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That F(#, y) thus defined is harmonic follows at once 

from (3) since ^— is easily seen, either by direct computa­

tion or from its value : 

3 n P°g Pi - log p] 

to be a harmonic function of (#, y). 
For the proof of the second part of the theorem formula 

(2) is particularly adapted. We have here to prove that 
if (x, y) approaches a point P on the circumference V(x, y) 
approaches as its limit the value of Vc at P. The idea upon 
which this proof rests is that when (#, y) is near to P a 
small arc including P corresponds to a large range of values 
of <p and, therefore, when we take the arithmetic mean as 
indicated in (2) the value of Vc at P will predominate.* 
The exact proof based upon the idea just stated merely re­
quires the writing down of a few inequalities. 
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B Y a Stieltjes polynomial will here be understood any 
polynomial satisfying a regular linear differential equation 
of the second order 

*y , f1-*! • ... | i -^Wy 
dx2

À \x — e1 x — ejdx 
<p(x) = A0x'~2+ A,*-* + - + Ar_2 = 0 

(# — ex) — (x — er) 

in which the singular points ev —, er, °o are real and in which 
also r exponent-differences Xv ••• , lr are (algebraically) less 
than unity. We shall here for the most part confine our 

* It will be seen that this idea is similar to that suggested by Schwarz. 
(Ges. Werke, vol. 2, p. 360. See also Klein-Fricke : Modulfunctionen, 
vol. 1, p. 512.) We avoid, however, the artificiality of Schwarz's 
method. 
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attention to the case in which the number of singular points 
is equal to 4. The differential equation may then be writ­
ten as follows : 

dx2 \x — ex x — e2 x — ez ) dx 

O — ex) (x - e2) (x — eB)u 

The three singular points in the finite plane we will suppose 
to succeed each other in the order ex < e2 < er If their po­
sitions and exponent-differences are given, the accessory 
parameters A and B are completely determined by the re­
quirement that one solution of the equation shall be a 
polynomial of the wth degree. * The former parameter is 
the product of the two exponents for oo which are — n and 

the value of the latter is found from an equation of the 
(n + l ) t h degree. We have accordingly a group of n + 1 
polynomials which belong to the same set of exponent dif­
ferences. If the exponent differences for the three singular 
points in the finite plane are each equal to £, the group con­
sists of Lamé polynomials. These, as is well known, have 
the common property that their roots are all real and in­
cluded between ex and e3. In 1881 Klein f showed, however, 
that they could be distinguished, each from every other, by 
the manner in which its n roots are divided between the 
two segments e^e2 and e2er To each of the n + 1 ways of 
assigning n roots to the two segments there corresponds, 
therefore, one and only one polynomial. % This result was 
subsequently proved by Stieltjes § to hold also when the ex­
ponent-differences Xv •••,A3 have any values algebraically 
less than one. More recently Klein in his lectures upon 
linear differential equations 11 has remarked that the n + 1 

values of B' =• - j belonging to a group of n + 1 Lamé poly-

* Heine's Kugelfunctionen, vol. 1, p. 474. 
f Math. Ann., vol. 18, p. 237. 
X The theorem as here stated is a special case of a corresponding theo­

rem for a differential equation with r + 1 singular points. 
\ Acta Mathematica, vol. 6. 
|| Cf. li Lineare Differentialgleichungen der zweiten Ordnung," pp. 341-

346. 
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nomials are all included between ex and er If, moreover, 
these are arranged in the order J B / < ! ? / • • • < J B ' W + 1 , the 
number of roots of the corresponding polynomial contained 
in exe2 is successively 0, 1, 2, •••, n and in e2e3 succes­
sively n, n — 1, •••,0. The purpose of this paper is to 
prove first that these conclusions hold not only when the 
three exponent differences are equal to \ but for any values 
which are less than 1. I t will be shown further that be­
tween two consecutive roots of any polynomial in the series 
will be included one and only one root of the preceding or 
following polynomial. These propositions are based upon 
a number of new theorems which relate to the roots of the 
fundamental integrals Pki, P? belonging to the singular 
points et of a differential equation of the form ( I I ) . In con­
clusion, it will be shown that the roots of the accessory 
polynomial <p in the general differential equation ( I ) for a 
Stieltjes polynomial are all real, and, like the roots of the 
latter polynomial, are included between the two outermost 
singular points e± and er. 

\ 1. In the differential equation here to be considered 

(i) 
ax \x — e. x — e»/ ax 

Ax — B 

k2/ = ° O - e J - ^ - e g ) ' 
it will be assumed that all the constants, whether singular 
points, exponent-differences, or accessory parameters, are 
real. We will also suppose that their values are given with 
the single exception of that of B. The axis of x is divided 
by the singular points into four segments, which, by a proper 
assignment of the subscripts to the singular points, may be 
taken to be 00 e1, exe2, e2e3, eB 00. To each singular point in 
the finite plane there belong two fundamental integrals with 
the exponents A., 0. These have the form 

P A*= (z-e^ll + L^z-eï + L2{x-ey + . . . ] , 

P? ** 1 + M,(x - e{) + M2(x - evy + - , 

in which the coefficients are necessarily real.* In general, 

* When Ai is a negative integer, the first integral must, of course, be 
modified by the introduction of a logarithmic term ; and when it is a posi­
tive integer, the second integral. The terms of the theorems to be sub­
sequently given are, however, such as to exclude fundamental integrals 
with logarithmic terms. 
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these series converget hrough the whole of one segment 
ending in e., but only in a part of the other. We shall, 
however, extend the meaning of the symbols PK\P* so as to 
include the analytical continuation of these series through­
out the remainder of the latter segment. The two exponents 
for the singular point co are determined by the relations 

X ' X " = — J , 
oo co 7 

h + K + K + xJ+ *•" = *> 
and the corresponding expansions are 

(3) 

XX<*> L 1 + ^ + ̂ H-
X __ 

and a similar series for PA°°". 
§2. When the differential equation possesses a polyno­

mial solution, this solution is a fundamental integral for 
each singular point. If, as will hereafter be assumed unless 
the contrary is expressly stated, the exponents Xt(i = 1 , 2 , 3 ) 
are restricted to values less than one, it will coincide, except 
for a constant factor, at each singular point in the finite 
plane with the integral Pt°. Since also its expansion for the 
singular point co begins with xn, one of the exponents for 
this point is equal to — n, and the polynomial is the corre­
sponding fundamental integral. The second exponent and 
the value of A are determined by the equations (3). 

§3. Without, however, as yet restricting the value of A 
in (1), we now proceed to examine the changes in the posi­
tion of the real roots of P* when the parameter B is con­
tinuously varied. For this purpose let the differential 
equation be put into the form 

*& + <*-<>. w 
where 

J T - n ( » - « , ) — , G - ^ — - ^ — ^ - w - (5) 

By multiplying the differential equation through by an ap­
propriate constant, the values of K and G may be made real 
for any interval of the axis of x which is included between 
two consecutive singular points, and at the same time the 
sign of K may be made positive. I t will hereafter be as­
sumed that K and G have been thus modified for the inter­
val which may be under consideration. The equation is 
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then of the same nature and form as that considered by 
Sturm in a highly important memoir in the first volume of 
LiouvilWs Journal (p. 106), üTand G being used by him to 
represent any functions of x and of a parameter m which 
are real, one valued, and continuous for the interval con­
sidered. The present article is based upon some of the re­
sults there obtained. From these results we select now the 
following : If at every point of an interval ab (a < b) of 
the axis of x the value of K is positive ; if, moreover, 
throughout this interval G increases with the parameter m 
while K either remains unaltered or decreases ; then any 
root of a real solution y of the differential equation which is 
included between a and b will 

(1) decrease if -=— I — -~-\ is negative for x = a. 

(2) increase if ^— I ---^-1 is positive for x = b. 
am \y ax J 

We may also remark parenthetically that in the proof 
of this theorem Sturm shows that under these condi­
tions -=— I —-p ) retains the same sign throughout the en­
tire interval, a result which we shall later use in § 6. To 
apply now the theorem itself we will begin by placing m = B, 
2/=P1°. The values of üTand G given by (5) meet the 
requirement of being continuous except at the singular 
points. Moreover, when B increases, Kremains unaltered ; 
G, on the other hand, increases only within the two seg­
ments e^ and e3oo . Since in the consideration of Px° the 
latter segment is to be excluded, we will take for the limits 
of the interval a = e1 +

 £
l7 b = e2 — e2, where ev e2 are in­

finitesimal positive quantities. To determine the sign of 

d / K dP,0 V 
dByP* dx ) 

for the lower limit we observe that the value of 
1 dP» 

P° dx 

for x = ex is equal to the coefficient Mx in the series (2) for 
P / . The substitution of this series in (1) gives 
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whence follows 

dB \P° dx ) |x=e3 ~ (1 - K) («x ~e2) ( ex - 68)' 

"When Ax is less than 1, the last expression has a negative 
sign. Since the sign is also the same for a = el + ev all the 
conditions of the above theorem are fulfilled. Hence when 
B increases, the roots of Px° which are situated in eYe2 de­
crease and move toward ev Furthermore, since Px° cannot 
vanish for x = ev the number of its roots in the segment 
must either remain constant or increase. The changes in 
the position of its roots in oc ex can be determined from the 
same theorem by placing m = — B, a = — oo , b = ex — e1# 
The second of the two alternatives in the theorem must 
then be selected. Hence as B decreases, the roots increase 
and move toward ev and the number of roots in the segment 
must either remain constant or increase. The theorem can 
be applied in similar manner to P2° and P8°. The conclusions 
thus reached can be united with the preceding in the fol­
lowing theorem. 

I. If when the exponent difference L of one of the singular 
points e. in the finite plane is less than unity B is increased, the 
roots of P® will move toward ev if contained in the segment eYe% or 
e3oo , and will recede from e., if contained in the segment GO e1 or e2e3. 
In the former case the number of roots in the segment cannot dimin­
ish ; in the latter case it cannot increase. 

I t will be easily seen that 

in (1) replaces the two exponents À0 0 by 0, — Xv The 
value of B is at the same time changed only by the 
addition of a constant. Theorem I will, therefore, hold for 
the fundamental integrals P0

ki when the exponent Xt is greater than 
— 1. Subsequent theorems can in like manner be converted into 
theorems relating to the integrals PA* and holding for exponent 
differences which are greater than — 1. Due account must, of 
course, be taken of the change in the values of A and B re­
sulting from the substitution. 

§4. The theorem just given leaves it uncertain whether 
the number of roots of the fundamental integrals in exe% 
and ez oo increases indefinitely with B. A like doubt exists 
concerning the number of roots in the other two segments 
when B is indefinitely diminished. To decide this point 
let the equation (1) be deprived of its second term by the 
tr an sf ormation 
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A i j - J A 3 - l _ 

y= 0» — < 0 2 - (» —O 2 y " 
I t then becomes 

£+(*(*> + (,-«,)?(«-Jy-°» 
in which JS(JB) denotes a rational function which is finite 
except at the singular points. By decreasing B the coeffi­
cient of y can be made greater than any given positive con­
stant c2 for all values of x between 00 and ex and by increas­
ing B for all values between e, and GO. NOW the equation 
y" + G2y = 0 has for its general integral A cos c# + JB sin ex, 
and any real solution has therefore an infinite number of 
positive, as also of negative roots, which cumulate in the 
vicinity of the point 00. But a second theorem of Sturm's 
states that if <p and <f> are one-valued functions which 
are finite and continuous for any interval of the axis of x, 
and if for this interval <p < <p, then between two successive 
roots of a real solution of y" + <py = 0 which are situated in 
this interval there must lie at least one root of every 
real solution of y" + </>y = 0. I t follows that when a solu­
tion of (1) is real in e3 00, the number of roots contained in 
this segment can be increased indefinitely by increasing B ; 
on the other hand, when it is real in 00 ev the number of 
roots in the segment is increased indefinitely by decreasing 
B. These conclusions also hold for the segment exe^ and e2e8 
respectively, as will be seen by making the substitutions 

~®-e2=-—j> • y=(x-e2y«y. 
x — e2 

For the first substitution exchanges e2 and 00 , the second 
restores the equation to its original form, and the two to­
gether alter the value of B only by the introduction of a 
negative factor 

1 
(e2 — ei) (e2 — e3) 

and by the addition of a constant. Hence 
I I . If a solution of the differential equation (1 ) is real in either 

of the segments exe2 or 00 e3, the number of its roots in the segment 
increases indefinitely when B is increased without limit ; if it is 
real in 00 ex or e2e3, the number of roots in the segment increases 
indefinitely when B is diminished without limit. 

This theorem, it will be noticed, is independent of the 
values of the exponent-differences. 
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§5. We have thus shown that the number of roots of 
P? in one of the two segments ending in e4 increases with­
out limit when B is indefinitely increased and in the other 
when it is indefinitely decreased. When A is positive, it 
is possible to reduce the number of roots to zero by vary­
ing B in the opposite direction. Take, for instance, the 
integral P*. This was so defined in (2) as to have for 
x = e1 a positive sign. The value of its derivative is at the 
same time equal to Mv an expression for which was given 

TD 

in (6). If we take -r > ev it will have a negative sign. 

When, therefore, x decreases from ex to oo , P* begins by in­
creasing, and it will remain positive unless its derivative 
changes sign. But its derivative being, like itself, holomor-
phic throughout the interval considered, can only change 
signs by passing through zero. We then have 

<PP*= (A*-B)P° (7) 
dx2 (jc — ex) ••• (x — e8)

 ? ) 

TD 

which for values of x less than e, and hence less than —. has 
1 A 

the same sign as Px°. In passing, for the first time, through 
dP° 

zero, —r2- should, therefore, decrease with x. This, how­
ever, is impossible since it is initially negative. I t follows 
that Px

0 remains positive as x decreases, and hence cannot 
vanish between ex and oo. When, on the other hand, 
-j < ex, it cannot vanish between el and e2. For suppose 

dP° 
x to increase from ex to e2. Initially, Px

0 and —~ are both 

positive, and the latter must be the first to vanish. But 
d2P ° B 
—^-~ would then be positive, since x > ex > -j. In passing, 

dPQ 

for the first time, through zero —— must therefore increase 

with x. This obviously is impossible. We conclude, there­
fore, that P* has no root between ex and er The same line of 
reasoning can be extended to P2° and P3°. Since ex and e3, the 
extreme singular points in the finite plane, have the same 
function in the differential equation, we see at once that 

TD 

when -j < e3, the integral P3° will have no roots in esoo and 
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when — > e3, none in e2er As regards P2°, however, the 

condition -j > e2 is sufficient only to secure that P2° and its 

derivative shall have a positive sign for x = e2. To ob-
d2P ° dP ° 

tain a like sign for -Y-|- when for e2 < « < e3 we set —™ = 0, 
and thereby to insure that neither P2° nor its derivative 
shall vanish between e and e3, it will be necessary to take 
B JB 
-r > eq. For a similar reason we take ~r < e, to insure that 
no roots shall lie in exer We have, therefore, the following 
results : 

I I I . Given a differential equation of the form (1) in which 
Ki Ki 3̂ are le8S than one and A is positive; 

(1) If -7<.ev no root of P" or P2° can lie in exe2 and no root 

of P3° in e3oo . 

(2) If - j > e3, no root of P3° or P2° can lie in e2e^ and no root 

of P^ in ooev 

(3) If ex <C -j < e^ no root of P^ can lie in ooe1 and no root 

of P3° in e3oo . 
§6. The number of roots of P° and of P2° (and also of 

their derivatives) contained in exe2 has thus been shown to in-
7? 

crease from 0 to oo when — increases from e, to + oo . The 
A x 

roots cannot be drawn from the imaginary domain directly 
into the segment, because this would necessitate first the 
formation of a double root at a non-singular point, which 
is impossible. They must therefore first make their ap­
pearance at the two extremities of the segment. The roots 
of P*, as we have seen, move toward ex and hence enter 
the segment at e2, say in the order av a2, ••• ; the roots of 
P2°, on the other hand, move toward e2 and enter at ev say 
in the order, bv b2, ••• . Since the two integrals are in 
general independent solutions of the equation, the roots of 
one alternate with those of the other. Hence the number 
of roots of neither integral can exceed that of other by more 
than a unit. Suppose now that i roots of each integral have 
entered the segment. Immediately after the last of these has 
entered, their order of succession will be bi7 al7 bi_1, •••, 61? a{. 
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the entire segment. At any point of the segment p 0 

But if the roots are to alternate also after bi+1 or ai+1 enters 
the segment, av a2, —,a% must cross over b{, bi_lf •-, bx respec­
tively. The two integrals must then for a moment have i 
roots common and therefore coincide save as to a constant 
factor. The next coincidence will take place when they each 
have i + 1 roots in the segment and so on. The first coinci­
dence will occur when neither integral has a root in the seg-

ment. I t cannot be when -j <.ev for the integrals them-
XL 

selves then have the same sign throughout the segment and 
their derivatives opposite signs. If, on the other hand, 

-j-> ev the same conditions hold as in §3. The sign of 

d i KdP°\ 
JR ( ~P~° "^~ ) *s> n a m e ly> negative for a = ex + s1 and hence 

also as we there noted, throughout the entire segment. 

Furthermore, as long as -j < e2, the sign of - ^ 1 -p-0 - —7-M 

will be positive for b = e2 — e2 and hence also throughout 
1 dP%° 

P* dx 
1 dP° 

therefore diminishes as B increases, while ^ -~- increases. 
-tn ax 

j> 

Since for -j s= ex, the former is positive and the latter nega­
tive, they must become equal before either integral vanishes, 
and they clearly become equal but once. When this hap­
pens, the two solutions must coincide save as to a constant 
factor. The following result is now evident. 

IV. When -j is increased from e1 to 00 , the integrals P^ and P2 

will coincide, except for a constant factor, an infinite number of 
TO 

times, and when -j is decreased from es to GO , the integrals P2 

and P3° will coincide in like manner an infinite number of times. 
With each consecutive coincidence of the first two integrals the num­
ber of roots of each in e,e2 increases by a unit, and with each coin­
cidence of the second two integrals the number of roots of each in 
e2e.à increases also by a unit, beginning in each case with zero. 

§7. We will next compare the relative position of the 
i and the i + 1 common roots, say of Px° and P2, in two 
consecutive coincidences. Let the corresponding values of 
B be denoted by B{ and Bi+1. When, after coincidence, 
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the roots of the two integrals separate, the roots of the one 
move in an opposite direction from those of the other. The 
i roots must therefore be included between the outermost of 
the i + 1 roots. Moreover, since Bi+1> Bt. the value of 
Gi+1 [see (5)] will be greater than that of G< for every 
value of x included between e1 and e2. The differential 
equations corresponding to the (i + l ) t h and (i + 2)th co­
incidences therefore meet the conditions of the following 
theorem of Sturm : If in two differential equations 

Gv Kv G2, K2 are one valued and continuous fora < x < b, 
and if, moreover, throughout this interval G1 =5 G2 and 
K^ ^ K2, then between two consecutive roots of any real 
solution of the first equation which are included in this in­
terval, there will lie at least one ro'ot of a real solution of 
the second equation. I t follows that between any two of 
the i roots of our two fundamental integrals when coinci­
dent for the (i + l ) t h time will lie at least one of the i+1 
roots when coincident the next time. Combining this with 
our preceding conclusion, we see that the i+1 roots must 
alternate with the i roots. A similar inference can of course 
be made for P2° and P,°. 

V. In two consecutive coincidences of P® and P2°, the i roots 
of the one coincidence which lie in exe2 will alternate with the 
i+1 roots of the other coincidence. So also in two consecutive 
coincidences of P2° and P3°, the i roots of the one coincidence which 
lie in e2e3 will alternate with the i + 1 of the other, 

§8. For special values of A and B all three fundamental in­
tegrals coincide except for certain constant factors. We have 
in consequence an integral which is holomorphic over the en­
tire plane. Since the differential equation is regular, this in­
tegral can have only a pole at oo and hence is a polynomial 
P, say of the nth. degree. As before noted, A is the negative 
of the product of the two exponents for oo. namely, — n and 
n _j_ 2 — Xx — l2 — Xv and is accordingly positive. Limits for 

the value of -j can be obtained immediately from Theorem 

IV, or found by the following considerations which permit of 
extension to differential equations of higher order. First 
it can be shown that no root of the polynomial can lie in 
either of the two outermost segments.* Suppose, if pos­
sible, that the smallest root is less than el or the largest one 
greater than es and let x in (1) be placed equal to either 

* This is also evident from Theorem III. 
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root. If placed equal to the smallest root, P' and P" have 
opposite signs, and if placed equal to the largest root, the 
same sign.* In either case the first two terms of the 
equation have like signs and the third term vanishes, so 
that the equation can not be identically satisfied. All the 
roots must, therefore, lie between ex and e8. Next, suppose 

— less than el and place x equal to any intermediate value. 

Since x is now smaller than the smallest root, P" and P 
have the same sign and Pf the opposite sign. All three 
terms of the equation have in consequence the same sign 
and the equation again involves a contradiction. In like 

manner it can be proved that -j > e3. 

VI . If the three exponent differences are less than unity and the 
differential equation admits a polynomial solution, the value of 

•-T must lie between e, and e„. 
A 1 8 

Theorem I V shows that no two polynomials which belong 
to the same exponent differences can have the same number 
of roots in exe% or in e2er As there are only n + 1 poly­
nomials in all, one and only one polynomial can be found 
for each different distribution of the n roots between these 
two segments. We have thus a new demonstration of this 
fact. From the same theorem it follows also : 

VI I . If the n + 1 Stieltjes polynomials which belong to the same 
set of exponent differences are so arranged that the corresponding 
values of B succeed each other in the order Bx <C B2 << ••• <C J5w4-i? 
the number of roots in eYe2 will successively be 0, 1, 2, •••, n and 
in e2e3 successively n,n — 1, •»•, 0. 

§9. The reasoning by wThich Theorem V I was established 
in §8 can be applied without trouble to a differential equa­
tion of the rth order 

<fy . n-\ , ... , i-Udy 
dx1 \ x — 6j x — ej dx (8) 

y(a?) = n ( - n + r - l + SA0 (x — ai) '" (x — ^ - 2 ) Q 

(x — ex) - ~(x — er) 

which admits a polynomial solution. If each exponent dif­
ference À. is less than 1, it can be proved first that the 
roots of the polynomial solution are included between ex and 
er, and then that the real roots of the accessory polynomial 
<p(x) are included between the same limits. For the best 

* Since the roots of P are all real. 
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demonstration * that all the roots of the polynomial solu­
tion are real, the reader is referred to an article by Bôcher 
in the April number of the BULLETIN. The method 
which he has there employed I shall make use of to 
prove that the roots of the accessory polynomial <p are 
likewise real. Let P denote the polynomial solution and 
xx, — , xn_x the roots of its derivative which are, of course, 
real. If P be substituted in the differential equation and x 
be placed equal to a root a of <p7 we get 

P" («) + (^—^ + - + ^ - ^ )P' («) = 0, 

or dividing by P ' (a) , 
1 1 1 —A, i _ ; t 

+ - + + * + - + ^= 0. 
a — xx a — xn _ ! a — eY a — er 

If now a is an imaginary root p + qi for which q is posi­
tive, the pure imaginary part of each fraction will have a 
negative sign. The equation therefore involves a contra­
diction. Hence 

VI I I . The roots of the accessory polynomial <p of the differ­
ential equation (8) for a Stieltjes polynomial are all real and in­
cluded between the two extreme singular points, ex and er. 

WESLEY AN UNIVERSITY, 
April, 1898. 

NOTE ON STOKES'S THEOREM IN CURVILINEAR 
CO-ORDINATES. 

BY PROFESSOR ARTHUR GORDON WEBSTER. 

(Read before the American Mathematical Society at the Meeting of April 
30, 1898.) 

T H E expression for the curl of a vector point-function, 
when required in terms of orthogonal curvilinear coordi­
nates, is usually obtained by direct transformation from 
their values in rectangular coordinates. The proof of 
Stokes's theorem given in my Lectures on electricity and 
magnetism, due to Helmholtz, can be easily adapted to 
curvilinear coordinates so as to prove the theorem indepen­
dently of rectangular coordinates. 

Let Pv P2, P 3 be the projections of a vector P on the 

* The proof given by Stieljes in the sixth volume of the Acta Mathe­
matica is based upon mechanical considerations. 


