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PICARD'S ALGEBRAIC FUNCTIONS OF TWO 
VARIABLES. 

Théorie des Fonctions algébriques de deux Variables indépen­
dantes. Par EMILE PICARD, Membre de l'Institut, Profes­
seur à l'Université de Paris, et GEORGES SIMART, Capitaine 
de Frégate, Répétiteur à l'Ecole Polytechnique. Tome 
I, Paris, Gauthier-Villars et Fils, 1897. 8vo, vi+246 pp. 
T H E theory of functions of a single complex variable, the 

growth of which has been one of the striking features in 
the history of pure mathematics during this century, can, 
as it is well known, be developed from at least two tolerably 
distinct points of view. Cauchy and Riemann made ex­
tensive use both of methods of proof—such as integration 
—which may be conveniently called transcendental, and of 
geometrical reasoning ; by such means they established not 
only results of a geometric or transcendental character but 
also others which, when once obtained, were naturally ex­
pressible in terms of pure algebra. Weierstrass and his 
school on the other hand have made scarcely any use of 
geometry, even for purposes of illustration, and have devel­
oped the subject from an almost purely algebraical stand­
point, building it up systematically and logically from the 
most elementary notions. The former method has the in­
terest which always attaches to investigations which con­
nect two or more different branches of mathematics and 
use the methods of the one to solve problems in the other ; 
and the geometric interpretations which continually present 
themselves are with most minds a valuable aid towards the 
clear comprehension of the theory. Partly owing to these 
reasons, partly owing to the well known difficulty of access 
to Weierstrass's ideas, most systematic treatises on the theory 
of functions which were published up to a few years ago 
expounded chiefly the ideas of Cauchy, Riemann and their 
followers. But, as the Weierstrassian methods have become 
more widely known, their severe simplicity, their unity, 
and their rigor have made many converts ; and Weier­
strass's dictum, that the theory of functions " must be built 
up on the basis of algebraic truths, and that it is not there­
fore the right way if conversely the i transcendental' is em­
ployed to establish simple and fundamental algebraical 
propositions,"* is every year finding more general accept-

* Letter to Professor Schwarz, of October 3, 1875, Mathematische 
Werke, II , p. 235. 
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ance. Eecent treatises illustrate this tendency. Dr. For­
syth's Theory of Functions and Messrs. Harkness and Mor­
ley's treatise on the same subject, each published some six 
years ago, wTere among the first books which gave an account 
of the subject from both points of view ; and a like catho­
licity of treatment has shown itself in modern French and 
German treatises. More recently still Messrs. Harkness 
and Morley in their admirable Introduction to the Theory of 
Analytic Functions have employed Weierstrassian methods 
predominantly though not exclusively. 

But the systematic methods which are possible and often 
desirable in expounding a subject which has been worked 
at with exceptional vigor and success for more than half a 
century, which has become a recognized subject of univer­
sity teaching, and the boundaries between which and allied 
theories have been to some extent drawn, become inappli­
cable in dealing with a nascent subject, the difficulties of 
which have been only overcome here and there. As Weier-
strass says in the letter already quoted : " I t is evident 
that every path must be open to the investigator as long as 
he is still engaged in his inquiry." 

The theory of functions of two or more independent va­
riables, as at present known, belongs to this latter class of 
subjects, which are far too imperfect to admit of syste­
matic treatment by a single method. The difficulties 
are such that any method which brings out results is 
welcome ; even doubtful processes, which when carefully 
examined may be said rather to render their apparent con­
clusions plausible than to prove them, are of value, since 
results thus obtained are at any rate suggestive, and their 
accuracy can be tested at a later stage by other methods. 
In the same way it is permissible or even desirable to leave 
out of account exceptional cases in some particular part of 
the subject, reserving them for further treatment when some 
more results of a general character have been obtained, or 
to deal with special cases in the hope that they may throw 
light on a hitherto intractable general theory. 

I t is in this spirit that M. Picard and his collaboratorr 
M. Simart, have written the present treatise ; and in this 
spirit it should be read and appreciated. I t is not, and 
from the nature of the case cannot be, a connected and sys­
tematic treatise dealing with functions of two variables, as 
Pr . Forsyth or Messrs. Harkness and Morley treat the corre­
sponding case of one variable ; its chapters may be described 
as a series of monographs dealing with those branches of 
the theory which have hitherto been most studied ; but 
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unlike the original memoirs on which they are based they 
are written on a uniform plan and the connection between 
the different topics treated of is, within certain limits, made 
as evident as the nature of the case admits. 

The methods employed correspond for the most part to 
those used by Cauchy and by Eiemann for the study of 
functions of one variable ; and the material of the book is 
to a large extent derived from memoirs by M. Picard 'him­
self and by M. Poincaré, while various results due to 
Noether, Clebsch, Betti, Cayley, Castelnuovo, Enriques and 
others have also been embodied. There is no reference to 
Weierstrass's theory of analytic functions of two or more 
variables, and no use is made of his methods. 

I t is well known that the theory of functions of one com­
plex variable is intimately connected with geometry in two 
distinct ways. Some of the advantages of representing a 
complex variable x{ = £ + is') by a point in a plane were 
noticed more than a century ago ; an important extension 
of the method was made by Eiemann in introducing the 
surfaces now associated with his name for the treatment of 
many valued functions : the complex variable is thus rep­
resented by a point not confined to a single plane but mov­
ing either on a system of superposed planes connected in a 
particular way or on a surface, such as the familiar an­
chor ring, contained in space of three dimensions. The 
"branching" of the function receives an interpretation in 
certain of the geometrical properties of the corresponding 
Eiemann surface. I t is characteristic of this method that 
a correspondence is established between a single complex 
variable x and a real two dimensional locus, and that, 
though the method is admirably adapted for the study of 
what we may conveniently call the qualitative relations be­
tween the dependent variable or function (y) and the inde­
pendent variable (x), the quantitative variations of y re­
ceive no interpretation. 

An entirely different method consists in interpreting the 
two variables x, y as coordinates of a point in a plane ; the 
functional relation between them gives a curve in the plane. 
But real points on the curve correspond only to real values 
of the variables ; complex values of the variables only re­
ceive an interpretation when we generalize our geometrical 
conceptions so as to include imaginary points, and the actual 
diagrammatic representation fails. In this method, then, 
we establish a correspondence between our pair of variables 
and a one dimensional locus ; and the quantitative varia­
tions of both are represented. 
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Thus if we are dealing with two variables x, y connected 
by the equation 

f = (1 —s2)(l--jfeV), 

the first method employs the surface of an anchor ring, a 
double plane, or some other two dimensional locus, while 
the second interprets the equation as that of a plane quar-
tic curve. 

Some important differences arise when we pass from the 
oase of one to that of two independent variables (#, y). 
The obvious extension of Riemann's geometric method re­
quires for the representation of the four real variables in­
volved in JC( = £ + i£') and y( = y + iy') a four dimensional 
locus,* and, just as in the case of one complex variable it 
may be convenient to work with a surface (like an anchor 
ring) contained in space of a higher number of dimensions, 
so this locus may be a curved " surface' ' in space of five 
dimensions. The second method of representation, how­
ever, only leads to an ordinary surface in space of three 
dimensions. 

Thus, restricting ourselves to the study of algebraic func­
tions of two variables, we have to deal on the one hand 
with the Analysis situs of hyperspace and on the other with 
the theory of ordinary algebraic surfaces. 

The first two chapters of the book under review deal 
with some fundamental questions relating to the geometry 
of hyperspace and to integration in such space, these be­
ing necessary as an introduction to problems which are sub­
sequently discussed. 

If we restrict ourselves to ordinary space we have three 
kinds of integrals involving three variables, which present 
themselves commonly and are of geometrical importance, 
viz., line integrals of the type f {Fax + Qdy + Rdz), sur­
face integrals such as jTf^Adydz + Bdzdx -f- Cdxdy) and 
volume integrals JffVdxdydz. If we pass to space of n 
dimensions we have similarly m-tuple integrals in n va­
riables, where m may have any integral value from 1 t o n 
inclusive ; the conditions of integrability of such integrals 
in the case of m < n, and the conditions that they should 
vanish when taken over a closed locus, relations between 
integrals of different orders, and allied questions are dealt 
with in a most suggestive though incomplete manner. The 
discussion of the Analysis situs of loci of any number of di­
mensions in space of a higher number of dimensions, which 

* I use this word, though with some hesitation, as being on the whole 
the best English equivalent for variété. 
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follows, leads up to the definitions and to properties of cer­
tain numbers, which are, from one point of view, the gener­
alization of the number known as the connectivity in the 
case of an ordinary Bieinann surface. The connectivity of 
such a surface depends on the number of curves of an as­
signed character which can be drawn on the surface. But 
in the case of a higher number of dimensions it becomes 
necessary to consider in an analogous way not only curves 
(one dimensional loci) but also loci of 2, 3, •••, n — 1 di­
mensions, where n is the number of dimensions of the locus 
considered. We thus have the conception of connectivities 
of different orders px, p2, —,pm, '~,pn-ii wherepm depends on 
the number of m-dimensional loci of a certain character 
which can be drawn on the surface. These numbers are 
called the numbers of Betti and Riemann, as they occur in a 
memoir by the former* and in a posthumous fragment pub­
lished in the collected works of the latter.f I t will be con­
venient to refer to them simply as Bettian numbers. I t 
may be remarked in passing that it is perhaps a little unfor­
tunate that this particular notation should have been chosen 
by MM. Picard and Simart, as when we revert to the case 
of n— 2, the number px does not reduce, as the notation 
would suggest, to the familiar p of the ordinary theory, but 
is the connectivity 2p + 1. These Bettian numbers are also 
shown, as was to be expected, to play an important part in 
the theory of integrals on the surface, the fundamental 
property being that if we are dealing with an n-dimen-
sional locus En contained in space of a higher number of 
dimensions, then pm is the number of independent periods 
obtained by integrating round closed circuits an m-tuple 

integral ƒ • • • ƒ 2-3^, 2, —, mdx1dx2 • • • dxm, 

which satisfies the condition of integrability. 
A remarkable property of Bettian numbers, which has, 

of course, no analogue in the theory of the ordinary Rie-
mann surface, is that for a closed surface 

Pm Pn — m y 

a property established by M. Poincaré in an important 
memoir on the Analysis situs of hyperspacej, but only proved 
by MM. Picard and Simart for the case of m = 1. 

*Annali di Matematica, vol. 4 (1870-1871). 
f Fragment aus der Analysis Situs, Werke (2d edition), pp. 479-482. 
X Jour, de VÉcole polytechnique, series 2, vol. 1 (1895). 
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The following chapter deals chiefly with double integrals 
of functions of two variables, which are in general taken 
to be complex. The fundamental theorem is M. Poincaré's 
generalization* of Cauchy's well known theorem on the 
contour integration of a holomorphic function. The cor­
responding theorem when the function has singularities in­
side the locus over which the integral is taken is only es­
tablished for the case of rational functions ; and it is shown 
that corresponding to the residues which occur in Cauchy's 
theorem we now have periods of abelian integrals corre­
sponding to the curve obtained by equating to zero the de­
nominator of the subject of integration. Here also it may 
be permitted to make a trifling criticism of the definition 
of a residue of a function of two variables which M. Picard 
adopts after M. Poincaré, as the quantity thus defined cor­
responds, in the case of one variable, not to the residue 
which Cauchy's work has made classical, but to the same 
multiplied by 2ni. The chapter concludes with a short dis­
cussion of simple integrals of total differentials in two com­
plex variables, viz., of integrals of the type 

f(Pdx+ Qdy) 

where P and Q satisfy a condition of integrability, and are, 
moreover, restricted to being rational functions, but a fuller 
treatment of the subject is postponed to a later chapter. 

The next chapter introduces the second of the two meth­
ods which we have referred to as giving a geometric inter­
pretation of a function of two variables, viz., by an alge­
braic surface in ordinary space. Almost any problem of 
analytical solid geometry might of course be regarded as 
belonging to the theory of functions of two variables, but, 
as in the case of two dimensions, the characteristic ideas of 
the theory of functions are connected primarily with certain 
special parts of the theory of surfaces. In particular the 
theory of the singular lines and points of a surface, and the 
method of birational transformation play a leading part. 
The problem of the reduction of the higher singularities 
of plane curves, e (/., multiple points wThere two or more 
branches touch or have contact of a higher order with one 
another, to double points with distinct tangents is, as is well 
known, of great importance for various questions connected 
with the theory of functions of one variable. I t has been 
extensively studied during the last quarter of a century and 

* " S u r les résidus des intégrales doubles,' ' Ada Math., vol. 9 (1887). 
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has been completely solved in a variety of ways by means 
of birational transformations. The corresponding problem 
in three dimensions is complicated by the existence of sin­
gularities of two distinct types, multiple lines and multiple 
points, while the latter may either be isolated or lie on the 
former. In reducing these singularities use is made of 
methods of projecting from space of higher dimensions 
which were, I believe, first used by Clifford* and have been 
extensively developed by modern Italian geometers. Just 
as, for example, a nodal plane cubic curve can be treated as 
the projection of a twisted cubic ; so in general, a surface 
can be treated as the projection of a two dimensional locus 
in space of four or more dimensions with fewer singularities. 
The most general result of this kind established by MM. 
Picard and Simart is that any algebraical surface can be 
converted by projections into a " surface'7 in five dimen­
sional space without singularities, and then, by further pro­
jections, into a surface in ordinary space, the only singular­
ities of which are double lines with triple points on them. 
Thus isolated multiple points and lines with multiplicity 
higher than two can be removed. This projection estab­
lishes a one-one correspondence between the two loci, and 
when put into algebraical language is equivalent to bira­
tional transformation. Hence in problems in which the 
order of a surface is unimportant and we are dealing only 
with properties which are unaffected by birational trans­
formation, it becomes unnecessary to consider singularities 
other than those just named. 

The remainder of the chapter deals with the connectivity 
of algebraical surfaces. Since, as we have seen, the two 
complex variables (x, y) correspond to four real variables, 
there are three connectivities, pv p2, pv to be considered, 
which, however, reduce to two in virtue of the equation 
Pi — iV Purely geometrical methods of treatment, such as 
can be employed in the case of ordinary Kiemann surfaces, 
soon become unmanageable owing to the difficulties of real­
izing hyperspace, and have to be supplemented by algebra­
ical and transcendental processes ; among the latter is the 
employment of a certain linear ordinary differential equa­
tions, from which the number p1 for the surface can be ob­
tained. A very remarkable difference between the num­
bers pvp2, which at the same time emphasizes the difference 
between the cases of a plane curve and of a surface, is es­
tablished. In the case of a plane curve Cn, represented by 

* " O n the classification of loci," Phil. Trans. (1878) and Math. Papers, 
pp. 305-331 
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f(x, y) = 0, it is well known that each additional singularity 
diminishes the genus (deficiency, genre, Geschlecht) of the 
curve, and consequently the connectivity of the corres­
ponding Eiemann surface ; in particular the Eiemann sur­
face of a non-singular Cn is necessarily multiply connected 
if n > 2. The general effect of singularities on the con­
nectivity of order 2(p2) of an algebraical surface is of the 
same 'character, though not capable of such simple expres­
sion ; the addition of a new singularity in general dimin­
ishes the number of possible two dimensional closed loci 
that can be drawn on the real four dimensional locus, 
which represents (in the sense already explained) the alge­
braic equation f(x, y, z) = 0. Rut the addition of a new 
singularity has, in general, an effect of the opposite kind on 
the connectivity of order one (_px), as it tends to increase 
the possible number of closed curves that can be drawn ; 
and in particular so far from a non-singular surface possess­
ing the maximum number of such curves it^is shown that 
it cannot possess any, and it is therefore simply connected. 

The following chapter (V) , on integrals of the first kind 
of total differentials, deals with one of the most interesting 
parts of the whole subject, the main outlines of it being 
due to M. Picard himself. In connection with a plane alge­
braic curve, f(%,y) = 0, we have abelian integrals CB(x,y)dx 
(where B is a rational function), which have been classified 
into the familiar three kinds. When we pass from a plane 
curve to a surface, f(x,y,z) = 0, we have to inquire in what 
direction we are to look for the equivalent of an abelian 
integral. One obvious generalization is to replace the single 
integral CR(x,y)dx by a double integral f CR(x,y,z)dxdy. 
Another and quite different generalization consists in taking 
an integral of a total differential, viz., C(Pdx + Qdy) where 
P a n d Q are rational functions of #,y,3, which satisfy a con­
dition of integrability. These integrals like ordinary abe­
lian integrals fall into three classes according to the nature 
of their infinities, and a special interest attaches to those of 
the first kind, which are finite at every point of the surface. 
Integrals of this kind were first introduced by M. Picard 
fifteen years ago* ; and a very large part of what is now 
known about them is due to him. Though they do not seem to 
have been extensively studied, their importance both in ge­
ometry and differential equations may be seen by reference 

* In a short paper in the Comptes rendus, December 1, 1884 ; soon fol­
lowed by the memoir. " Sur les intégrales de différentielles totales algé­
briques de première espèce," LiouvilWs Journal; series 4, vol. 1 (1885). 
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to Humbert's memoir on hyperelliptic surfaces* and to 
Painlevé's Stockholm lectures on differential equationsf. 

A problem of capital importance which presents itself at 
the outset is that of ascertaining what surfaces admit of such 
integrals. This is by no means as simple as the correspond­
ing problem in two dimensions. For whereas every plane 
curve of genus p admits of exactly p integrals of the first 
kind, so that only rational curves admit; of no such integ­
rals, the corresponding problem for surfaces is much more 
complicated and has by no means been completely solved. 
I t is shown by a singularly beautiful piece of analysis 
(given in M. Picard's earliest paper on the subject), that the 
determination of surfaces, of a given order n, which admit 
of integrals of the first kind, depends on the integration of 
a linear partial differential equation. In homogeneous co­
ordinates this equation can be expressed in the form 

'% + :% +:Z + :%-°-
where the coefficients 0 are quantics of order w—3, which 
satisfy the equation 

9"i +
 9"> + ?*. +

 d0i = o. 
dx dy dz dt 

For the case of n = 4 the integration of the equation pre­
sents no difficulties, except that the discussion of certain 
exceptional cases requires a little care. Two quarfcic sur­
faces are found which satisfy the required conditions, and 
it is stated without detailed proof that there are no others 
but these and their projections and certain cones. There 
is a trivial exception to this conclusion, which M. Picard 
appears to have overlooked, as a third surface can be found 
which, though it can easily be deduced by a limiting 
process from one of his surfaces, is not strictly included 
in it in the form in which it is given. In the case when 
n > 4, the integration of the differential equation presents 
formidable difficulties which do not appear to have been 
overcome. Several general results are, however, given which 
throw light on the existence or non-existence of surfaces of 
the kind considered. Thus in the case of a cone every 
abelian integral relative to a plane section (not passing 

* Liounlle's Journal, series 4, vol. 9 (1883). 
t Leçons sur la théorie analytique des équations différentielles ; 

Paris, 1897. 
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through the vertex) is obviously an integral of a total dif­
ferential relative to the cone, so that if the section of the 
<3one is a curve of genus p, we have p integrals of the first 
kind. As also a birational transformation converts an in­
tegral of the first kind of a total differential into an inte­
gral of the same character, surfaces which can be obtained 
from non-rational cones by a birational transformation will 
possess such integrals. On the other hand, a rational (uni-
cursal) surface—the coordinates of a point on which are ra­
tional functions of two parameters—evidently possesses no 
such integrals, since the integral of a rational function is 
necessarily infinite for some values of the parameters. I t 
follows that no surfaces of order 2 or 3 can possess any such 
integrals. Further, since one of our integrals must reduce to 
an abelian integral of the first kind for any algebraic curve 
on the surface, it follows that our integral must vanish iden­
tically along any rational (unicursal) curve on the surface ; 
if, therefore the surface contains a family of rational curves, 
and there is an integral of the first kind, J{Pdx + Qdy), then 
Pdx + Qdy — 0 must be the differential equation of the family. 
MM. Picard and Simart also show that an integral of the 
first kind can only exist if the connectivity of the first order 
(px) is at least 3 ; and therefore cannot exist on a non-singu­
lar surface, for which it has already been shown that pl = 1, 
a result which is established independently by means of the 
differential equation. 

Another subject of interest discussed in this chapter is 
the existence of functionally independent integrals of the 
first kind. An abelian integral associated with a plane 
curve is a function of one variable only, and therefore all 
such integrals are functions of one another ; the ordinary 
theory deals only with linear independence. But integrals 
on a surface are in general functions of two independent 
variables, and we have therefore to consider cases of func­
tional as well as of linear independence. Except in certain 
cases of h y per elliptic surfaces (which however are not dis­
cussed in the book) the results hitherto obtained are chiefly 
negative. The integrals of the first kind on a cone or on a 
surface obtained from it by a birational transformation as 
well as on any surface containing a family of rational 
curves, are obviously functions of one another ; and it is 
further shown that there cannot be two functionally inde­
pendent integrals on quartic surfaces or on certain classes 
of quintic surfaces. 

Integrals of the second kind of total differentials, which 
form the chief part of the subject matter of chapter 



448 PICARD's ALGEBRAIC FUNCTIONS. [June, 

VI, are in some respects both simpler and less interesting 
than those of the first kind. The characteristic of such in­
tegrals is that they are algebraically infinite at one or more 
points of the surface with which they are associated ; con­
sequently rational functions of the variables form an obvi­
ous though trivial class of such integrals, which it is in general 
unnecessary to consider further. The number of linearly 
independent integrals of the second kind, rational functions 
being ignored, is shown to be less by 1 than the number 
px which expresses the connectivity of the first order. On 
the other hand the number of such integrals is shown to 
depend upon certain linear differential equations, and the 
study of these equations thus leads to a method of deter­
mining pv a number which it is not in general practicable 
to obtain by purely geometric methods. 

A short discussion of integrals of the third kind con­
cludes the chapter, but no results of special interest are 
obtained. 

Double integrals which are always finite on an algebraic 
surface are also said to be of the first kind. The properties 
of these integrals and a number of important geometric ques­
tions with which they are intimately associated form the 
subject matter of the last two chapters. These integrals 
were first introduced by Noether,* and have subse­
quently been studied chiefly by M. Picard and, in con­
nection with hyperelliptic surfaces, by Humbert. They 
form the most direct analogue of abelian integrals of the 
first kind and are closely connected with certain parts 
of the theory of birational transformation of surfaces. In 
the theory of plane curves there is only one known num­
ber p which is invariant for such transformation ; it can be 
defined in at least four ways, viz., (1) in terms of the con­
nectivity of the associated Riemann surface by means of 
the equation 2p + 1 = JV, (2) by means of the formula 
p = i ( ^ — 1) (n, — 2) — 2<5, connecting it with the order 
of the curve and the number of double points (or equiv­
alent higher singularities), (3) as equal to the number of 
linearly independent integrals of the first kind, (4) as equal 
to the number of adjoint polynomials of order n — 3. We 
have already seen that when we extend to surfaces the 
ideas involved in the first of these definitions we meet with 
two distinct Bettian numbers pv pr Corresponding to the 
third and fourth definitions we have for a surface of order 

* " Zur Theorie des eindeutigen Entsprechens algebraischer Gebilde 
von beliebig vielen Dimensiouen, " Math. Annalen, vol. 2 (1870). 
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n an invariant number* (/> ), called the geometric genus 
(genre géométrique) which is equal to the number of linearly 
independent double integrals of the first kind, as well as to 
the number of linearly independent adjoint surfaces of 
order n — 4, the definition of adjoint being appropriately 
modified. Corresponding to the second definition we have 
a number (pn), also invariant, called the numerical genus 
(Cayley's deficiency), which in the case when the surface 
has only singularities of the simplest kinds is defined by 
the formula 

A = K ^ " l ) ( ^ - 2 ) ( n ~ 3 ) - ^ ( i - l ) ( i - 2 ) 

— (> — 4 ) d + 2t+ 7T— 1 

where the second term on the right is due to isolated ?'-tuple 
points, and the subsequent terms to a double curve of order 
d and genus n with t triple points on it. Analogy with the 
plane case might lead us to suppose that we should always 
have ̂  = pn ; but this proves not to be the case. By the defi­
nition pg is positive or zero ; but it was pointed out by Cayley 
in 187If that pn might be negative, and that in particular 
for a ruled surface pn was equal to the genus of a plane section 
taken negatively. For example, in the case of a quartic 
cone without double lines, the formula just quoted gives 

i > „ = l - 4 = - 3 . 

Subsequent investigation has shown that, though in a cer­
tain large sense the two numbers are generally equal, 
there are important classes of surfaces for which p > pn, 
while the inequality is never reversed. A slight sketch is 
given of some of the leading geometrical properties with 
which these numbers are associated, and of their connection 
with double integrals of the first kind. The theory of 
double integrals is also applied to prove the invariance for 
birational transformation of still another u genus ,? of sur­
faces (Curvengeschlecht, second genre), which can be defined 
as the genus (in the ordinary sense) of the variable curves 
of intersection of the original surface and the adjoint sur­
faces of order n — 4 ; with this are again associated other 
numbers showing the fundamental property of invariance. 

* First introduced by Clebsch, u Sur les surfaces algébriques," Comptes 
rendus, vol. 67 (December, 1868). 

t "On the deficiency of certain surfaces," Math. Annalen, vol. 3 ; Colh 
Math. Papers, vol. 8, no. 524. 
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The final chapter is chiefly geometrical, dealing partly 
with some of the questions already referred to, and espe­
cially with certain topics in which the theory of curves in 
space is associated with that of surfaces. I t is necessarily 
fragmentary in character, and may, perhaps, be regarded 
in some sense as an introduction to the more purely geo­
metric treatment of surfaces which M. Picard promises us 
in his second volume, f 

I t is difficult to give in a few words a critical verdict on a 
book which embraces as many subjects as the volume under 
review. I t is undoubtedly rather fragmentary ; and the 
reader who goes straight through it, and does not merely 
pick out the chapters which deal with topics of which he 
has made the acquaintance elsewhere, may be to some ex­
tent inclined to complain that the connection between dif­
ferent parts of the book is not made more evident. One 
would find it rather a relief—to take one illustration—if a 
clearer idea were given of the relation between the Bettian 
numbers which are dealt with in the earlier chapters, and 
the various " genera " which figure prominently towards 
the end, all of them in some sense analogues of the familiar 
and unique p of two dimensional geometry. And again a 
reader whose tastes lie in the direction of thoroughness in 
investigations may have some cause for complaint on ac­
count of the frequency with which the authors refuse to 
discuss any but the most straightforward cases of the vari­
ous problems ; it is difficult to estimate the value of a the­
orem which only professes to be " generally " true. 

But this scrappiness, which I believe very largely to be due 
to the present state of our knowledge of functions of two vari­
ables, has great counter-balancing advantages. There is 
hardly a chapter in the book which does not suggest to any 
intelligent reader a variety of problems which cry for solu­
tion. Some of these are probably worthy the attention 
and require the skill of M. Picard's equals, while to others 
any competent analyst or geometer might devote some at­
tention with reasonable expectation of obtaining results 
of interest. Above all things the book is supremely inter­
esting ; for my own part, at least, I can recall no book that 

* Introduced by Noether in his paper: " Zur Theorie des eindeuti-
gen Entsprechens algebraischer Gebilde," Math. Annalen, vol. 8 (1875). 

f The reader to whom the general geometrical questions touched on in 
this and the preceding chapters are not familiar may be referred to a most 
fascinating article by Castelnuovo and Enriques, " S u r quelques récents 
résultats dans la théorie des surfaces algébriques ' ' (Math. Annalen, vol. 
48 (1897)). 
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I have read with such pleasure since the days when I first 
met with Dr. Salmon's incomparable treatise on conic 
sections. 

ARTHUR BERRY. 
KING'S COLLEGE, CAMBRIDGE. 

NOTE ON PAGE'S ORDINARY DIFFERENTIAL 

EQUATIONS. 

AN interesting review of this elementary text book was 
given by Professor Lovett in the BULLETIN, April, 1898. 
As the suggestions offered in the review cited are mainly of 
a general nature and appeal especially to those teachers 
familiar with the larger works of Lie, and hence able to 
make the desirable amplifications, it would seem worth while 
to address to the average reader or teacher of this text a few 
critical remarks of detailed character. Since my first 
acquaintance with Lie's groups and theories of integra­
tion, I have had the desire to introduce a class of mature 
students to the theory of ordinary and partial differential 
equations through the medium of continuous groups. Hav­
ing used* the text by Page, I am more than ever convinced 
that the proper method (and one that will come more and 
more into vogue) of attacking differential equations is that 
which employs the powerful machinery—so simple when 
once mastered—set up and perfected by the illustrious Lie. 

Being in full sympathy with the aims of the text, I was 
glad to find that, on the whole, the task had been well 
executed. I trust that in a second edition all objections 
that prove to be well grounded will be eradicated and that 
the errata, too numerous for an elementary text, will be 
corrected. 

There is a curious mistake on p. 6, where the tangents to 
every integral curve of an ordinary differential equation are 
said to pass through the origin ! This is indeed the case for 
the only example given in the paragraph concerned. The 
answer to Ex. (19), p. 9, should be 

* During a year's graduate course in continuous groups, we devoted 
two months to the reading of Page's text, finding it a very practical sup­
plement to a course of lectures on the general theory . 


