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Uniqueness of the AdS spacetime among

static vacua with prescribed null infinity

Oussama Hijazi and Sebastián Montiel
1

We prove that an (n+ 1)-dimensional spin static vacuum with
negative cosmological constant whose null infinity has a boundary
admitting a non-trivial Killing spinor field is the AdS spacetime.
As a consequence, we generalize previous uniqueness results by X.
Wang [40, 42] and by Chruściel-Herzlich [20] and introduce, for
this class of spin static vacua, some Lorentzian manifolds which
are prohibited as null infinities.

1. Introduction

An (n+ 1)-dimensional static vacuum spacetime with negative cosmological
constant Λ = −n is determined by a triple (M, g, V ), where (M, g) is an
n-dimensional connected Riemannian manifold standing for the unchanging
slices of constant time and V ∈ C∞(M) is a positive smooth function on M
such that

(1) Ricg + ng =
∇2V

V
, ΔV = nV,

where Ricg is the Ricci tensor, ∇2 is the Hessian operator and Δ = trace∇2

is the Laplacian of the Riemannian manifold (M, g). Taking traces in the
first of these two equations and taking into account the second one, we
conclude immediately that

(2) Rg = −n(n− 1),

where Rg is the scalar curvature of (M, g).
The paradigmatic example of a static vacuum is given by choosing

(M, g) = (Hn, gH) the hyperbolic space of constant sectional curvature −1,
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which can be viewed as the upper sheet of a hyperquadric in the Minkowski
spacetime (Rn+1

1 , 〈 , 〉), namely,

H
n = {p ∈ R

n+1
1 | |p|2 = −1, p0 > 0}.

This is a spacelike hypersurface and the metric gH induced on Hn from 〈 , 〉
is a Riemannian metric making (Hn, gH) a space form of sectional curvature
−1. In particular, RicgH = −(n− 1)gH. In this representation of the hyper-
bolic space, it is easy to see that, for each fixed a ∈ R

n+1
1 , the height function

ha : H
n → R given by

ha(p) = 〈p, a〉, ∀p ∈ H
n

satisfies the Obata type equation (see [33])

∇2ha = ha gH.

As a consequence, Δha = nha. Moreover, when a is chosen to be lightlike or
timelike vector with a0 < 0, we have ha > 0. Then the triple (Hn, gH, ha) is
a static vacuum for such causal a ∈ R

n+1
1 . Indeed, the static vacuum deter-

mined by this triple is nothing but the Anti de Sitter (AdS) spacetime.
However, there is a subtle difference between the case where a is timelike

and the case where a is lightlike. In the former, the level hypersurfaces of
ha are umbilical round hyperspheres in Hn allowing to write the hyperbolic
metric gH as a warped product metric and describe the function ha as follows:

gH = dr2 + sinh2 r 〈 , 〉Sn−1 , ha = cosh r, r ∈ [0,+∞[.

Consequently, the Lorentzian metric of AdS can be written as follows

gAdS = − cosh2 r dt2 + dr2 + sinh2 r 〈 , 〉Sn−1 , t ∈ R, r ∈ [0,+∞[.

This description shows that it is conformal to a cylindrical Lorentzian metric.
In fact, we have

gAdS = cosh2 r
(−dt2 + ds2 + sin2 s 〈 , 〉Sn−1

)
,

where s = −π
2 + 2arctan er ∈ [0, π2 [, that is,

gAdS = cosh2 r
(−dt2 + gSn

+

)
,

where gSn
+
is the unit round metric on the open hemisphere Sn+. From this

conformal equivalence between Lorentzian metrics, it is straightforward to
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see that the conformal null infinity of the AdS spacetime is nothing but
the cylinder R× Sn−1 = R× ∂ S

n−1
+ with the product Lorentzian structure

−dt2 + gSn−1 .
In the second case, the level hypersurfaces of ha are umbilical flat Euclid-

ean spaces (horospheres) in Hn. The corresponding foliation also allows to
write the hyperbolic metric gH as another warped product and describe in
a corresponding manner the function ha:

gH = dr2 + e2r 〈 , 〉Rn−1 , ha = er, r ∈]0,+∞[.

Consequently we obtain another expression for the AdS metric:

gAdS = −e2r dt2 + dr2 + e2r 〈 , 〉Rn−1 , t ∈ R, r ∈]0,+∞[.

In this case, the height function ha provides a different conformal equivalence
for the AdS metric. Indeed, we have

gAdS = e2r
(−dt2 + ds2 + s2 〈 , 〉Rn−1

)
,

where s = e−r ∈ [0, 1[, that is,

gAdS = e2r
(−dt2 + gBn

)
,

where Bn is the open unit disc of the Euclidean space Rn and gBn the flat
metric. As in the first case, from this conformal equivalence for gAdS , it is
straightforward to see that the conformal null infinity of the AdS space-
time is viewed again as R× Sn−1 = R× ∂Bn with its standard cylindrical
Lorentzian structure −dt2 + gSn−1 .

Then, it is clear that, in the particular case of the AdS spacetime (M, g, V )
= (Hn, gH, ha), the positive function V −1 = h−1a is also a defining function
for the hyperbolic space Hn, which is the prototypical example of a confor-
mally compact Riemannian manifold. This simply means that the function
V −1 and the Riemannian metric g = V −2g = h−2a gH extends to an (n+ 1)-
dimensional manifold with boundary M (Sn+ or Bn) whose interior is diffeo-
morphic to Hn (for definitions, generalities and main facts on conformally
compact Riemmanian manifolds, see [3–5, 13]).

Considering the above facts, we will say that a static vacuum (M, g, V )
is asymptotically locally anti de Sitter (ALAdS, in short) if (M, g) is a con-
formally compact Riemannian manifold and the positive smooth function
V −1 is a defining function, that is, if there exists an (n+ 1)-dimensional
manifold with boundary M such that M is its interior and the function V −1
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extends smoothly to M in such a way that V −1|∂M = 0,
(
dV −1

)
|∂M 	= 0,

and the metric g = V −2g extends to M as well (indeed, in order to obtain
the results below it would suffice to have a weaker regularity for g). Hence,
the extended metric g induces a Riemannian metric γ = g|∂M on the bound-

ary at infinity ∂M = ∂M of (M, g). Note that, even if M is assumed to be
connected, its boundary at infinity could be disconnected. Moreover, the
Riemannian manifold (∂M, V −2g|∂M ) is the Riemannian slice of the confor-
mal null infinity J = (R× ∂M,−dt2 + γ) of the spacetime determined by
(M, g, V ).

In general, a conformally compact Riemannian manifold is asymptot-
ically negatively curved. But if it has also asymptotically constant scalar
curvature, say −n(n− 1) after a suitable normalization, that is, if Rg →
−n(n− 1) when one approaches ∂M , then the manifold is asymptotically
locally (weakly, according to [41]) hyperbolic (ALH in short). For this class
of manifolds we haveKg → −1 at infinity. As a consequence, the Ricci tensor
satisfies Ricg → −(n− 1)g, that is, the manifold seems to be Einstein with
Ricci curvature −(n− 1) when one moves towards infinity. In the case of a
static vacuum (M, g, V ), from (2), we know that (M, g) has constant scalar
curvature Rg = −n(n− 1). Thus, the spatial slice of an ALAdS static vac-
uum is an ALH Riemannian manifold. When the conformal infinity ∂M of
(M, g) is an (n− 1)-dimensional hypersphere, we will say that it is asymp-
totically anti de Sitter (AAdS in short). It is obvious that, in this case,
(M, g) is an asymptotically hyperbolic (AH in short) Riemannian manifold.
In this situation, P. T. Chruściel and M. Herzlich (for n = 3) and X. Wang
(for any n) generalized a former result by W. Boucher, G. Gibbons and
G. Horowitz ([21, Theorem 4.5], [42, Theorem 1], cfr. [15]) by proving the
following uniqueness result :

Let (M, g, V ) be an (n+ 1)-dimensional AAdS static vacuum.
Suppose that M is a spin manifold and that its boundary at
infinity (∂M, γ) is a round (n− 1)-dimensional sphere. Then
(M, g, V ) is the AdS spacetime.

We will strengthen this result in two directions. First, we will allow the
ALAdS static vacuum (M, g, V ) to have a non-spherical boundary at infinity
∂M and we will not require the metric γ to have constant sectional curva-
ture. Using the spin setting, our strategy will be to slightly modify V , if
necessary, in order to get a compactification of (M, g) with non-negative
scalar curvature and constant inner mean curvature and then apply, to the
corresponding induced metric on ∂M , a previous estimate by X. Zhang and
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ourselves (see [30, 31]) for the spectrum of the Dirac operator on spin Rie-
mannian manifolds which bound compact domains. Indeed, the goal of this
paper is to prove the following result and to analyse some of its consequences
(see Theorem 7 below).

Let (M, g, V ) be an (n+ 1)-dimensional ALAdS static vacuum.
Suppose that M is a spin manifold.
1) If the boundary at infinity (∂M, γ) admits a non-trivial Killing,

then (M, g, V ) is the AdS spacetime.
2) The boundary at infinity (∂M, γ) cannot admit a non-trivial

parallel spinor.
We emphasize that the spin structure considered on ∂M is just
the induced one from that of M .

Note that, if ∂M is spherical, then ∂M admits a unique spin structure
and if γ is the unit round metric, then the Riemannian spin manifold (∂M, γ)
supports a maximal number of independent Killing spinor fields (see [11,
p.37], [25, Examples A.1.3.2]). Then the rigidity result by X. Wang and
P. Chruściel and M. Herzlich is a direct consequence of 1) in our result
quoted above (see Theorem 7). It is a well-known fact that there are compact
non-spherical spin Riemannian manifolds carrying non-trivial Killing and
parallel spinors (see [7] and [38, 39]). Thus, Theorem 7 implies the non-
existence of ALAdS spin static vacua with these types of spatial infinities.
In particular, it is well-known that flat tori admit non-trivial parallel spinors.
So, they cannot appear as the boundary at infinity (∂M, γ) of a ALAdS static
vacuum. This particular case of 2) in our main result was also obtained by
X. Wang in [40, Theorem 6.1].

2. Special conformal compactifications of spatial slices

We already observed that the spatial slices (M, g) of an ALAdS static vac-
uum (M, g, V ) are ALH manifolds. This geometrical feature reflects an
equivalent analytical property which is satisfied by all the defining func-
tions ρ of (M, g), namely, |∇ρ||∂M = 1, where the gradient and the length
are computed with respect to the same extended metric g = ρ2g (see, for
instance, [12, p. 59] or [5, Appendix]) corresponding to the defining function
ρ itself. This means that the vector field ∇ρ = ρ−2∇ρ, restricted to ∂M , is
an inner unit field normal to ∂M with respect to the extended metric g. In
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particular, since V −1 is a defining function for (M, g), we have that

∇V −1|∂M = −∇V|∂M ⊥ T∂M, |∇V −1||∂M =
|∇V |
V

∣∣∣∣
∂M

= 1,

where the last equality is to be understood as a limit. Also, for any other
defining function ρ defined on M , we have

(3) 1 =
|∇V |
V

∣∣∣∣
∂M

=
|∇ρ|
ρ

∣∣∣∣
∂M

, 0 < (ρV )|∂M < +∞,

where the last equality holds since the two vector fields ∇V and ρ−2∇ρ are
parallel along ∂M .

In the general case, when the ALH manifold (M, g) is not coming from
a static vacuum, and hence it has not necessarily constant scalar curvature,
if we assume that it is conformally compact of class at least C3,α, we may
modify any defining function in a suitable way to obtain the so called geodesic
defining functions.

Lemma 1. [4, Section 3], [2, Lemma 5.4], [26, Lemma 5.2], [35, Lemma 5.1],
[41, Lemma 2.2] Let (M, g) be an ALH manifold of class Cm,α, m ≥ 3. For
each choice of a metric γ on its conformal infinity ∂M , there exists a unique
defining function r ∈ Cm−1,α(M) such that the extended conformal metric
ĝ = r2g is of class Cm−1,α, γ = ĝ|∂M and |∇̂r| ≡ 1 in a collar neighbourhood
of ∂M .

The existence of geodesic defining functions on conformally compact
ALH manifolds is a key point to obtain many of their main features. In
particular, it is possible to prove the connectedness of its boundary when
one has both a lower bound on the Ricci tensor and a decay condition at
infinity on the scalar curvature, along with the non-negativity of the confor-
mal structure at the infinity. This connectedness was proved by E. Witten
and S.-T. Yau for positive conformal infinities and M. Cai and G. Gal-
loway for null conformal infinities ([18, 43], [3, Theorem 4.1], cf. also [29,
Theorem 2]). When the given ALH manifold (M, g) is the spatial slice of
a static vacuum (M, g, V ), on one hand, we know from (2) that the scalar
curvature is not only asymptotically decaying to −n(n− 1), but it is in
fact exactly −n(n− 1). However, on the other hand, we have no lower
bounds for the Ricci tensor. So the aforementioned connectedness results
do not directly apply to our situation. Yet, it is possible to use the standard
trick to finally obtain a similar conclusion as in the Riemannian case. In
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fact, it suffices to consider the Riemannian metric g̃ = V 2dθ2 + g defined
on S1 ×M , which is an Einstein metric (see [36]) with conformal infinity
(S1 × ∂M, [dθ2 + V −2g|∂M ]). Then, we can apply the above connectedness
results and conclude that S1 × ∂M must be connected. So the same conclu-
sion is valid for ∂M . We summarize it in the following proposition.

Proposition 2. Let (M, g, V ) be an ALAdS static vacuum such that the
boundary at infinity (∂M, γ) of its spatial slices (M, g) has non-negative
scalar curvature. Then ∂M is connected.

On the other hand, in order to study the continuous spectrum of the
Laplacian on an ALH Einstein manifold (M, g), J. Lee proved in [35] the
existence of positive solutions of the eigenvalue equation Δu = (n+ 1)u and
studied their growth at infinity ∂M . Some years later, J. Qing used in [37]
these particular eigenfunctions as defining functions to partially compactify
(M, g) and gave a beautiful proof, based on the positive mass theorem, of
the rigidity of the hyperbolic space among all the ALH Einstein manifolds
whose prescribed boundary at infinity is a round sphere. In fact, he aimed to
drop the spin assumption in the corresponding result by L. Andersson and M.
Dahl ([2]). In our case, (M, g) is the spatial slice of a static vacuum (M, g, V )
and thus it is an ALH manifold with constant scalar curvature, although not
necessarily Einstein. However, we have a positive solution of the eigenvalue
problem studied by J. Lee for the Laplace operator Δ of g, namely, the
function V . Then we adapt the results in [35, Section 5] in order to get, by
Lemma 1, a sufficiently good description of the asymptotical behaviour of V
in terms of the geodesic defining function on (M, g) associated with γ. For
this, we need to prove the following two lemmae.

Lemma 3. Let (M, g, V ) be an ALAdS static vacuum and ε ≥ 0 a real
number. Then the function (V + ε)−1 is a defining function for the ALH
manifold (M, g) such that the corresponding extended Riemannian metric
g∗ = (V + ε)−2g has scalar curvature

(4) Rg∗ = n(n− 1)
(
V 2 − |∇V |2 − ε2

)
.

In particular, the function V 2 − |∇V |2 extends to the compact manifold with
boundary M .

Proof. Since V −1 is a positive smooth function on M extendable to M and
vanishing on ∂M , we have that (V + ε)−1 = V −1/(1 + εV −1) is another pos-
itive smooth function on M extendable to M and vanishing on ∂M as well.



184 O. Hijazi and S. Montiel

It is immediate to see that(
d(V + ε)−1

)
|∂M = (dV −1)|∂M 	= 0.

Moreover the metric

(5) g∗ = (V + ε)−2g =
(

1

1 + εV −1

)2

V −2g

defined on M extends to a metric on M with the same regularity as that of
the metric V −2g. So, (V + ε)−1 is a defining function for (M, g). Moreover,
this metric g∗, restricted to ∂M , gives

g∗|∂M =
(
(V + ε)−2g

)
|∂M = (V −2g)|∂M .

In particular,
(
M∗, g∗

)
=

(
M, (V + ε)−2g

)
is a conformal compactification

of the ALH manifold (M, g). Now, rewrite the conformal change between
the metrics g and g∗ as

g = (V + ε)2g∗,

then the relation between the associated Ricci tensors Ricg∗ and Ricg on the
open manifold M (see [12, p. 59] or [5, Appendix]), is given by

Ricg∗ = Ricg + (n− 2)
∇2V

V + ε
+

ΔV

V + ε
g − (n− 1)

|∇V |2
(V + ε)2

g.

Taking traces with respect to g and multiplying by (V + ε)2, one gets for
the corresponding scalar curvatures

Rg∗ = (V + ε)2Rg + 2(n− 1)(V + ε)ΔV − n(n− 1)|∇V |2.

As we pointed out in (1) and (2), since Rg = −n(n− 1) and the function
V is an eigenfunction of Δ associated with the eigenvalue −n, we finally
get (4). �

An important consequence of Lemma 3 is the following information
about the asymptotical behaviour of the Ricci tensor of the spatial slice
(M, g) when one approaches to ∂M along the direction ∇V .

Lemma 4. Let ρ be any defining function of the ALH spatial slice (M, g)
of an ALAdS static vacuum. Then

(6) lim
ρ→0

1

ρ2
(
Ricg + (n− 1)g

)(∇ρ

ρ
,
∇ρ

ρ

)
= 0.
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Proof. From Lemma 3, we know that V 2 − |∇V |2 is a differentiable function
on the compact manifold M . Let N be the inner unit vector field normal to
∂M with respect to the extended metric g = V −2g. Then, the Lee derivative
of the function V 2 − |∇V |2 in the direction of the vector field 1

2N , is given
by

1

2
N · (V 2 − |∇V |2) = (

V g(∇V,N)− (∇2V )(N,∇V )
)
|∂M .

But, by (3) and previous comments, we have N = −∇V|∂M . Thus

1

2
N · (V 2 − |∇V |2) = (

(∇2V )(∇V,∇V )− V |∇V |2)|∂M .

Now, from the first equality in (1), it follows

1

2
N · (V 2 − |∇V |2) = (

V
(
Ricg + (n− 1)g

)
(∇V,∇V )

)
|∂M .

Using again (3), we know that

∇V|∂M =
∇ρ

ρ2

∣∣∣∣
∂M

, V ρ = O(1),

hence the existence of the following limit

lim
ρ→0

1

ρ3
(
Ricg + (n− 1)g

)(∇ρ

ρ
,
∇ρ

ρ

)
,

which implies (6). �
Now, we dispose of all the necessary tools to control the asymptotic

behavior of the function V in the given static vacuum (M, g, V ).

Proposition 5. (Cfr. [35, Proposition 4.1, Lemmas 5.1 and 5.2] and [27,
Lemma 2.1]) Let (M, g, V ) be an (n+ 1)-dimensional, n ≥ 3, ALAdS static
vacuum and r the geodesic defining function associated with the metric γ =
V −2g|∂M on the boundary at infinity ∂M of its spatial slices, according to
Lemma 1. Then, one has

(7) V =
1

r
+ hr,

for a function h ∈ C2,α(M) ∩ C0(M) such that

(8) h|∂M =
Rγ

4(n− 1)(n− 2)
, |∇h| = O

(
r

α

2

)
,

where α > 0 and Rγ is the scalar curvature of the metric γ on ∂M .
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Proof. This result relies on some of the assertions in Proposition 4.1,
Lemma 5.1 (see Lemma 1 of this paper) and Lemma 5.2 in [35]. These asser-
tions only require (M, g) to be ALH, a condition satisfied by (M, g) since it
is the spatial slice of an ALAdS static vacuum. The proof of the second of
these lemmae in [35] definitely uses the hypothesis that (M, g) is Einstein.
So in fact, we show now that the result holds under weaker hypotheses.

A careful look at the proof of Lemma 5.2 in [35], yields to the observation
that the Einstein condition on the metric g is used to obtain the equalities
labelled (5.3) and (5.7) in [35], namely⎧⎪⎨⎪⎩

(5.3) Δ̂r = − 1
2(n−1)rRĝ on a neighbourhood of ∂M,

(5.7) Rγ =
n−2
n−1Rĝ |∂M ,

where ĝ = r2g is the conformal metric extended to M , γ = ĝ|∂M its restric-

tion to the conformal infinity and Δ̂ its scalar Laplacian.
To get (5.3), consider the relation between the Ricci tensors Ricĝ and

Ricg of the conformal metrics ĝ and g on the open manifold M (see again
[12, p. 59] or [5, Appendix]):

Ricg = Ricĝ + (n− 2)
∇̂2r

r
+
Δ̂r

r
ĝ − (n− 1)

|∇̂r|2
r2

ĝ,

where ∇̂ and ∇̂2 are respectively the gradient and the Hessian operator of
ĝ. Multiplying by r and putting |∇̂r|2 = 1, we obtain

(9) r
(
Ricg + (n− 1)g

)
= rRicĝ + (n− 2)∇̂2r + (Δ̂r)ĝ.

Taking traces with respect to ĝ, knowing that Rg = −n(n− 1), it follows
that on a collar neighbourhood of ∂M one has

(10) rRĝ + 2(n− 1)Δ̂r =
1

r

(
Rg + n(n− 1)

)
= 0,

giving (5.3) in [35].
As for the second, putting first r = 0 in (10), then dividing this same

expression by r and taking limits as r → 0, we get

(11) (Δ̂r)|∂M = 0, (∇̂r · Δ̂r)|∂M = − 1

2(n− 1)
Rĝ |∂M .

On the other hand, in the collar neighbourhood of ∂M , taking deriva-
tives of |∇̂r|2 = 1 with respect to a vector field X tangent to M , yield
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(∇̂2r)(∇̂r,X) = 0. In particular,

(12) (∇̂2r)(∇̂r, ∇̂r) = 0.

Again, taking derivatives of (∇̂dr)(∇̂r,X) = 0 with respect to the same
direction X, using the Ricci equation and then taking traces, imply

(13) |∇̂dr|2 + ∇̂r · Δ̂r +Ricĝ(∇̂r, ∇̂r) = 0.

Now, we apply the tensorial equality (9) to the vector field ∇̂r and use (12),
to get

(14)
1

r

(
Ricg + (n− 1)g

)(∇r

r
,
∇r

r

)
= rRicĝ

(∇̂r, ∇̂r
)
+ Δ̂r.

Dividing also (14) by r, taking limits as r → 0, keeping in mind the first
equality in (11) and using Lemma 4, we obtain

(∇̂r · Δ̂r)|∂M = −Ricĝ
(∇̂r, ∇̂r

)
|∂M .

This together with (13) and the second equality in (11) give

∇̂2r|∂M = 0, Ricĝ(∇̂r, ∇̂r)|∂M =
1

2(n− 1)
Rĝ |∂M .

Now, take into account that the Hessian ∇̂2r, restricted to directions
orthogonal to the gradient ∇̂r, is the opposite of the second fundamental
form σ̂ of the level hypersurfaces r = r0 with respect to the choice of inner
unit normal N̂ = ∇̂r and to the metric ĝ on M . So, using (12), we see that
Ĥ = − 1

n−1Δ̂r is the mean curvature function of these level hypersurfaces.
Using such submanifold theory language, we may rewrite the last relations
as

(15) σ̂|∂M = 0, Ĥ|∂M = 0, Ricĝ(N̂ , N̂)|∂M =
Rĝ |∂M
2(n− 1)

.

Knowing that the Gauß equation relating the scalar curvature Rγ of the
metric γ induced on the boundary ∂M and the restriction Rĝ |∂M is given
by

Rγ = Rĝ |∂M − 2Ricĝ(N̂ , N̂)|∂M + (n− 1)2Ĥ2
|∂M − |σ̂|2|∂M ,

the relations in (15) imply equality (5.7) in [35]. �



188 O. Hijazi and S. Montiel

As mentioned before, the idea of using the eigenfunctions of the Lapla-
cian, with controlled behaviour at infinity, as defining functions on a given
ALH Einstein space (M, g) is due to J. Qing (see [37]), although he con-
formally modifies the original complete manifold through these eigenfunc-
tions without actually compactifying it. Instead, he gets a partial compact-
ification, that is, a conformal complete Riemannian manifold (M, g) whose
boundary ∂M is diffeomorphic to the Euclidean space Rn and such that the
Riemannian manifold constructed by doubling (M, g) along this boundary
is an asymptotically Euclidean manifold without boundary and with non-
negative integrable scalar curvature. Then a suitable use of the positive mass
theorem allows him to go on with his reasoning.

Since our ALH manifold (M, g) is the spatial slice of a static vacuum
(M, g, V ), we know from (2) that V itself is such an eigenfunction of the
Laplacian. Moreover, Proposition 5 gives a reasonable control on V near
the conformal spatial infinity of (M, g). As in Lemma 3, we will proceed by
slightly modifying V in order to totally compactify (M, g).

Theorem 6. Let (M, g, V ) be an (n+ 1)-dimensional, n ≥ 3, ALAdS static
vacuum and suppose that the spatial slice (∂M, γ) of its infinity has non-
negative scalar curvature. Then there exists a defining function ρ∗ for (M, g)
such that, if g∗ is the extension of (ρ∗)2g to M ,

g∗|∂M = γ, Rg∗ ≥ 0, H∗ = ε,

where Rg∗ is the scalar curvature of the compact Riemannian manifold
(M, g∗), H∗ is the (inner) mean curvature of the conformal infinity ∂M
as a hypersurface of (M, g∗) and ε ≥ 0 is given by

ε = inf
∂M

√
Rγ

(n− 1)(n− 2)
.

Proof. As in Lemma 3, we define the function ρ∗ = (V + ε)−1 for this precise
choice of ε. In Lemma 3 we also showed that ρ∗ is indeed a defining function
for (M, g) with g∗|∂M = γ and established that the scalar curvature of the

compact Riemannian with boundary (M, g∗), satisfies (4).
Now, to show that Rg∗ ≥ 0, our approach is to study the points where the

function Φ := V 2 − |∇V |2 − ε2, defined on M , attains its minimum. Taking
into account the Bochner formula for the Laplacian of the squared length of
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a gradient, we have

1

2
ΔΦ = |∇V |2 + VΔV − |∇2V |2 − g(∇V,∇ΔV )− Ricg(∇V,∇V ).

Using (1), we obtain

(16)
1

2
ΔΦ = −|∇2V − V g|2 − (∇2V )(∇V,∇V )

V
+ |∇V |2.

On the other hand, from the definition of Φ, we have

(17) g(∇Φ,∇V ) = V |∇V |2 − (∇2V )(∇V,∇V ).

If the minimum of Φ is attained at a point p ∈M , then (17) and (16) would
imply that (ΔΦ)(p) ≤ 0 and thus the strong minimum principle implies that
Φ is constant. Consequently, the minimum of Φ could be also attained at
the infinity ∂M . Hence, we can assume that Φ reaches its minimum value
at ∂M .

To study the asymptotical behaviour of the function Φ, we can use the
expression (7) of the eigenfunction V in terms of the geodesic defining func-
tion r. Then

∇V =

(
h− 1

r2

)
∇r + r∇h.

Taking squared norms with respect to the metric g, we get

|∇V |2 =
(
h− 1

r2

)2

|∇r|2 + r2|∇h|2 + 2r

(
h− 1

r2

)
g(∇r,∇h).

But we know that |∇r|2 = r2 near ∂M due to the geodesic character of the
defining function r. Putting this into the last equation and using (7) again,
we have

Φ = 4h− r2|∇h|2 − 2r

(
h− 1

r2

)
g(∇r,∇h),

which is valid in a collar neighbourhood of ∂M . From (8), we know that h
extends to C0(M) and that |∇h| = O

(
r

α

2

)
. So, the third term in the right

side of the previous equation satisfies∣∣∣∣r(h− 1

r2

)
g(∇r,∇h)

∣∣∣∣ ≤ ∣∣hr2 − 1
∣∣ |∇h| = O

(
r

α

2

)
as a consequence of the Schwarz inequality for g and again from the fact
that |∇r| = r in a collar neighbourhood of ∂M . From this inequality and
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the equality above, we conclude, taking limits when r → 0, that

Φ|∂M =
(
V 2 − |∇V |2)|∂M = 4h|∂M =

Rγ

(n− 1)(n− 2)
≥ ε2,

where we have used again (8) and the choice of ε.
Thus Φ|∂M ≥ ε2 together with equality (4) imply that on M , one has

(18) Rg∗ = n(n− 1)
(
V 2 − |∇V |2 − ε2

) ≥ 0.

To finish the proof, it remains to compute the mean curvature H∗ of the
conformal infinity ∂M as a hypersurface of the compactified Riemannian
manifold (M, g∗). Observe that, by definition of ρ∗ and Proposition 5,

g∗ = (ρ∗)2g =
(

r

1 + εr + hr2

)2

g =

(
1

1 + εr + hr2

)2

ĝ

where ĝ = r2g is the extended metric on M corresponding to the geodesic
defining function r. But, we know from (15) that the mean curvature Ĥ of
the spatial conformal infinity ∂M as a hypersurface of (M, ĝ) vanishes (in
fact, it is a totally geodesic hypersurface). So, in order to compute H∗, it
suffices to use the well-known relation between the two mean curvatures of a
hypersurface corresponding to two conformal metrics on the ambient space
(see, for instance, [31, (4.4)]):

H∗ =
1

R

(
Ĥ − ĝ(∇̂ logR, N̂)

)
= − 1

R2
ĝ(∇̂R, N̂),

where R = (1 + εr + hr2)−1 and N̂ is the inner unit normal along ∂M with
respect to the metric ĝ, which can be also written as ∇̂r. Since

∇̂R|∂M = − ε∇̂r + ∇̂(r2h)(
1 + εr + hr2

)2
∣∣∣∣∣
∂M

= −ε∇̂r|∂M ,

we finally obtain

(H∗)|∂M = εĝ(∇̂r, ∇̂r)|∂M = ε.

�
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3. Spatial slice admitting Killing or parallel spinors
on its infinity

Suppose now that the spatial slice M of an ALAdS static vacuum (M, g, V )
is a spin manifold on which we fix a spin structure. We know that its spa-
tial slice (M, g) is an ALH manifold. Indeed, the metric g = V −2g on M
extends to a compact manifold with boundary M whose interior is M itself.
Then, it is straightforward to check that M is also a spin manifold and that
we may fix a unique spin structure on M such that its restriction on the
open subset M is precisely the given spin structure of M . Since the spatial
conformal infinity ∂M is always an orientable hypersurface (recall that the
gradient of a geodesic defining function provides a global unit normal field),
we have that ∂M is also a spin manifold and that an induced spin structure
on the infinity is inherited from the fixed structure on M . Moreover, for the
Riemanian metric g on M we have an associated spinor bundle (SM,∇, c),
where ∇ is the spin Levi-Civita connection and c is the Clifford multiplica-
tion (for generalities on spin structures see any of [11, 16, 23, 25, 34]). It is
a well-known fact that the restriction to the hypersurface ∂M of the spinor
bundle SM can be identified with one or two copies of the spinor bundle
corresponding to the induced spin structure and the induced Riemannian
metric γ = g|∂M according to the parity of the dimension n of M . More

precisely, if ϕ is a section of the restricted bundle SM |∂M , we consider the
new Clifford multiplication

c∂M (X)ϕ = c(X)c(N)ϕ.

and the new connection

∇∂M
X ϕ = ∇Xϕ− 1

2
c(AX)c(N)ϕ = ∇Xϕ− 1

2
c∂M (AX)ϕ, ∀X ∈ Γ(T∂M),

where N is the (inner) unit normal field along ∂M and A is its corresponding
shape operator. Then, we have an isomorphism

(SM |∂M ,∇∂M , c∂M ) ∼=
⎧⎨⎩

(S∂M,∇, c), if n is odd

(S∂M,∇, c)⊕ (S∂M,∇,−c), if n is even,

where (S∂M,∇, c) is the spinor bundle corresponding to the spin structure
and to the Riemannian metric induced on ∂M (for this relationship between
the spinor bundles on a hypersurface and on its ambient space, see, for
instance, [9, 23, 28, 30, 31]). Due to this identification we can say that each
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spinor field on M determines, by restriction, a spinor field on the boundary
∂M and we can talk about possible extensions to M of the spinor fields
defined on ∂M .

Let ϕ ∈ Γ(S∂M) be a spinor field on the Riemannian slice of the confor-
mal null infinity of an ALAdS spin static vacuum (M, g, V ). When ϕ satisfies
the first order equation

(19) ∇Xϕ+
λ

n− 1
c(X)ϕ = 0, λ ∈ C, ∀X ∈ Γ(T∂M),

we will say that ϕ is a Killing spinor if λ ∈ C∗. Of course, if the same
equation is satisfied with λ = 0, we say that ϕ is a parallel spinor (we refer
to [11, 16, 17, 25] for definitions and main properties). It can be shown that λ
has to be a real or a purely imaginary number. So, we will talk about real or
imaginary Killing spinors according to λ ∈ R∗ or λ ∈ iR∗. Of course, these
definitions are usually made for general spin Riemannian manifolds, not
necessarily boundaries of compactifications. It is immediate that a Killing
or parallel spinor must be an eigenspinor for the well-known Dirac operator
D locally defined by

Dϕ =

n−1∑
i=1

c(ei)∇eiϕ,

where {e1, . . . , en−1} is a local orthonormal frame on ∂M . In fact, (19) imme-
diately implies Dϕ = λϕ.

The existence of parallel or Killing spinors imposes strong restrictions on
the geometry of the manifold and on its holonomy. Such manifolds have to
be Einstein with scalar curvature R = 4(n− 1)(n− 2)λ2. Indeed, M. Wang,
H. Baum and C. Bär ([7, 8, 10, 38, 39]) classified some types of spin Rie-
mannian manifolds admitting non-trivial parallel, imaginary Killing and real
Killing spinors, respectively. When the considered spin Riemannian mani-
fold is compact, since the eigenvalues of its Dirac operator have to be real,
Killing spinors must be real as well and, moreover, as it was shown by T.
Friedrich [11, Corollary 1, Theorem 9], they are eigenspinors correspond-

ing to the eigenvalues with the least absolute value ±
√

(n−1)R
4(n−2) . This quick

review about spin structures and Killing spinors allows us to set up our first
rigidity result.

Theorem 7. Let (M, g, V ) be an (n+ 1)-dimensional ALAdS static vac-
uum. Suppose that M is a spin manifold.
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1) If the boundary at infinity (∂M, γ) admits a non-trivial Killing, then
(M, g, V ) is the AdS spacetime.

2) The boundary at infinity (∂M, γ) cannot admit a non-trivial parallel
spinor.

We emphasize that the spin structure considered on ∂M is just the induced
one from that of M .

Proof. Take a non-trivial Killing or parallel spinor ϕ ∈ Γ(S∂M) on the bound-
ary at infinity (∂M, γ) of the vacuum (M, g, V ). Since ∂M is compact, we
know that λ in (19) is a real number and that the metric γ on ∂M has
constant scalar curvature Rγ = (n− 1)(n− 2)λ2. So, we have on ∂M either
positive constant scalar curvature and a non-trivial real Killing spinor ϕ1,
or identically zero scalar curvature and a non-trivial parallel spinor ϕ0. In
particular, we can apply Theorem 6 to this situation by choosing ε = |λ|.
So we have a metric g∗ on the spin compactification M such that Rg∗ ≥ 0,
H∗ = ε and g∗|∂M = γ. Under these conditions, we may use a lower estimate
for the spectrum of the Dirac operator D of (∂M, γ) obtained by X. Zhang
and the authors in [30] (see [25, Theorem 3.7.1]). This result asserts that, if
λ1(D) stands for the eigenvalue of D with the lowest absolute value, then

|λ1(D)| ≥ n− 1

2
ε

and, if the equality holds, then the eigenspace associated with λ1(D) is built
from parallel spinor fields on (M, g∗). But we know that there exists on
∂M a non-trivial Killing or parallel spinor ϕi(ε), with i(ε) = 1 or i(ε) = 0,

depending on whether ε > 0 or ε = 0 and hence Dϕi(ε) = ±n−1
2 εϕi(ε). Then

the equality |λ1(D)| = n−1
2 ε holds and so ϕi(ε) comes from a parallel spinor

field Ψ ∈ SM . Note that Ψ has to be a non-trivial parallel spinor since its
restriction to ∂M is non-trivial.

It was shown by Hitchin in [32] (see also [11, Chapter 6]) that the exis-
tence of a non-trivial parallel spinor forces the Ricci tensor to vanish iden-
tically. Then Ricg∗ = 0 on M and so Rg∗ = 0 as well. From (4), (16), (17)
and (18), and the proof of Theorem 6, we conclude

(20) ∇2V = V g, V 2 − |∇V |2 − ε2 = 0.

Hence the complete manifold (M, g) admits a non-trivial (in fact, positive)
solution V to the Obata type equation ∇2V = V g. If the function V has
a critical point, Theorem C in [33] implies that (M, g) is isometric to the
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hyperbolic space (Hn, gH) and V is a positive height function. Then (V, gV)
is isometric to the AdS spacetime. Assume on the contrary that V has no
critical points on M . We can normalize the gradient ∇V to obtain, as a
consequence of (20), a global unit vector field X = ∇V

|∇V | on M satisfying
∇XX = 0. Hence the integral curves of X are geodesics and are defined on
the whole real line. Take a positive real number a in the image of V . Then
P = V −1({a}) is a closed hypersurface in M and so compact because V
tends to +∞ when one approaches ∂M (see (7)). Let F :M × R→M be
the flow of X. From the considerations above it follows that the restriction
F : P × R→M is a diffeomorphism with

F(p, s) = γp(s), ∀p ∈ P, ∀s ∈ R,

where γp : R→M is the integral (geodesic) curve of X with initial condition
γp(0) = p. In particular, P must be connected. Moreover, if Y ∈ Γ(TP ) is a
vector field tangent to P , we have Y · V = g(∇V, Y ) = 0, because the gradi-
ent ∇V is orthogonal to the level hypersurfaces. This means that V (F(p, s))
depends only on s. On the other hand, Equation (20) implies that

(V ◦ γp)′′(s) = V (γp(s)), V (γp(s))
2 − (

(V ◦ γp)′(s)
)2 − ε2 = 0,

for each p ∈ P and s ∈ R. It follows that

V (γp(s)) = a cosh s+ b sinh s, b ∈ R with a2 = b2 + ε2.

Since we are assuming that V has no critical points onM and V (γp(s)) only
depends on s, we deduce that

(V ◦ γp)′(s) = a sinh s+ b cosh s 	= 0, ∀s ∈ R,

and this is equivalent to the inequality |b| ≥ a. It turns out that |b| = a > 0
and ε = 0 and so, reversing the parameter s if necessary, we obtain

V (γp(s)) = aes, ∀p ∈ P, ∀s ∈ R.

But, from (7), we know that V (γp(s))→ +∞ when γp(s) approaches ∂M .
Hence

∃ lim
s→−∞ γp(s) = γp(−∞) ∈M and V (γp(−∞)) = 0,

which is a contradiction, since V is positive. �



Uniqueness of the AdS spacetime among static vacua· · · 195

Remark 1. If the proof of Theorem 7 is closely analyzed, one can see
that we actually show that, for each Killing or parallel spinor on the spa-
tial infinity (∂M, γ), there exists an imaginary Killing spinor on the bulk
spatial manifold (M, g). In fact, we have proved that there exists a paral-
lel spinor Ψ ∈ Γ(SM) on the conformal compactification (M, g∗). Now, the
same construction which allows to pass from parallel Euclidean spinors to
imaginary hyperbolic Killing spinors by using the conformal factor between
the Euclidean and the hyperbolic metrics on the disc Bn+1 (see [11, 25])
can be used in order to build from Ψ an imaginary Killing spinor on (M, g).
This means that we can extend each supersymmetric infinitesimal isometry
of (∂M, γ) to a supersymmetric infinitesimal isometry of the spatial slice
(M, g) of the ALAdS static vacuum. This is an analogue to the result of
extending conformal transformations on the conformal infinity of an ALH
Einstein manifold to isometries on the bulk manifold proved by M. Ander-
son (see [3, Theorem 3.3] and [5, Theorem 2.5]). In fact, our result gives
rise to the following questions: Is it possible to extend each Killing vector
field on (∂M, γ) to a Killing vector field on (M, g) for the spatial slice of
any ALAdS static vacuum? What about isometries? In fact, the infinitesi-
mal question was already treated by X. Wang in [40, Section 4, Theorem
4.1], by proving that the extension is possible for ALH Einstein manifolds
with non-positive sectional curvature.

Notice that in this supersymmetric setup for ALAdS static vacua, the
conclusion from the existence of only one Killing or parallel spinor is stronger
than the existence of a conformal transformation in M. Anderson’s result:
the presence of only one such spinor on the boundary at infinity forces
the bulk manifold to be maximally symmetric. We will point out that this
occurs because we prevent our vacua (M, g, V ) to have singularities. By the
way, from the existence of the aforementioned imaginary Killing spinor on
(M, g) and Baum’s classification given in [10] we could finish the proof in
an alternative way, but other considerations led us to adopt our approach.

Due to its simply-connectedness, the sphere Sn−1 has a unique spin struc-
ture. Moreover, the spinor bundle corresponding to this structure and to

the round Riemannian metric has a 2[
n−1

2 ]-dimensional space of real Killing
spinors for λ = n−1

2 and another one with the same dimension for λ = −n−1
2

(see [11, p. 37], [25, Examples A.1.3.2]). In this way we see that Theorem 7
implies the rigidity result by X. Wang and by P. Chruściel and M. Herzlich.

Corollary 8. Let (M, g, V ) be an (n+ 1)-dimensional, n ≥ 3, AAdS static
vacuum. Suppose that M is a spin manifold and that the infinity (∂M, γ)
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of its spatial slice (M, g) is a unit round hypersphere. Then (M, g, V ) is the
AdS spacetime.

Besides this uniqueness of the hyperbolic space when the prescribed con-
formal infinity of the spatial slices is a round sphere, Theorem 7 provides
a non-existence result when this conformal infinity is a non-spherical com-
pact spin manifold carrying non-trivial real Killing spinors. In the simply-
connected case, C. Bär determined in [7] all these spin manifolds (see also
[1] and [8, Theorem 3] for non-simply-connected space forms). Using this
classification, we obtain the following:

Corollary 9. There is no (n+ 1)-dimensional, n ≥ 3, ALAdS static vacua
(M, g, V ) whose spatial slices have infinities (∂M, γ) isometric to non-sphe-
rical compact spin manifolds admitting a non-trivial real Killing spinor.
In the simply-connected case, they are Einstein-Sasaki manifolds, 3-Sasaki
manifolds, nearly-Kähler non-Kähler 6-manifolds and 7-manifolds carrying
nice 3-forms. In the non-simply-connected case, they include, for example,
all the round quotients S3/Γ, where Γ ⊂ S3 is any of its finite subgroups,
and real projective spaces RPn with dimensions n = 8k + 3 or n = 8k + 7,
k ≥ 0.

Theorem 7 also provides a non-existence result when (∂M, γ) is isometric
to a compact spin manifold admitting non-trivial parallel spinors. Taking
into account that the product of spin manifolds with non-trivial parallel
spinors is also another spin manifold of this same type, and that M. Wang
determined in [38, 39] all irreducible spin manifolds carrying parallel spinors
(see also [25, Theorem A.4.2]), we obtain the following:

Corollary 10. There is no (n+ 1)-dimensional, n ≥ 3, ALAdS static vacua
(M, g, V ) whose conformal null infinities J have spatial slices (∂M, V −2g|∂M )
isometric to compact spin manifolds admitting a non-trivial parallel spinor.
In the simply-connected case, they are just Calabi-Yau manifolds, hyper-
Kähler manifolds, G2 7-manifolds, Spin(7) 8-manifolds and all their Rie-
mannian products. In the non-simply-connected case, they include, for exam-
ple, all the flat tori Tn with the trivial spin structure and all the Riemannian
products of trivial flat tori Tk, 1 ≤ k ≤ n− 2, with the examples of simply-
connected manifolds above.

Remark 2. It is important to note that the role of spin structures is essen-
tial. In fact, it is well-known that the so-called family of AdS toroidal black
hole metrics (see [14] or [3, Example 2.2, Remark 3.4 ii)]), constructed on the
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solid n-dimensional torus B2 × Tn−2 are the unique ALH Einstein manifolds
whose conformal infinity is the flat torus Tn−1. They are given by

g =
1

U(r)
dr2 + U(r)dθ2 + r2gTn−2 ,

where gTn−2 is the standard flat metric on the torus and

U(r) = r2
(
1− rn0

rn

)
,

with r0 > 0 and θ a (4π/nr0)-periodic coordinate. One can check that, taking
V = V (r) = r2, we have that (B2 × Tn−2, g, V ) is a static vacuum. Indeed
it determines the so-called AdS soliton (see [42] and [24] for a uniqueness
result). It is clear thatM = B2 × Tn−2 is a spin manifold, but the spin struc-
ture inherited on its boundary at infinity ∂M = Tn−1 is not the trivial one,
since M is constructed by gluing on a 2-disc onto a simple closed geodesic of
the flat Tn−1. Then, even though (∂M, γ) is a flat torus, the spin structure
inherited from (M, g) admits no parallel spinor fields and Corollary 10 does
not apply in this situation.

4. Supersymmetries on the boundary and spin conformal
compactifications with singularities

If we compare Theorem 3.3 in [3] (see also Theorem 2.5 in [5]) with the
main Theorem 7 of this paper, we see that, in the spirit of the AdS/CFT
correspondence, all the conformal transformations on the boundary of an
ALH Einstein manifold come from Riemannian isometries of its conformal
compactifications and that, however, in the case of ALAdS static vacua,
the supersymmetric infinitesimal isometries of the null infinity give non-
existence results, except for the spherical case.

Hence, the proof of Theorem 7 can be read as a supersymmetric ver-
sion of Anderson’s result under different conditions on the Ricci curvature.
Indeed, its proof shows that each Killing or parallel spinor on the spatial
slice of the null infinity comes from an imaginary Killing spinor on the bulk
manifold (see Remark 1). But a careful reading of this proof makes also
manifest that, if we exclude conical or cusp singularities, the only vacua
supporting these imaginary Killing spinors are AdS spacetimes. This is why
we finish this paper with some examples showing that there are ALAdS
static vacua with null infinities carrying Killing or parallel spinors provided
that singularities are allowed.
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We could say that supersymmetries on a non-spherical null infinity yield
static vacua with hyperbolic conical or cusps singularities. Mathematically,
these examples take the form of warped products. From a physical point of
view such kind of manifolds also appear regularly ([6, 14]). On the other
hand, a strong necessity of considering ALAdS metrics with singularities
arises as well when one wants to understand the manifold structure of the
space of these metrics, with a given topology (see, for example, [3, (3.6)]).

Example 1. Consider the Poincaré hyperbolic ball
(
Bn, 4|dx|2

(1−|x|2)2
)
as a

model of the hyperbolic space. Using polar coordinates x = rp, with r ∈]0, 1]
and p ∈ Sn−1, it follows that the hyperbolic metric of constant sectional cur-
vature −1 takes the form

g =

(
2

1− r2

)2 (
dr2 + r2γSn−1

)
,

where γSn−1 stands for the unit round metric on the sphere. If we consider
the change of variables given by s = ln 1+r

1−r ∈ R+, we obtain

g = ds2 + (sinh2 s)γSn−1 .

These two expressions for the Poincaré metric are valid only on the punc-
tured ball Bn − {0} ∼= ]0, 1[×Sn−1 ∼= R+ × Sn−1, although they are smoothly
extendable to the origin. This latter is an example of the so-called warped
Riemannian products (see, for instance, [12, 33, 36]).

In general, if I ⊂ R is an open interval, (P, γ) a Riemannian (n− 1)-
manifold and f ∈ C∞(I) is a positive function, we will say that the n-
dimensional Riemannian manifold (I × P, g = ds2 + f(s)2γ) is the product
of I and P warped by means of the function f . For the sake of simplicity, if
we only consider Einstein manifolds, using the form of the Ricci tensor on
a warped product (see [33, Lemma 4]) and recalling (2), we have restricted
ourselves to warping functions f satisfying the linear differential equation
f ′′ − f = 0. With this choice, we ensure that Ricg(

∂
∂s ,

∂
∂s) = −(n− 1) at each

point of I × P . Taking into account the values of Ricg on the directions
orthogonal to the vector field ∂

∂s , that is, directions tangent to P , we con-
clude that there are essentially three types of warped products which eventu-
ally may produce Einstein manifolds with scalar curvature −n(n− 1). The
first one is the hyperbolic cone on a given compact Riemannian manifold
(P, γ), given by

(R+ × P, g = ds2 + (sinh2 s)γ).
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It is immediate to see again from [33, Lemma 4], for instance, that we have for
the directions tangent to this cone and perpendicular to the radial direction

Ricg + (n− 1)g = Ricγ − (n− 2)γ.

So, we will assume that (P, γ) is an Einstein manifold with scalar curvature
(n− 1)(n− 2). We can also see in [33] that the smooth function defined on
R+ × P by V (s, p) = cosh s, for each s ∈ R+ and p ∈ P , is a solution to the
Obata type equation∇2V = V g. Thus the triple (M, g, V ) = (R+ × P, ds2 +
(sinh2 r)γ, cosh r) determines a static vacuum. Defining a new variable t ∈
]0, π2 ] by the equality t = −π

2 + 2arctan es, we obtain

g =
1

cosh2 s
g = dt2 + (sin t2)γ.

The spherical conical metric dt2 + (sin t2)γ obviously extends to [0, π2 ]× P ,
a compact manifold with boundary {π2 } × P ∼= P and a conical singularity
at t = 0. This singularity is removable if and only if (P, γ) is the round
unit (n− 1)-sphere and, in this case, the corresponding hyperbolic cone is
nothing but the n-dimensional hyperbolic space (see [12, p. 269, Lemma
9.114]). When P is chosen to be one of the non-spherical compact spin
(n− 1)-dimensional manifolds listed in Corollary 9, we get an example of
non-AdS ALAdS static vacuum with spatial infinity supporting non-trivial
Killing spinors with a conical singularity.

Example 2. The second type of warped product relevant to our purposes
is the so-called hyperbolic cusp on a compact Riemannian manifold (P, γ),
given by

(R× P, g = ds2 + e2sγ).

For these cusps, the Ricci curvature is also −(n− 1) along the radial direc-
tion ∂

∂s and, for orthogonal directions tangent to P , we have

Ricg + (n− 1)g = Ricγ .

Then, we will assume that in this case (P, γ) is Ricci-flat. As in Example 1,
we can see in [33] that V (s, p) = es is a solution to ∇2V = V g. Defining a
new variable t ∈ R+ as t = es, we obtain

g =
1

e2s
g = dt2 + γ.
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The cylindrical metric dt2 + γ clearly extends to [0,+∞[×P , which is a non-
compact manifold with boundary {0} × P ∼= P and one cylindrical end. So,
the corresponding static vacuum (M, g, V ) = (R+ × P, ds2 + e2sγ, es) has a
null infinity whose Riemannian slice is (P, γ) for s = +∞, but it is not
compactifiable at s = −∞ because of the presence of a hyperbolic cusp. Of
course, the cusp singularity is always unremovable, although it has finite
volume. When P is chosen to be one of the non-spherical compact spin
(n− 1)-dimensional manifolds listed in Corollary 10, we get an example of
non-AdS ALAdS static vacuum with spatial infinity supporting non-trivial
parallel spinors having a cusp singularity.
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[23] T. Friedrich, Dirac Operators in Riemannian Geometry, AMS Graduate
Studies in Math., vol. 25, 2000.



202 O. Hijazi and S. Montiel

[24] G. J. Galloway, S. Surya, E. Woolgar, On the geometry and mass of
static, asymptotically AdS spacetimes, and the uniqueness of the AdS
soliton, Commun. Math. Phys., 241 (2003), 1–25.

[25] N. Ginoux, The Dirac Spectrum, Lecture Notes in Mathematics, 1976
(2009).

[26] C. R. Graham, J. M. Lee, Einstein metrics with prescribed conformal
infinity on the ball, Adv. Math., 87 (1991), 186–225.

[27] C. Guillarmou, J. Qing, Spectral characterization of Poincaré-Einstein
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