
accurate. ' ' 
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A student when reading Art. 15 would be apt to conclude 
that the only two things known to exist are elastic strain dis
appearing simultaneously with the removal of the stress, 
and set persisting permanently. In Act. 32 he seems, how
ever, expected to distinguish between set and hysteresis (a 
term which seems equivalent to ' ' Elastische Nachwirkung ' ' 
or what Pearson calls " Elastic after-strain " ) . I t is to be 
regretted that the author does not bring out more clearly 
the theoretical distinction between set which persists and 
strain which gradually disappears, especially as the practi
cal discrimination between them is so difficult. 

Another question is whether the author is well advised 
in assuming—as he seems tacitly to do—that failure of 
Hooke's law necessarily implies the existence of hysteresis, 
or set, and conversely. I t is at least conceivable that ma
terials exist in which the relation between stress and elastic 
strain is not linear. Experiments by Hodgkinson, Kupffer, 
and others have sometimes been supposed to show that cast 
iron is such a material. Our author refers to Hodgkinson's 
experiments (Art. 38), but not in such a way as to show 
whether he is aware of the interpretation put upon them by 
others (see Todhunter and Pearson's <( History of Elastic
ity " Vol. 1, Note D, p. 891 ; Vol. 2, Art. 793, etc.). The 
subject seems one which might repay experimental re-inves
tigation with modern appliances. 

The next question that calls for consideration is that 
which gives its name to the book. In Art. 33 we are told 
" The load which suffices to cause rupture measures the 
ultimate strength of the piece.?? At this stage, however, a 
difficulty comes in. Engineering calculations are almost all 
ultimately based on Hooke's law. But when the stress is 
carried beyond the elastic limit the departure from the law 
begins to be serious, and with the approach of rupture the 
law is often a travesty of the facts. If then calculation 
supplies values for the stresses or strains, at any point of a 
structure, such as answer to the breaking load, the only 
legitimate conclusion is that the physical basis for the calcu
lation is not satisfactory. I t would certainly be prudent in 
such a case to conclude that the load contemplated is exces
sive, or badly distributed ; but how excessive it may be, or 
what would happen if it were applied, lies outside the range 
of the ordinary theory. From the theoretical standpoint 
the most logical course would seem to be to consider not the 
breaking load but that answering to the elastic limit. Ac
cording to our author, the elastic limit is usually pretty 
clearly defined in most building materials ; and, supposing 
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this to be true, there would not appear to be serious objec
tion on the practical side to focussing attention on it rather 
than on the breaking load. I t appears, however, to be the 
invariable or almost invariable custom amongst practical 
men to make use ostensibly of the breaking load modified 
by so-called " factors of safety.'7 After giving the defi
nition 

factor of safety = (ultimate strength) -f- (extreme working 
stress), 

our author adds (Art. 34) : " The rational use of a factor of 
safety * * * results * * * in preventing waste of material 
locally by making the margin of strength equal for all parts. '? 

Perhaps a more logical way of presenting the facts would 
be to say that what the engineer puts before him is the 
1 i extreme working stress ' ' which he gets by dividing his 
ultimate strength, *'. 6., breaking load, by a certain number 
which he calls a factor of safety. Supposing the working 
stress thus arrived at not to strain the material beyond the 
elastic limit, there is no objection on mathematical grounds 
to calculations in which it plays a part. 

There still, however, remains a difficulty ; for how are 
we to determine the factor of safety ? On this point we are 
told in Art. 34: " The choice of a factor * * * depends on 
many considerations, such as the probable accuracy of the 
estimated loads and also that of the theory * * * the possible 
effects of bad workmanship, * * * the variability or uni
formity of the load. * * * The factor * * * also serves to 
provide for * * * incidental shocks. * * * The factor * * * 
is rarely less than 3, it is very commonly 4 or 5, and it is 
sometimes as much (in machines) as 10 or 12. " The factor 
of safety covers, in short, uncertainty in the material, un
foreseen contingencies from loading or weather, and gaps in 
the engineer's physical or mathematical knowledge. So long 
as all these sources of uncertainty are lumped together, " a 
rational use of a factor of safety ' ' seems rather much to 
hope for. One of the things most likely to narrow the 
range of uncertainties is a knowledge of what really 
determines the changes that take place in the material as 
the load is raised. There are various theories bearing on 
this point. The three principal believe that in isotropic 
materials the crux is: (1) the maximum principal stress, 
(2) the maximum stress-difference (or difference between the 
greatest and least principal stresses), (3) the greatest 
principal strain. Of these theories the first—employed by 
Lamé and others—is now hardly supported by any the-
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oretical elastician ; the second—suggested by Tresca's ex
periments on the flow of metals—has been used by Prof, G. 
H. Darwin and others ; the third was that advocated by 
St. Venant. Our author refers explicitly to no theory. 
In dealing with ultimate strengths he invariably speaks 
of the stress, and his language in many places (e. g., Art. 8 
where he says " the greatest principal stress measures the 
greatest intensity which the material has to bear '? ) certainly 
suggests that he supports the first or greatest stress theory 
of rupture. In general, however, he really avoids com
mitting himself. When a piece of given material, of given 
size and shape, is loaded in a particular way, so long as 
Hooke's law holds, doubling the load doubles alike every 
stress and strain ; thus the condition of the material can be 
defined by specifying the magnitude of any one convenient 
stress or strain. In such a case the laying down a limiting 
stress does not commit one to any theory of rupture. If, for 
instance, we take a uniform bar under simple tension S, the 
greatest stress and the maximum stress-difference are both 
8, and the greatest strain is 8/E, where E is a constant for 
the material (Young's modulus). Thus we may specify 
that the working stress shall not exceed S, and yet believe 
that the critical thing is that the maximum stress-difference 
shall not exceed 8, or the greatest strain shall not exceed 
8/E. Our author refers to separate limiting stresses for 
simple tension, simple compression, and shearing ; and if 
the simple states were those that always existed, one might 
get along fairly comfortably without any theory of rupture. 
As matters actually stand, however, empiricism is under the 
disadvantage that absolutely simple tension, compression, or 
shearing are rather ideal states, and are only approximated 
to even in the testing machine. In some of the problems 
treated in this book the stress system is not simple, and, as 
we shall see later, the conclusions drawn as to the strength 
are not always reliable unless the maximum stress theory 
be really true. 

Nature of material.—In Arts. 17 to 19, Young's and the 
rigidity moduli are defined in a way applicable only to iso
tropic materials, while isotropy is first mentioned, and then 
only incidentally, in Art. 20. In Art. 26, where the stress-
strain relations are formulated, it is indeed mentioned that 
isotropy is assumed, but nothing is said as to the general 
form of the relations in non-isotropic materials. In Art. 33 
there are fuller references to differences between isotropic 
and non-isotropic materials, but only from the point of view 
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of ultimate strength. The same article tells us that wrought 
iron is not isotropic, and data confirming this statement 
appear in Table I I I , p. 241. Yet in Table IV, p. 241, there 
appear values of Young's and the rigidity moduli for 
wrought iron, as if it were isotropic, and we even have a 
Young's modulus given for " timber " without any specifi
cation of direction. All the mathematical calculations in 
the book, which depend in any way on the precise form of 
the stress-strain relations, tacitly assume isotropy ; and no 
attempt is made to ascertain what modification is necessary 
to render the results applicable to non-isotropic material. 
This assumption of isotropy is by no means peculiar to 
the present work. Rankine and St. Venant indeed in 
various writings intended for practical men treated non-
isotropy in considerable detail, but we know of no recent 
English practical writer who has followed this example. I t 
is very possibly undesirable that elementary books should 
go into much detail in this matter, but greater prominence 
should be given to the limitations involved by the assump
tion of isotropy, whose occurrence is after all probably the 
exception rather than the rule. 

Mathematical treatment—The author puts stresses in the fore
front. Supposing the three principal stress directions to 
coincide with the rectangular axes, then the strain uexis 
made up partly of the direct strain which (the stress) px 
produces in its own direction, and partly of the lateral 
strains produced by p and px" (p. 21). In this way 
Young's modulus and Poisson's ratio at once come to the 
front as elastic constants. The general properties of strain, 
the relations of strain to displacement, the surface stress 
equations and the ordinary body stress differential equations 
are not considered. When the basis provided proves too 
narrow, as it sometimes does—e. g., in Arts. 143 and 147—, 
the author makes such supplementary assumptions as he 
finds necessary. This seems a trifle hard on the con
scientious student whose knowledge of elasticity is con
fined to this book. The proof of the " equality of shearing 
stress in two directions ' ' in Art. 12 is not rigid ; the 
author makes no use of his hypothesis that the cube is in
definitely small, and in fact does not refer at all to bodily 
forces. The use of 1/tr for Poisson's ratio may lead to con
fusion, as that quantity is represented by <r in Thomson 
and Tait 's Natural Philosophy and in Love's Treatise on 
Elasticity. Again in Art. 147, l/v is replaced by y. — used 
to represent the rigidity by St. Venant, Pearson, Love, etc. 
—the rigidity itself being denoted by C. In discussing the 
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determination of the rigidity in Article 72, fi is used for the 
twisting couple for unit angle of twist. The difference be
tween static and kinetic moduli is presumably an unneces
sary refinement in engineering, so that the absence of refer
ence to the subject in Arts. 71 and 72 is hardly surprising, 
but in Art. 73 the discussion of Maxwell's method of de
termining the rigidity might well have called attention to 
the fact that it keeps the tension of the wire unaltered and 
eliminates the moments of inertia of the shifted masses 
round their own axes of figure. 

Before entering on a discussion of beam problems in 
Chap. V, the author describes i ( uniformly distributed 
stress/ ' which means stress the same in intensity and direc
tion at every point of a plane surface, and '4 uniformly 
varying stress " in which the stresses are parallel, but vary 
as the distance from some line (a "neutral ax is ' ' ) in the 
plane to which they are perpendicular. He adds (Art. 79) : 
" Uniformly varying stress is practically important because 
it occurs * * * in a bent beam, in a tie-rod when subjected to 
a non-axial pull, and in a long strut or column." In short 
the author assumes the ordinary Bernoulli-Euler theory for 
beams whether locally or generally loaded. He considers 
first the stresses alone, explaining several graphic methods. 
He then proceeds to determine the " slopes " and " deflec
t i ons" in beams, on the assumption that " The strain on 
any imaginary filament taken along the length of the beam 
is sensibly the same as if that filament were directly com
pressed or extended by itself" (Art 97). Supposing a? 
measured parallel to the length of the beam, and denoting 
the slope by i, the deflection by u, and the radius of 
curvature of the central axis by B, the author (Art. 
99) deduces 1/B = di/dx = d2u/dx2, whence i = f(l/B)dx, 
u = J idx. Having expressed 1/B in terms of the bending 
couple by the Bernoulli-Euler method, he thus arrives by 
one step at i and by a second step at u. In introducing the 
formula 1/B = d2u/dx2 the author specifies that the deflection 
is assumed very small, but he does not explain that this 
means that (du/dx)2 is neglected as compared to unity. 

The strained form of a bent beam is illustrated by Fig. 
84, Art. 102. This would have been clearer if the excess 
of width at the top had been more exaggerated (cf. 
Thomson and Tait's Natural Philosophy, Art. 716). Also 
when the author says : " The lateral strain being l/<* of the 
longitudinal strain, the anticlastic or transverse curvature 
* * * is 1/<T of the longitudinal," one cannot but fear that 
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the student will obtain an erroneous idea both of what is 
meant by " anticlastic curvature " and of what actually 
takes place. The conclusions in the end of Art. 102 as to 
the bending of a u wide flat strip ' ' seem hardly in accord
ance with Pearson and Filon's results (QuarterlyJournal of 
Pure and Applied Mathematics, Vol. 31, p. 66, especially 
Arts. 52 et seq.). The author's treatment of the ordinary 
first approximation results for beams has much to com
mend it, especially for students weak at mathematical 
analysis. When, however, he tries to improve on the first 
approximation results, he is less satisfactory. Thus in 
Art. 95 when deducing the distribution of shearing stress 
over the section of a beam, and in Art. 105, when 
applying the results so obtained to the calculation of the 
u additional deflection due to shearing," he tacitly as
sumes that the shearing stress is the same at every point of 
a narrow strip perpendicular to the plane of bending. We 
are not aware that this has been proved in any particular 
case ; it is not in accordance with the solution obtained by 
St. Venant for beams under terminal shearing force (Tod-
hunter and Pearson's History, Vol. 2, Part I, p. 64), or 
with that found by Pearson and Filon for a heavy elliptic 
beam (1. c., pp. 88 and 98). Further the l i correction' ' in Art. 
105 is of the same order of magnitude as the difference 
between the vertical displacements at different points of 
the cross section ; it was obtained by equating work done by 
stresses to work done by gravity on the load, while no ac
count was taken of what part of the central section the load 
was applied at. 

In dealing with such matters, a reviewer cannot but re
gret the great scarcity of references in the work to mathe
matical text books or papers. There are two or three 
references to Lord Kelvin and one to Pearson, in connec
tion with experimental work or definitions, while St. 
Venant is mentioned generally in connection with torsion; 
but to the text books of these authors, or to that of Love, 
or to their mathematical papers, there seems no reference 
anywhere. Thus when the author reaches an unusual re
sult one is uncertain whether it has or has not any more 
substantial basis than the proof presented in the book. 
The average engineering student is perhaps unlikely to 
utilize references, but their presence would at least not 
harm him and should facilitate enlargement of ideas amongst 
the more competent. 

The treatment of u frames " in Chap. V I I I is condensed, 
and various assumptions,—e. g., in Arts. 113,116, 117, and 
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119—seem to require more explanation. The index tells us 
that the " method of reciprocal figures " in Arts. 114 et seq. 
is due to Maxwell, but his name does not appear in the 
text. The subject of " redundant members'7 in frames is 
very lightly touched upon, and there is no reference to 
Maeaulay's recent extension of Maxwell's method (Philo
sophical Magazine, Jan., 1898, p. 42). 

The treatment of struts in Chap. I X is fairly full, but the 
explanation of Euler's method in Art. 122 might be im
proved. On p. 172 the curvature is taken as d2u/dy2 with
out restriction. The solution of course assumes that (du/dy)2 

is negligible, and yet the conclusion is drawn : " t h e same 
force will serve to keep the strut bent whether the curvature 
is small or not so small.' ' Presumably in engineering prac
tice anything but small curvature is rare, but considerable 
elastic bending is easily introduced in thin rods, and a ref
erence to some more general treatment (e. g., Love's Elas
ticity, Vol. 2, Arts. 227 et seq.) would appear desirable. 
The conclusion reached by the author (Art. 122) that the 
length of a segment of a bent strut may be any submultiple, 
even or odd, of the whole length, is correct, but it does not 
follow from his mathematics. His final equation justifies 
his conclusion (P/EI)1A(L/2) = mz/2, only when n is an 
odd integer. The fact is that in originally assuming 
u = WjCosf (P/EiyAy} the author excluded all cases in which 
the displacement u vanishes at the center of the rod (his 
origin). The illustration selected in Art. 120 of " struts 
with lateral load ' ' is rather curious. A bending moment 
whose true value is (WL/S)\1 — (2xjL)2\ is represented as 
( WLI'8)cos(nxjL), thus replacing the true differential equa
tion by one of the type 

(d2u/dx2) + au + c cos bx — 0. 

A pure mathematician, it may be feared, would hardly ac
cept as adequate the explanations that 'l a parabola * * * is 
not far from coincidence with a curve of sines ' ' and that 
1 — (2x/L)2 agrees in value with cos (nxjli) both when 
x = 0 and when x = L/2. I t may be added—as a personal 
contribution from the reviewer—that while the solution of 
the true differential equation presents no real difficulty, the 
result does not lend itself to manipulation by quite elemen
tary methods. 

Chap. X calls for a few criticisms. Art. 127 assumes—as 
is indeed usual—that when a circular shaft of any length 
is twisted in any symmetrical way each element suffers a 


