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Abstract

The generalized volume conjecture relates asymptotic behavior of the
colored Jones polynomials to objects naturally defined on an algebraic
curve, the zero locus of the A-polynomial A(x, y). Another “family
version” of the volume conjecture depends on a quantization parameter,
usually denoted q or �; this quantum volume conjecture (also known as
the AJ-conjecture) can be stated in a form of a q-difference equation

e-print archive: http://lanl.arXiv.org/abs/1203.2182v1
∗Author of an appendix



“ATMP-16-6-A3-FUJ” — 2013/5/25 — 9:47 — page 1670 — #2
�

�

�

�

�

�

�

�
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that annihilates the colored Jones polynomials and SL(2,C) Chern–
Simons partition functions. We propose refinements/categorifications
of both conjectures that include an extra deformation parameter t and
describe similar properties of homological knot invariants and refined
BPS invariants. Much like their unrefined/decategorified predecessors,
that correspond to t = −1, the new volume conjectures involve objects
naturally defined on an algebraic curve Aref(x, y; t) obtained by a particu-
lar deformation of the A-polynomial, and its quantization ̂Aref(x̂, ŷ; q, t).
We compute both classical and quantum t-deformed curves in a num-
ber of examples coming from colored knot homologies and refined BPS
invariants.
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1 Introduction

The story of the “volume conjecture” started with the crucial observa-
tion [1] that the so-called Kashaev invariant of a knot K defined at the
n-th root of unity q = e2πi/n in the classical limit has a nice asymptotic
behavior determined by the hyperbolic volume Vol(M) of the knot com-
plement M = S3 \K. Shortly after, it was realized [2] that the Kashaev
invariant is equal to the n-colored Jones polynomial of a knot K evaluated
at q = e2πi/n, so that the volume conjecture could be stated simply as

lim
n→∞

2π log |Jn(K; q = e2πi/n)|
n

= Vol(M). (1.1)
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The physical interpretation of the volume conjecture was proposed in [3].
Besides explaining the original observation (1.1) it immediately led to a
number of generalizations, in which the right-hand side is replaced by a
function of various parameters (see [4] for a review). Below we state two
such generalizations — associated, respectively, with the parameters � and
u — that in the rest of the paper will be “refined” or, morally speaking,
“categorified.”

1.1 Generalized volume conjecture

Once the volume conjecture is put in the context of analytically continued
Chern–Simons theory, it becomes clear that the right-hand side is simply
the value of the classical SL(2,C) Chern–Simons action functional on a
knot complement M . Since classical solutions in Chern–Simons theory (i.e.,
flat connections on M) come in families, parameterized by the holonomy of
the gauge connection on a small loop around the knot, this physical interpre-
tation immediately leads to a “family version” of the volume conjecture [3]:

Jn(K; q = e�)
n→∞
�→0∼ exp

(

1
�
S0(u) + · · ·

)

(1.2)

parameterized by a complex variable u. Here, the limit on the left-hand side
is slightly more interesting than in (1.1) and, in particular, also depends on
the value of the parameter u:

q = e� → 1, n→ ∞, qn = eu ≡ x (fixed) (1.3)

In fact, Chern–Simons theory predicts all of the subleading terms in the
�-expansion denoted by ellipsis in (1.2). These terms are the familiar per-
turbative coefficients of the SL(2,C) Chern–Simons partition function onM .

1.2 Quantum volume conjecture

Classical solutions in Chern–Simons theory (i.e., flat connections on M) are
labeled by the holonomy eigenvalue x = eu or, to be more precise, by a point
on the algebraic curve

C :
{

(x, y) ∈ C
∗ × C

∗
∣

∣

∣A(x, y) = 0
}

, (1.4)

defined by the zero locus of the A-polynomial, a certain classical invariant
of a knot. In quantum theory, A(x, y) becomes an operator ̂A(x̂, ŷ; q) and
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the classical condition (1.4) turns into a statement that the Chern–Simons
partition function is annihilated by ̂A(x̂, ŷ; q). This statement applies equally
well to Chern–Simons theory with the compact gauge group SU(2) that
computes the colored Jones polynomial Jn(K; q) as well as to its analytic
continuation that localizes on SL(2,C) flat connections. In the former case,
one arrives at the “quantum version” of the volume conjecture [3]:

̂A J∗(K; q) � 0, (1.5)

which in the mathematical literature was independently proposed around
the same time [5] and is know as the AJ-conjecture. The action of the
operators x̂ and ŷ follows from quantization of Chern–Simons theory. With
the standard choice of polarization1 one finds that x̂ acts as a multiplication
by qn, whereas ŷ shifts the value of n:

x̂Jn = qnJn (1.6)
ŷJn = Jn+1

In particular, one can easily verify that these operations obey the commu-
tation relation

ŷx̂ = qx̂ŷ (1.7)

that follows from the symplectic structure on the phase space of Chern–
Simons theory. Therefore, upon quantization a classical polynomial relation
of the form (1.4) becomes a q-difference equation for the colored Jones poly-
nomial or Chern–Simons partition function. Further details, generalizations,
and references can be found in [4].

One of the goals of the present paper is to propose a “refinement” or
“categorification” of the generalized and quantum volume conjectures (1.2)
and (1.5).

1.3 Quantization and deformation of algebraic curves

The above structure — and its “refinement” that we are going to construct
— is not limited to applications in knot theory. Similar mathematical struc-
ture appears in matrix models [8–10], in four-dimensional N = 2 super-
symmetric gauge theories [11–14], and in topological string theory [15–18].

1Although different choices of polarization will not play an important role in the present
paper, the interested reader may consult, e.g., [6, 7] for further details.
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Figure 1: Deformation and quantization of the A-polynomial. The horizon-
tal arrows describe a deformation/refinement, such that the unrefined case
corresponds to t = −1. The vertical arrows represent quantization, i.e., a
lift of classical polynomials A(x, y) and A(x, y; t) to quantum operators.

In all of these problems, the semiclassical limit is described by a cer-
tain “spectral curve” (1.4) defined by the zero locus of A(x, y). Moti-
vated by application to knots, we shall refer to the function A(x, y) as the
A-polynomial even in situations where its form is not at all polynomial.

Furthermore, in most of these problems the classical curve (1.4) admits
two canonical deformations with the corresponding parameters q and t. The
first one is the deformation quantization in which x and y turn into non-
commutative generators of the Weyl algebra, cf. (1.7). The second defor-
mation, parameterized by t, does not affect commutativity of x and y, i.e.,
it is an ordinary deformation. How these deformations affect the classical
curve defined by the zero locus of A(x, y) is illustrated in figure 1.

A systematic procedure for lifting the polynomial A(x, y) to the quantum
operator ̂A(x̂, ŷ; q) is described in [7] for curves coming from triangulated
3-manifolds and, more generally, in [19] for abstract curves defined by the
equation A(x, y) = 0. The general approach of [19] is based on the topo-
logical recursion, which allows to compute ̂A(x̂, ŷ; q) order by order in the
q-expansion following the steps of [20–24] where similar computations of
the partition function were discussed. Thus, under favorable conditions
described in [19], the quantum operator

̂A(x̂, ŷ; q) =
∑

m,n

am,n q
cm,n x̂m ŷn (1.8)

can be obtained simply from the data {am,n} of the original polynomial
A(x, y) =

∑

am,nx
myn and from the data {cm,n} of the Bergman kernel
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B(u1, u2) which, for curves of arbitrary genus, is given by a derivative of the
logarithm of the odd characteristic theta function. Specifically, given the
Bergman kernel B(u1, u2) for the classical curve (1.4), one can first compute
the “torsion” T (u),

log T (u) = lim
u1→u2=u

∫ (

du1 du2

(u1 − u2)2
−B(u1, u2)

)

, (1.9)

and then find the exponents {cm,n} by solving

∑

m,n

am,n cm,n x
myn =

1
2

(

∂uA

∂vA
∂2

v +
∂uT

T
∂v

)

A (1.10)

together with A(x, y) = 0. Substituting the resulting data {cm,n} into (1.8)
gives the quantization of A(x, y). In the above equations, we used the
relations

x = eu, y = ev. (1.11)

In this paper, our main focus will be the deformation in the other direc-
tion, associated with the parameter t. Some prominent examples of classical
A-polynomials and their t-deformations which we find are given in table 1.
Important examples of quantum refined A-polynomials, which we will derive
in this paper, are revealed in table 2.

2 The new conjectures: incorporating t

In this section, we describe general aspects of the mathematical structure
shared by a wide variety of examples, ranging from the counting of refined
BPS invariants to categorification of quantum group invariants. Then, in
later sections we focus on each class of examples separately.

In particular, one of our goals is to promote the volume conjectures (1.2)
and (1.5) to the corresponding refined/categorified versions, both for knots
and for the refined BPS invariants.

2.1 Quantum volume conjecture: refined

The fact that a q-difference operator ̂A(x̂, ŷ; q) annihilates the partition func-
tion of Chern–Simons theory/matrix model/B-model/instanton partition
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Table 1: Classical curves in prominent examples, in unrefined limit (which
are well known, left column) and for general t (derived in this paper, right
column). In this paper we also derive refined A-polynomials for general
T 2,2p+1 torus knots; for explicit examples for low values of p see table 3.
Note that in Section 4 the deformation parameter t is identified with −q1
(when q2 = q = 1).

Model A(x, y) Aref(x, y; t)

Unknot (1 − x)(1 − y) (1 + t3x)(−t−3)1/2 − (1 − x)y

Trefoil (y − 1)(y + x3) y2 − 1 − xt2 + x3t5 + x4t6 + 2x2t2(t+ 1)
1 + xt3

y

+
(x− 1)x3t4

1 + xt3

Tetrahedron 1 − y + x(−y)f 1 + ty − tx(−y)f

Conifold 1 − y + x(−y)f 1 + ty − tx(−y)f +Q
√
−t x(−y)f+1

+Qx(−y)f+1

Table 2: Refined quantum curves derived in this paper. The notation
“. . . � 1 + t” should be understood as ̂ArefZopen

BPS = 1 + t. Note that in Sec-
tion 4 the quantization parameter q is identified with q2, and the deformation
parameter is t = −q1

q2
.

Model ̂Aref(x̂, ŷ; q, t)

Unknot (1 + t3qx̂)(−q−1t−3)1/2 − (1 − x̂)ŷ

Trefoil
1

q + x̂2q2t3
ŷ +

x̂3(x− q)t4

q(q + x̂2t3)(1 + x̂qt3)
ŷ−1+

− t2x̂2

1 + x̂2qt3
− q − x̂qt2 + x̂4t6 + x̂2t2(1 + t+ qt)

(q + x̂2t3)(1 + x̂qt3)
Tetrahedron 1 + tŷ − t

√
q x̂(−ŷ)f � 1 + t

Conifold 1 + tŷ − t
√
q x̂(−ŷ)f +Q

√−tq x̂(−ŷ)f+1 � 1 + t

function is easy to refine. Just like each of these partition functions becomes
t-dependent, so does the operator ̂A(x̂, ŷ; q, t) that annihilates it. The com-
mutation relations (1.7) do not change and, therefore, our proposal for the
refinement of (1.5) is easy to state:

̂Aref(x̂, ŷ; q, t) P∗(K; q, t) � 0 (knots) (2.1a)
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or

̂Aref(x̂, ŷ; q, t) Zopen
BPS (u, q, t) � 0 (BPS states). (2.1b)

While the formulation of this refined/homological version is simple and
follows the lines of the ordinary quantum volume Conjecture (1.5), its inter-
pretation is rather deep and non-trivial. It involves details of the framework
in which (2.1) arises and will be given a proper treatment in the follow-
ing sections. Here, we only remark that polynomials Pn(K; q, t), which
appear in (2.1a) as t-dependent analogs of the colored Jones polynomials
Jn(K; q) are Poincaré polynomials of the n-colored sl(2) knot homology
groups Hsl(2),Vn(K):

Pn(K; q, t) =
∑

i,j

qitj dimHsl(2),Vn

i,j (K), (2.2)

such that

Jn(K; q) = Pn(K; q, t = −1). (2.3)

Because the t-deformation does not affect the commutation relation (1.7),
the operators x̂ and ŷ act on Pn exactly as in (1.6):

x̂Pn = qnPn

ŷPn = Pn+1
(2.4)

2.2 Generalized volume conjecture: refined

The refinement/categorification of the generalized volume conjecture (1.2)
involves taking the limit (1.3) while keeping the extra parameter t fixed:

q = e� → 1, t = fixed, x ≡ eu = qn = fixed. (2.5)

We conjecture that, in this limit, the homological (resp. refined) knot (resp.
BPS) invariants have the following asymptotic behavior:

Pn � exp

(

1
�
S0(u, t) +

∞
∑

n=0

Sn+1(u, t) �
n

)

(knots) (2.6a)

or

Zopen
BPS (u, q, t) � exp

(

1
�
S0(u, t) +

∞
∑

n=0

Sn+1(u, t) �
n

)

(BPS states),

(2.6b)
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with the leading term (“classical action”)

S0(u, t) =
∫

vdu =
∫

log y
dx

x
(2.7)

defined as an integral on a classical curve

Cref :
{

(x, y) ∈ C
∗ × C

∗
∣

∣

∣Aref(x, y; t) = 0
}

, (2.8)

which is a deformation of the classical A-polynomial curve A(x, y) = 0. In
writing (2.7), we used the same convention as in (1.11).

3 Examples coming from knots

In this section, we illustrate the refined/categorified volume conjectures
stated in the general form in (2.1) and (2.6) for a large class of examples
coming from knots. In these examples, the invariants Pn(q, t) whose recur-
sive behavior is captured by the conjectures encode the graded dimensions
of the homological knot invariants.

There are many different kinds of homological knot invariants: doubly
graded and triply graded, reduced and unreduced, with different choices
of framing and grading conventions. And, in our discussion we will need
at least a basic understanding of these concepts in order to have most fun
with the conjectures (2.1a) and (2.6a). In other words, we will need to
have at least a rough understanding of the relation between different types
of knot invariants shown in figure 2. Luckily, much of this picture can
be explained building on the relations between polynomial knot invariants,
which hopefully are more familiar to the reader.

We start with the lower left corner of figure 2 that describes the sim-
plest family of polynomial knot invariants Jg,R(K; q) labeled by a repre-
sentation R of a Lie algebra g = Lie(G). In the special case when R =
Vn is the n-dimensional representation of g = sl(2), the quantum group
invariant Jn(K; q) := Jsl(2),Vn(K; q) is the n-colored Jones polynomial of a
knot/link K that we already encountered in the review of the generalized
volume conjectures (1.2) and (1.5). In general, a mathematical definition
of Jg,R(K; q) involves associating a quantum R-matrix to every crossing in
a plane diagram of a knot K. Physically, these quantum group invariants
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Figure 2: Categorification of quantum knot invariants. To help the reader
navigate through this picture we suggest to keep track of the variables a, q,
t, as well as the rank of sl(N). Note, the polynomial (resp. homological)
knot invariants which have a-dependence (resp. a-grading) are not labeled
by sl(N).

are simply the normalized expressions for the partition function of Chern–
Simons gauge theory [25]:

ZCS
G (M,KR; q) :=

∫

[dA]WR(K)[A] eikSCS[A;M ] (3.1)

with a Wilson loop operator WR(K)[A] := TrRP exp
[∮

K A
]

supported on a
knot K and decorated by a representation R. Here, SCS[A;M ] is the famous
Chern–Simons action functional on a 3-manifold M ,

SCS[A;M ] =
1

4π

∫

M
Tradj

(

A ∧ dA+
2
3
A ∧A ∧A

)

. (3.2)

In general, the partition function (3.1) is a rather complicated function of
the coupling constant k or, equivalently, the “quantum” parameter q = e

2πi
k+h .

However, once normalized by that of the unknot, it magically becomes a
polynomial in q with integer coefficients, at least when M = S3:

Jg,R(K; q) =
ZCS

G (S3,KR; q)
ZCS

G (S3,©R; q)
. (3.3)

The fact that the final result turns out to be a polynomial, let alone integer
coefficients, is not at all obvious in either R-matrix or path integral formu-
lation of Jg,R(K; q). This nice property, however, is a precursor of knot
homologies, which beautifully explain it.
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Another nice property comes from a closer look at g = sl(N), which will
be the focus our paper. (Although there are straightforward analogs for
other classical groups, we will not consider them here.) Then, not only
Jsl(N),R(K; q) turn out to be polynomials in q, they exhibit a very simple
dependence on N . Namely, for each R (= Young tableaux) there exists a
polynomial invariant PR(K; a, q) of a knot K, such that

Jsl(N),R(K; q) = PR(K; a = qN , q). (3.4)

This relation is represented by a vertical arrow on the left in figure 2. The
polynomial PR(K; a, q) is called the colored HOMFLY polynomial of K. To
be more precise, it is the normalized HOMFLY polynomial, meaning that
PR(©) = 1.

Once we explained the left side of figure 2, we can easily describe its
categorification shown on the right. To categorify Jsl(N),R(K; q) means
to construct a doubly graded homology theory Hsl(N),R

i,j (K), with grad-
ings i and j, such that the polynomial Jsl(N),R(K; q) is its q-graded Euler
characteristic:

Jsl(N),R(K; q) = PR(K; a = qN , q) =
∑

i,j

(−1)jqi dimHsl(N),R
i,j (K). (3.5)

Similarly, a categorification of PR(K; a, q) is a triply graded homology
theory HR

i,j,k(K), with gradings i, j and k, whose graded Euler charac-
teristic is

PR(K; a, q) =
∑

i,j,k

(−1)kaiqj dimHR
i,j,k(K). (3.6)

The relations (3.5) and (3.6) are represented by horizontal arrows in figure 2.
Sometimes, it is convenient to express these relations as specializations of the
corresponding Poincaré polynomials Psl(N),R(q, t) and PR(a, q, t) at t = −1.
For example, the Poincaré polynomial of the triply graded homology theory
HR

i,j,k(K) is defined as follows

“superpolynomial” PR(K; a, q, t) :=
∑

i,j,k

aiqjtk dimHR
i,j,k(K) (3.7)

and often is called the colored superpolynomial. To be more precise, just like
below equation (3.4) we pointed out that PR(a, q) = PR(a, q, t = −1) is the
normalized colored HOMFLY polynomial, it is important to emphasize that
PR(K; a, q, t) is the Poincaré polynomial of the reduced homology theory, in
a sense that PR(©) = 1.
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If one naively combines (3.5) and (3.6) one may be tempted to conclude
that Psl(N),R(q, t) is a specialization of the superpolynomial at a = qN , as
was stated, e.g., in [26] and in some other recent papers. We emphasize
that, in general, this is not the case:

PR(a = qN , q, t) �= Psl(N),R(q, t) ≡
∑

i,j

qitj dimHsl(N),R
i,j (K). (3.8)

The reason is very simple and becomes crystal clear if one attempts to test
(3.8) even in the basic case of N = 1 and, say, R = �. Indeed, the sl(1)
theory is trivial in any approach to knot polynomials/homologies. In other
words, for any knot the sl(1) homology Hsl(1),�

i,j (K) is one-dimensional and
the corresponding quantum group invariant Jsl(1),�(K; q) consists of a single
monomial.

This fact has a nice manifestation in the relation (3.4), which says that
almost all terms in the HOMFLY polynomial P�(a, q) cancel out in the
specialization a = q, leaving behind a single term. This remarkable prop-
erty of the HOMFLY polynomial can be viewed as a non-trivial constraint
on the coefficients of the polynomial P�(a, q). Since the coefficients of
P�(a, q) can be positive and negative, this condition indeed can be sat-
isfied if the total number of “minuses” (counted with multiplicity) is bal-
anced by the total number of “pluses.” This, of course, can not work for
(3.8) where the superpolynomial P�(a, q, t) has only positive coefficients,
due to (3.7). Therefore, setting a = q will never reduce the total sum of
the coefficients in this polynomial, and there is no way it can be equal
to the Poincaré polynomial Psl(1),R(q, t) of a one-dimensional homology
Hsl(1),R

i,j (K).

A more conceptual reason why (3.8) can not be true is that, while a
specialization to a = qN is perfectly acceptable at the polynomial level (the
left side of figure 2), it has to be replaced by a suitable operation from
homological algebra in order to make sense at the higher categorical level
(the right side of figure 2). As explained in [27], the suitable operation,
which categorifies the specializations a = qN , involves taking homology in
the triply-graded theory with respect to differentials dN , N ∈ Z. Indeed,
the “extra terms” in the superpolynomial PR(a, q, t) that are not part of
Psl(N),R(q, t) and otherwise would cancel upon setting t = −1 always come
in pairs, so that a more proper version of (3.8) reads

PR(a, q, t) = Rsl(N),R(a, q, t) + (1 + aαqβtγ)Qsl(N),R(a, q, t), (3.9)



“ATMP-16-6-A3-FUJ” — 2013/5/25 — 9:47 — page 1682 — #14
�

�

�

�

�

�

�

�

1682 HIROYUKI FUJI ET AL.

whereRsl(N),R(a, q, t) andQsl(N),R(a, q, t) are polynomials with non-negative
coefficients, such that the sl(N) homological invariant is a specialization of
the “remainder” (not the full superpolynomial as in (3.8)):

Rsl(N),R(a = qN , q, t) = Psl(N),R(q, t), (3.10)

whereas the extra pairs of terms in (3.9) that come from Qsl(N),R(a, q, t) are
killed by the differential dN of (a, q, t)-degree (α, β, γ).

Now, once we introduced the cast of characters and explained the relations
between them, we can get straight down to business. We start in the next
subsection with the calculation of colored superpolynomials for (2, 2p+ 1)
torus. Then, in Section 3.2 we use the results of these calculations to derive
and study the recursion relations, a.k.a. the quantum volume conjecture
(2.1a). Starting in Section 3.2, we focus on the a = q2 specializations of
Sr-colored superpolynomial, which we denote as

Pn(q, t) := PSn−1
(a = q2, q, t). (3.11)

In Section 3.1.3, we present some evidence that in the refined volume con-
jectures (2.1) and (2.6) one can replace this definition of Pn(q, t) with a true
sl(2) homological knot invariant (2.2). Finally, in Section 3.3 we consider
the classical limit and discuss the leading “volume” term S0(u, t) that dom-
inates the asymptotic behavior (2.6a) of these homological knot invariants.
According to (2.7), this semi-classical limit is controlled by the t-deformed
algebraic curve, Aref(x, y; t) = 0, whose quantization will be revisited in
Section 3.4.

In a physical realization of knot homologies [28], the superpolynomial
PSn−1

(a, q, t) and its specialization (3.11) are certain indices that count
refined BPS invariants, essentially identical to Zopen

BPS (u, q, t) where u = qn.
Motivated by this, in the later Section 4 we perform a similar analysis of
more general refined open BPS partition functions and find many similar
patterns.

3.1 Sr homological invariants of (2, 2p + 1) torus knots

Our goal in this section is to compute the colored superpolynomials PR

(a, q, t) for (2, 2p+ 1) torus knots and symmetric and anti-symmetric rep-
resentations, R = Sr and R = Λr. In performing this calculation, we first
review the analogous computation of the polynomial knot invariants (on the
left side of figure 2) in Chern–Simons gauge theory and then “refine” it.
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We should stress right away, however, that the refined calculation is not
done in a topological 3d gauge theory or, at least, such a 3d gauge theory
interpretation of the formal steps that we are going to take is not known at
present.

In Chern–Simons gauge theory, one can efficiently compute (3.1) using
the topological invariance of the theory. Dividing a 3-manifold M into two
pieces M1 and M2 along a surface Σ, one can express the partition func-
tion ZCS

SU(N)(M,KR; q) as a pairing between the two elements |ψM1;KR
〉 and

|ψM2;KR
〉 in the physical Hilbert space HΣ:

ZCS
SU(N)(M,KR; q) = Σ〈ψM2;KR

|ψM1;KR
〉Σ. (3.12)

The physical Hilbert space HΣ is obtained by the canonical quantization of
the Chern–Simons gauge theory on Σ × R, and the following correspondence
is found in [25,29]:

HΣ �
{

conformal blocks for G/G WZW model on Σ
}

,

where G = SU(N). If the knot KR meets the surface Σ at m points, the
physical Hilbert space HΣ;R1···Rm consists of conformal blocks for m-point
functions, which carry representations Ra = R or R (a = 1, . . . ,m) depend-
ing on the orientation at the intersection.

Here, we will focus on the torus knots T 2,2p+1 in a 3-sphere and follow
the steps of [30]. Among various choices of the surface Σ, we will consider
a slicing of S3 into a pair of three-dimensional balls B3 connected by a
cylinder, as in figure 3. The physical Hilbert space HS2;R R R R for this slice
consists of conformal blocks for the four point function:

φQ(R,R,R,R), Q ∈ R⊗R, (3.13)

whose intermediate state carries an irreducible representation Q ∈ R⊗R,
see figure 4. In general, HS2;R1R2R3R4

is spanned by orthonormal states:

〈φQ′(R1, R2, R3, R4)|φQ(R1, R2, R3, R4)〉 = δQQ′ , Q,Q′ ∈ R1 ⊗R2.
(3.14)

For a state |ψ0(R1, R2)〉 ∈ HS2;R1R2R2R1
associated with the lower half of

the 3-ball in figure 3, the following expansion can be considered:

|ψ0(R1, R2)〉 =
∑

Q∈R1⊗R2

μQ
R1R2

|φQ(R1, R2, R2, R1)〉. (3.15)
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Figure 3: Slicing and braiding.

The coefficient μQ
R1R2

is determined by taking a pairing of this state with
itself:

〈ψ0(R1, R2)|ψ0(R1, R2)〉 =
∑

Q∈R1⊗R2

(

μQ
R1R2

)2

= ZCS
SU(N)(S

3,©R1©R2 ; q). (3.16)

Since the two unknots here are not linked, we can separate them by an
application of another slicing along a surface Σ2 � S2, as in figure 5:

ZCS
SU(N)(S

3,©R1©R2 ; q)ZCS
SU(N)(S

3; q) = ZCS
SU(N)(S

3,©R1 ; q)

× ZCS
SU(N)(S

3,©R2 ; q). (3.17)

The partition function of the unknot ©R in S3 is given by the quantum
dimension:

ZCS
SU(N)(S

3,©R; q)

ZCS
SU(N)(S

3; q)
= dimq R. (3.18)
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Figure 4: Conformal block φQ′(R1, R2, R3, R4) for the four-point function.

Figure 5: Slicing along Σ2 � S2.

Here, the quantum dimension dimq R is a specialization of the Schur
polynomial sR(x):

dimq R = sR(q�), 
 = (
1, . . . , 
N ), 
i =
N + 1

2
− i, (3.19)

which enjoys the following identity:

sR1(x)sR2(x) =
∑

Q∈R1⊗R2

sQ(x). (3.20)

Using these relations, the coefficient μQ can be determined as:

(

μQ
R1R2

)2
= sQ(q�) · ZCS

SU(N)(S
3; q). (3.21)

The state |ψ2p+1(R1, R2)〉 associated with the top part of the picture 3
is constructed by acting 2p+ 1 times with the braid operator BR1R2 on the
3-ball state |ψ0(R1, R2)〉:

|ψ2p+1(R1, R2)〉 = B2p+1
R1R2

|ψ0(R1, R2)〉. (3.22)

The action of the braid operator BR1R2 on the conformal block φQ(R1,
R2, R3, R4) obeys a monodromy transformation. The eigenvalue of the mon-
odromy for the conformal block is determined by the conformal weights hRa



“ATMP-16-6-A3-FUJ” — 2013/5/25 — 9:47 — page 1686 — #18
�

�

�

�

�

�

�

�

1686 HIROYUKI FUJI ET AL.

of primary states in the G/G WZW model [31]:

λ′Q(R1, R2) = εQR1R2
eπi(hR1

+hR2
−hQ) = εQR1R2

q
1
2
(C2(R1)+C2(R2)−C2(Q)).

(3.23)

The quadratic Casimir C2(R) for a representation R of SU(N) is given by

C2(R) =
1
2

(

κR +N |R| − |R|2
N

)

, (3.24)

where Ri denotes the number of boxes in the ith row of the Young diagram
for the representation R, and |R| :=

∑

iRi, and κR = |R| +
∑

iRi(Ri − 2i).
The sign εQR1R2

= ±1 is determined by whether Q appears symmetrically or
antisymmetrically in R1 ⊗R2. In order to keep the canonical framing for the
Chern–Simons partition function, it is necessary to make a correction to the
eigenvalue for the braid operator by a factor q

1
2
(C2(R1)+C2(R1)+|C2(R1)−C2(R2)|)

[25, 30]. Therefore, the resulting eigenvalue of the braid operator is
given by

λ
(+)
Q (R1, R2) = εQR1R2

qC2(R1)+C2(R2)+|C2(R1)−C2(R2)|/2−C2(Q)/2. (3.25)

Combining the above formulae, we can evaluate the braid operator B2p+1
RR

sandwitched between two 3-ball states |ψ0(R,R)〉:

ZCS
SU(N)(S

3, T 2,2p+1
R ; q) = 〈ψ0(R,R)|B2p+1

RR |ψ0(R,R)〉

=
∑

Q∈R⊗R

λ
(+)
Q (R,R)2p+1

(

μQ
RR

)2

= ZCS
SU(N)(S

3; q)
∑

Q∈R⊗R

λ
(+)
Q (R,R)2p+1dimqQ.

(3.26)

Our next goal is to categorify/refine this computation.

In practice, this will amount to replacing every ingredient with its analog
that depends not only on q, but also on the new variable t or, rather, two
variables q1 and q2 (that are related to q and t via a simple change of
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variables (3.58)):

CS gauge theory Refined invariants

ZCS
SU(N)(S

3,KR; q) � Zref
SU(N)(S

3,KR; q1, q2)

dimq R = sR(q�) � MR(q�
2 ; q1, q2)

qC2(R) � q
1
2
||R||2

1 q
− 1

2
||Rt||2

2 q
N
2
|R|

2 q
− 1

2N
|R|2

1 (3.27)
...

3.1.1 Refined braid operators and gamma factors

A physical framework for knot homologies was first proposed in [28] and
later studied from various viewpoints and in a number of closely related
systems in [26, 32–34]. Regardless of the details and duality frames used,
the basic idea is that a graded vector space HR(K) associated to a knot
K colored by a representation R is identified with the space of refined BPS
invariants that carry information not only about the charge of the BPS state
but also about the spin content:

HR(K) = Href
BPS. (3.28)

This interpretation can be used for performing concrete computations [26,
35,36] (see also [37–42]) as well as for studying the structure of Hg,R

i,j (K) for
various g andR [43,44]. In this section, we will use both methods — based on
concrete formulas for torus knots and on structural properties for arbitrary
knots — to compute colored HOMFLY homology and colored superpolyno-
mials of (2, 2p+ 1) torus knots. Furthermore, the physical interpretation of
the homological knot invariants in terms of the refined (a.k.a. motivic) BPS
invariants is what will ultimately allow us to treat the latter in more general
systems on the same footing; cf. Section 4.

First, let us recall the five-brane configuration relevant to the physical
description of the sl(N) knot homologies [28, 32,33]:

Space-time : R × T ∗S3 ×M4

N M5-branes : R × S3 ×D (3.29)

|R| M5-branes : R × LK ×D

where LK is the total space of the conormal bundle to K ⊂ S3 in the Calabi–
Yau space T ∗S3, and in most of applications one usually takes D ∼= R

2 and
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M4
∼= R

4. See, e.g., [44] for further details, references, and the outline of the
relation between different ways of looking at this physical system.

The precise form of the 4-manifold M4 and the surface D ⊂M4 is not
important, as long as they enjoy U(1)F × U(1)P symmetry action, where
the first (resp. second) factor is a rotation symmetry of the normal (resp.
tangent) bundle of D ⊂M4. Following [33], let us denote the corresponding
quantum numbers by F and P . These quantum numbers were denoted,
respectively, by 2S1 and 2(S1 − S2) in [26] and by 2j3 and n in [44].

Something special happens when K = Tm,n is a torus knot. Then, as
pointed out in [26], the five-brane theory in (3.29) has an extra R-symmetry
U(1)R that acts on S3 leaving the knot K = T p,q and, hence, the Lagrangian
LK ⊂ T ∗S3 invariant. Following [26], we denote the quantum number corre-
sponding to this symmetry by SR, and also introduce the partition
function

Zref
SU(N)(S

3, Tm,n
R ; q, t) := Tr Href

BPS
(−1)SRqP tF−SR (3.30)

that “counts” refined BPS states in the setup (3.29). A priori, this parti-
tion function is different from the Poincaré polynomial of the sl(N) knot
homology, which in these notations reads

Psl(N),R(K; q, t) = Tr Href
BPS

qP tF . (3.31)

However, it was argued in [26] that for some torus knots all refined BPS
states (3.28) have SR = 0 and the two expressions actually agree.

Similarly, in a dual description after the geometric transition the setup
(3.29) turns into a system

Space-time : R ×X ×M4

M5-branes : R × LK ×D
(3.32)

where X is the total space of the O(−1) ⊕O(−1) bundle over CP1, and
BPS states carry a new quantum number, which becomes the a-grading of
Href

BPS = HR
i,j,k(K). One of the main results in [26] is that this space has

four gradings: in addition to the a-, q- and t-grading that in the physics
setup correspond to the “winding number” β ∈ H2(X,LK) ∼= Z, and to the
quantum numbers P and F , the space HBPS = HR

i,j,k(K) has the fourth
grading, by SR ∈ Z.

Therefore, one of the interesting features of the refined Chern–Simons
theory is that it predicts a new grading on the homology of torus knots and
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links, thereby upgrading Hsl(N),R
i,j (K) to a triply graded theory (labeled by

g and R) and similarly upgrading HR
i,j,k(K) to a homology theory with as

much as four gradings! It would be very interesting to study these new
extra gradings in other formulations of knot homologies. Some hints for the
extra gradings of torus knot homologies seem to appear in [45].

After the geometric transition, the partition function analogous to (3.30)
“counts” refined BPS states in the setup (3.32):

Zref(S3, Tm,n
R ; a, q, t) = Tr Href

BPS
(−1)SRaβqP tF−SR . (3.33)

When all refined BPS states have SR = 0 — which, following [26], will
be our working assumption here — this expression coincides with the col-
ored superpolynomial (3.7), which in these notations reads PR(K; a, q, t) =
Tr Href

BPS
aβqP tF . This will be our strategy for obtaining the colored super-

polynomials of (2, 2p+ 1) torus knots. In fact, via the relation with refined
BPS invariants, we will essentially do the computation twice: first, via direct
calculation of the refined Chern–Simons partition function (3.30) and its
large N version (3.33), and then, in Section 3.1.3, by using the structural
properties of (3.28) that follow from physics.

Although refined Chern–Simons theory is not a gauge theory,2 its par-
tition function can be evaluated by mimicking the steps in the ordinary
Chern–Simons theory. In particular, one can define “refined analogs” of the
S and T modular matrices and the braid operator BR1R2 used in (3.26). In
addition to these ingredients, we will also need a modification of the refined
braid operator by the so-called gamma factor proposed in [46–50]). Modulo
this modification, the physical meaning of which is still unclear at present,
we need the refined variants of

(1) the partition function of the unknot ZCS
SU(N)(S

3,©R; q) in order to
determine the coefficient μQ, and

(2) the quadratic Casimir factor qCR in the monodromy by the action of
the braid operator.

The former, viz. the refined partition function of the unknot, is given by
the partition function of the refined BPS invariants of the conifold with a
D-brane inserted at the appropriate leg of the toric diagram [36]. The result-
ing partition function is the refined analogue of (3.18) and is given simply

2At least, such formulation is not known at present.



“ATMP-16-6-A3-FUJ” — 2013/5/25 — 9:47 — page 1690 — #22
�

�

�

�

�

�

�

�

1690 HIROYUKI FUJI ET AL.

by the Macdonald polynomial MR(x; q1, q2):

Zref
SU(N)(S

3,©R; q1, q2)

Zref
SU(N)(S

3; q1, q2)
= MR(q�

2 ; q1, q2), (3.34)

see also Appendix (A.1). The combinatorial expression for the Macdonald
polynomial is

MR(q�
2 ; q1, q2) =

∏

(i,j)∈R

q
N−i+1

2
2 q

j−1
2

1 − q
−N−i+1

2
2 q

− j−1
2

1

q

Rt
j
−i+1

2
2 q

Ri−j

2
1 − q

−Rt
j
−i+1

2
2 q

−Ri−j

2
1

, (3.35)

where Rt denotes the transposition of the Young diagram R. Furthermore,
the Macdonald polynomial satisfies the analog of (3.20):

MR1(x; q1, q2)MR2(x; q1, q2) =
∑

Q∈R1⊗R2

NQ
R1R2

MQ(x; q1, q2), (3.36)

where NQ
R1R2

is a certain rational function of q1 and q2, namely the
Littlewood–Richardson coefficient [51]. Therefore, as in (3.21), we can use
these relations to determine the refined analogue of the coefficient μQ

R1R2

that enters the expression (3.15) for the 3-ball partition function:

(

μQ
R1R2

)2
= NQ

R1R2
·MQ(q�

2 ; q1, q2) · Zref
SU(N)(S

3; q1, q2). (3.37)

Here, following [26], we tacitly assumed that generating functions of the
refined BPS invariants, such as (3.30) and (3.33), can be expressed in the
form (3.12), as in a local quantum field theory, with a Hilbert space whose
states are labeled by conformal blocks. It would be interesting to under-
stand better the physical basis for this assumption and to study the uni-
tary structure on the “Hilbert space” of the refined Chern–Simons theory.
In particular, in the case of Σ � T2, one would hope to understand bet-
ter the identification of the basis of orthonormal states with integrable
representations.

As for the second ingredient, the quadratic Casimir factor qC2(R) = e2πihR ,
it is related to the modular transformation T = ( 1 1

0 1 ) which acts in the
standard way on the homology cycles of Σ = T2 in the WZW model.
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The modular matrix for the action of the T -transformation on the char-
acters of ŝu(N)k is

TRQ = T∅∅ · qC2(R) · δRQ. (3.38)

In [26] the T -matrix for the refined Chern–Simons theory is proposed:

T ref
RQ = T∅∅ ·

q
1
2
||R||2

1

q
1
2
||Rt||2

2

q
N
2
|R|

2

q
1

2N
|R|2

1

· δRQ, (3.39)

where ||R||2 :=
∑

iR
2
i . Hence, we adopt a refinement (3.27) and the eigen-

value λ(+)
Q (R,R) of the braid operator BRR for the refined theory:

λ
(+)
Q (R,R) = εQRR

q
||R||2
1

q
||Rt||2
2

q
N |R|
2

q
1
N
|R|2

1

q
− 1

4
||Q||2

1

q
− 1

4
||Q2||2

2

q
−N

4
|Q|

2

q
− 1

4N
|Q|2

1

. (3.40)

Similar framing factors were considered in [46] and also deduced from the
physics of refined BPS invariants in [36]. Here, we use slightly modified
expressions to match (3.25) in the unrefined limit q1 = q2.

Using these ingredients, we find the partition function Zref
SU(N)(S

3, T 2,2p+1
R ;

q1, q2) for the T 2,2p+1 torus knot:

Zref
SU(N)(S

3, T 2,2p+1
R ; q1, q2)

= Zref
SU(N)(S

3; q1, q2)
∑

Q∈R⊗R

γQ
RR · λ(+)

Q (R,R)2p+1 ·NQ
RR ·MQ(q�

2 ; q1, q2),

(3.41)

where, following [46], we introduced a gamma factor γQ
RR. This factor is

needed to make the partition function for the torus knot invariant under the
obvious symmetry Tn,m ↔ Tm,n:

Zref
SU(N)(S

3, Tn,m
R ; q1, q2) = Zref

SU(N)(S
3, Tm,n

R ; q1, q2). (3.42)

While the proper physical understanding of the gamma factors is lacking,
it does not prevent one from doing calculations. Indeed, the gamma factors
can be determined by recursively solving the consistency conditions (3.42)
for m = 1, . . . , n− 1 (m < n). In particular, for torus knots T 2,2p+1, the
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Figure 6: Young diagrams for tensor products of symmetric and anti-
symmetric representations.

gamma factors can be found from a single consistency condition for p = 0,
i.e., for T 2,1 � ©:

Zref
SU(N)(S

3, T 2,1
R ; q1, q2)

Zref
SU(N)(S

3; q1, q2)
=
Zref

SU(N)(S
3,©R; q1, q2)

Zref
SU(N)(S

3; q1, q2)

=
∑

Q∈R⊗R

γQ
RR · λ(+)

Q (R,R) ·NQ
RR ·MQ(q�

2 ; q1, q2)

= MR(q�
2 ; q1, q2). (3.43)

The gamma factors for symmetric and anti-symmetric
representations

In order to determine the gamma factors from the consistency condition
(3.43), one needs the explicit form of the Littlewood–Richardson coefficients
NQ

RR. For the symmetric representation R = Sr and the anti-symmetric rep-
resentation R = Λr, the explicit expression for the Littlewood–Richardson
coefficients can be obtained from the Pieri formula (see also figure 6):

NSr+�,r−�

SrSr =
r−�
∏

j=1

1 − qj−1
1 q2

1 − qj
1

·
r+�
∏

j=2�+1

1 − qj−1
1 q22

1 − qj
1q2

·
r
∏

j=�+1

(

1 − qj
1

1 − qj−1
1 q2

)2

,

(3.44)

NΛr+�,r−�

ΛrΛr =
�
∏

i=1

1 − q1q
i−1
2

1 − qi
2

·
2�
∏

i=�+1

1 − qi
2

1 − q1q
i−1
2

. (3.45)
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For the symmetric and anti-symmetric representations, the sign factors
εQRR in λ

(+)
Q (R,R) look like [30,52]:

εS
r+�,r−�

SrSr = (−1)r−�, εΛ
r+�,r−�

ΛrΛr = (−1)�. (3.46)

With the explicit expression for the Macdonald polynomials MR(q�
2 ; q1, q2)

given in (3.35), we can solve the constraint (3.43) and find the following
gamma factors (see Appendix B for details):

γSr+�,r−�

SrSr =
r−�
∏

i=1

q
r−i
2

1 q
1
2
2 − q

− r−i
2

1 q
− 1

2
2

q
r−i+1

2
1 − q

− r−i+1
2

1

, (3.47)

γΛr+�,r−�

ΛrΛr =
�
∏

i=1

q
i
2
2 − q

− i
2

2

q
i−1
2

2 q
1
2
1 − q

− i−1
2

2 q
− 1

2
1

. (3.48)

It would be very interesting to understand the physical meaning/origin of
the gamma factors.

Collecting all the ingredients, (3.35), (3.40) and (3.44)–(3.48), we obtain
a final expression for the partition function (3.41) with R = Sr and R = Λr:

R = Sr : Zref
SU(N)(S

3, T 2,2p+1
Sr ; q1, q2)/Zref

SU(N)(S
3; q1, q2)

=
r
∑

�=0

(q2; q1)�(q1; q1)r(A; q1)r+�(q−1
2 A; q1)r−�

(q1; q1)�(q2; q1)r(q2; q1)r+�(q1; q1)r−�

(1 − q2q
2�
1 )

(1 − q2)

×A−rq
r−�
2

1 q
3r−�

2
2

[

(−1)r−�A
r
2 q

r2−�2

2
1 q

− �
2

2

]2p+1

, (3.49)

R = Λr : Zref
SU(N)(S

3, T 2,2p+1
Λr ; q1, q2)/Zref

SU(N)(S
3; q1, q2)

=
r
∑

�=0

(q1; q2)�(q2; q2)r+�(A−1; q2)r+�(q−1
1 A−1; q2)r−�

(q2; q2)�(q1q2; q2)r+�(q2; q2)r+�(q2; q2)r−�

(1 − q1q
2�
2 )

(1 − q2)

×Arq
r− �

2
1 q

r− �
2

2

[

(−1)�A
r
2 q

�
2
1 q

�2−r2

2
2

]2p+1

, (3.50)

where we used the standard notation for the q-Pochhammer symbol

(x; q)n =
n−1
∏

k=0

(1 − xqk) = (1 − x)(1 − xq)(1 − xq2) · · · (1 − xqn−1), (3.51)
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and where we introduced

A := qN
2 . (3.52)

Now we have all the relevant formulas at our fingertips that one needs to
write down the superpolynomials of (2, 2p+ 1) torus knots colored by the
symmetric and anti-symmetric representations, R = Sr and R = Λr.

3.1.2 From partition functions to superpolynomials

As we already explained around (3.7), the reduced colored superpolynomial
PR(K; a, q, t) is defined as the Poincaré polynomial of the triply graded
homology HR

i,j,k(K) that categorifies the colored HOMFLY polynomial PR

(K; a, q). Here, the word “reduced” means that the normalization is such
that PR(©) = 1. Although normalization is one of the delicate points one
has to worry about, luckily it will not be a major issue for us here.

Besides normalization, there are several other choices that affect the
explicit form of the answer and, therefore, need to be explained, especially
for comparison with other approaches. Thus, earlier we already mentioned
a very important choice of framing. Another important choice is a choice of
grading conventions. In order to understand its important role, let us recall
that the triply-graded homology HR

i,j,k(K) is related to the doubly-graded

sl(N) theory Hsl(N),R
i,j (K) by means of the differentials dN , illustrated in

Figure 2:

Hsl(N),R
∗,∗ (K) ∼=

(

HR
∗,∗,∗(K), dN

)

. (3.53)

Taking the Poincaré polynomials on both sides gives (3.9)–(3.10).

In order to be consistent with the specialization a = qN (also illustrated on
the left side of figure 2), the q-degree of dN should beN times greater than its
a-degree and of opposite sign. The standard convention for the homological
t-grading of all differentials dN withN > 0 is −1. Modulo trivial3 rescalings,

3Such rescalings are much more elementary choices of notation, rather than interesting
choices of grading convention that affect the explicit form of the results in a more delicate
way. A typical example of such harmless rescaling is a doubling of all a- and q-gradings in
the last column of (3.54) that gives deg(dN>0) = (−2, 2N,−1), as in the middle column,
deg(dN<0) = (−2, 2N,−3), etc.
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such as a �→ a2 and q �→ q2, there are two sets of conventions consistent with
these rules used in the literature:

(a,q, t) gradingconventions :
Differentials Conventions of [26, 27,43,46] Conventions of [44]
dN>0 (−2, 2N,−1) (−1, N,−1)
dN<0 (−2, 2N, 2N − 1) (−1, N,−3)
dcolored (0, 2, 2) (0, 1, 0)

(−2, 0,−3) (−1, 0,−1)
...

(3.54)

Here, we mostly follow the latter conventions and occasionally, for compar-
ison, state the results in the former conventions.

Another choice of grading conventions comes from a somewhat surprising
direction. A special feature of the colored knot homology is the mirror
symmetry conjectured in [44]:

HR
i,j,∗(K) � HRt

i,−j,∗(K). (3.55)

It relates triply graded HOMFLY homologies colored by representations
(Young diagrams) R and Rt related by transposition. Although this nice
property is also present even in the basic uncolored case of R = Rt = � as a
generalization of the q ↔ q−1 symmetry [27], its significance is fully revealed
in the colored theory with R �= Rt. In particular, for our applications it
means that the triply-graded homologies HSr

(K) and HΛr
(K) are essentially

the same, and so are the colored superpolynomials PSr
and PΛr

.

Put differently, the mirror symmetry (3.55) implies that instead of two
different triply-graded homology theories HSr

(K) and HΛr
(K) one really

has only one theory, Hr(K), labeled by r, such that passing from R = Sr

to R = Λr is achieved by flipping the sign of the q-grading accompanied by
a suitable t-regrading. On the other hand, according to (3.53) the sign of
the q-grading is correlated with the sign of N in the specialization to sl(N)
doubly-graded homology. Therefore, Hr(K) is related to the sl(N) colored
knot homology via

(Hr(K), dN ) =

{

Hsl(N),Sr
(K), N > 0,

Hsl(−N),Λr
(K), N < 0

(3.56)

or

(Hr(K), dN ) =

{

Hsl(N),Λr
(K), N > 0,

Hsl(−N),Sr
(K), N < 0

(3.57)
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The choice between (3.56) and (3.57) is a matter of convention. But it is
an important choice since it certainly affects the form of Hr(K) and the
corresponding superpolynomial (3.7).

To summarize, it seems that in our class of examples we have to deal with
at least two choices, between grading conventions in (3.54) and between
(3.56) and (3.57). A nice surprise is that these two choices are actually
related [44]: switching from (3.56) to (3.57) has the same effect as switching
from one set of grading conventions in (3.54) to another. In other words, to
quickly go from one set of grading conventions in (3.54) to another one can
simply exchange the role of symmetric and anti-symmetric representations
or, equivalently, switch the Young tableaux R and its transposed Rt. We
shall use this trick in what follows, where our default grading conventions
will be that of [44] and (3.56).

Keeping in mind the relations between different convention choices, now
we are ready to convert (3.49) and (3.50) into the colored superpolynomi-
als PR(T 2,2p+1; a, q, t) for symmetric and anti-symmetric representations.
Starting with the symmetric representations R = Sr, we can use the follow-
ing change of variables

a = A

(

q1
q2

)3/2

,

q =
1
q2
, (3.58)

t = −
√

q2
q1
,

to write the refined partition function Zref
SU(N)(S

3, T 2,2p+1
Λr ; q1, q2) in terms

of a, q, and t. For example, from this identification one easily finds the
unreduced superpolynomial PSr

(©; a, q, t) of the unknot; cf. (3.34):

PSr

(©; a, q, t) =
Zref

SU(N)(S
3,©Λr ; q1, q2)

Zref
SU(N)(S

3; q1, q2)
= MΛr(q�

2 ; q1, q2)

= (−1)rAr/2q
r/2
2

(A−1; q2)r

(q2; q2)r
= (−1)

r
2a−

r
2 q

r
2 t−

3r
2

(−at3; q)r

(q; q)r
.

(3.59)

Similarly, the reduced colored superpolynomial of a more general (2, 2p+ 1)
torus knot is related to the partition function Zref

SU(N)(S
3, T 2,2p+1

Λr ; q1, q2) via
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a refined analogue of (3.3),

PSr
(T 2,2p+1; a, q, t) =

(

q1
q2

)
pr
2 Zref

SU(N)(S
3, T 2,2p+1

Λr ; q1, q2)

Zref
SU(N)(S

3,©Λr ; q1, q2)
, (3.60)

with the same identification of the parameters (3.58). Note how the role
of R = Sr and R = Λr is exchanged in this relation, in line with the above
discussion. Explicitly, from (3.50) we find

PSr
(T 2,2p+1; a, q, t) =

r
∑

�=0

(qt2; q)�(−at3; q)r+�(−aq−1t; q)r−�(q; q)r

(q; q)�(q2t2; q)r+�(q; q)r−�(−at3; q)r

× (1 − q2�+1t2)
(1 − qt2)

(−1)ra−
r
2 q

3r
2
−�t−rp−�+ r

2

×
[

(−1)�a
r
2 q

r2−�(�+1)
2 t

3r
2
−�

]2p+1

. (3.61)

This is one of the main results, with these choices of conventions, that we will
use for testing the refined/categorified volume conjectures (2.1) and (2.6).

For completeness, and to illustrate how it is done in general, we also write
down the colored superpolynomial of (2, 2p+ 1) torus knots obtained from
(3.49). In the same grading conventions as in the relation (3.60), the role
of symmetric and anti-symmetric representations is reversed and we obtain
the Λr-colored superpolynomial:

PΛr
(T 2,2p+1; a, q, t) =

(

q2
q1

)
pr
2 Zref

SU(N)(S
3, T 2,2p+1

Sr ; q1, q2)

Zref
SU(N)(S

3,©Sr ; q1, q2)
, (3.62)

where the parameter identification is essentially the same as in (3.58) with
q1 and q2 interchanged:

a = A

√

q2
q1
,

q =
1
q1
, (3.63)

t = −
√

q1
q2
.

The exchange q1 ↔ q2 that accompanies R↔ Rt is familiar in the context
of refined BPS invariants as well as in the equivariant instanton counting
which, of course, are not unrelated. Hence, from the partition function
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Zref
SU(N)(S

3,©Sr ; q1, q2), we find the unreduced superpolynomial PΛr

(©; a,
q, t) of the unknot:

PΛr

(©; a, q, t) =
Zref

SU(N)(S
3,©Sr ; q1, q2)

Zref
SU(N)(S

3; q1, q2)
= MSr(q�

2 ; q1, q2)

= A− r
2 q

r
2
2

(A; q1)r

(q2; q1)r
= (−1)−

r
2a

r
2 q

r
2 t

3r
2

(−a−1t−1; q)r

(qt2; q)r
, (3.64)

and the reduced colored superpolynomial of the (2, 2p+ 1) torus knot:

PΛr
(T 2,2p+1; a, q, t)

=
r
∑

�=0

(qt2; q)�(q; q)r(−a−1t−1; q)r+�(−a−1q−1t−3; q)r−�(qt2; q)r

(q; q)�(qt2; q)r(q2t2; q)r+�(q; q)r−�(−a−1t−1; q)r

× (1 − q2�+1t2)
(1 − qt2)

a
r
2 q

3r
2
−�t3r−�

[

(−1)�a
r
2 q

�(�+1)−r2

2 t�
]2p+1

. (3.65)

These results agrees with the earlier calculations of the colored superpoly-
nomials in [44, 45] for small values of p and r, and provide a generalization
to arbitrary p and r.

Finally, we complete this part by writing the same formulas for the colored
superpolynomials (3.59)–(3.65) in a different set of grading conventions that
we dub “DGR;” cf. (3.54). As we pointed out earlier, a simple way to
implement this change of conventions, based on the “mirror symmetry”
(3.55), is to change R �→ Rt on one side of the relations (3.59), (3.60), etc.
As a result, we obtain a nice relation between the R-colored superpolynomial
of T 2,2p+1 and the refined partition function of a line operator colored by
the same representation R (not Rt as, e.g., in (3.60)):

PR
DGR(T 2,2p+1; a, q, t) =

(

q2
q1

)
pr
2 Zref

SU(N)(S
3, T 2,2p+1

R ; q1, q2)

ZSU(N)(S3,©R; q1, q2)
, (3.66)

where R = Sr or Λr. Using (3.49)–(3.50) and the identification of vari-
ables [35]:

a2 = A

√

q2
q1
,

q =
√
q2, (3.67)

t = −
√

q1
q2
.
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we find explicit expressions for PR
DGR(T 2,2p+1) with R = Sr and R = Λr:

PSr

DGR(T 2,2p+1; a, q, t)

=
r
∑

�=0

(q2; q2t2)�(q2t2; q2t2)r(−a2t; q2t2)r+�(−a2q−2t; q2t2)r−�

(q2t2; q2t2)�(−a2t; q2t2)r(q4t2; q2t2)r+�(q2t2; q2t2)r−�

× (1 − q4�+2t4�)
(1 − q2)

a−rq3r−2�tr−�
[

(−1)r−�arqr2−�(�+1)tr
2−�2

]2p+1
,

(3.68)

PΛr

DGR(T 2,2p+1; a, q, t)

=
r
∑

�=0

(q2t2; q2)�(−a−2t−1; q2)r+�(−a−2q−2t−3; q2)r−�(q2; q2)r

(q2; q2)�(q4t2; q2)r+�(q2; q2)r−�(−a−2t−1; q2)r

× (1 − q4�+2t2)
(1 − q2t2)

arq3r−2�t3r−�
[

(−1)�arq−r2+�(�+1)t�
]2p+1

(3.69)

as well as the unreduced superpolynomials of the unknot PSr

DGR(©):

PSr

DGR(©; a, q, t) =
Zref

SU(N)(S
3,©Sr ; q1, q2)

Zref
SU(N)(S

3; q1, q2)
= (−1)

r
2a−rqrt−

r
2

(−a2t; q2t2)r

(q2; q2t2)r
,

(3.70)

PΛr

DGR(©; a, q, t) =
Zref

SU(N)(S
3,©Λr ; q1, q2)

Zref
SU(N)(S

3; q1, q2)
= (−1)

r
2arqrt

r
2

(−a−2t−1; q2)r

(q2; q2)r
.

(3.71)

3.1.3 Homological algebra of colored knot invariants

Our next goal is to describe a very rich structure of the colored superpoly-
nomials that can be used either as an alternative way to compute them or
as a tool to verify their correctness. As in the previous discussion and in
most of the literature on this subject [27, 53, 54], PR(K; a, q, t) stands for
the reduced superpolynomial of a knot K colored by R, and its unreduced
version is denoted with a bar.

Suppose, for example, that we wish to compute the S2-colored
HOMFLY homology HS2

i,j,k(T 2,5) and the corresponding superpolynomial
PS2

(T 2,5; a, q, t) of the (2, 5) torus knot, also known as the knot 51. By
definition (3.7), at t = −1 the colored superpolynomial reduces to the col-
ored HOMFLY polynomial (3.6), which for the knot T 2,5 has 25 terms,
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see, e.g., [55]:

PS2
(T 2,5; a, q) = a6

(

q + q4 + q5 + q7
)

+ a5
(

−q−2 − q−1 − q − 2q2 − q3 − q4 − 2q5 − q6 − q7 − q8
)

+ a4
(

q−4 + q−1 + 1 + q2 + q3 + q4 + q5 + q6 + q8
)

.
(3.72)

Each terms in this expression comes from a certain generator of the triply-
graded colored HOMFLY homology HS2

i,j,k(T 2,5), cf. figure 2. Therefore,
we conclude that HS2

i,j,k(T 2,5) must be at least 25-dimensional. How can we
restore the homological t-grading?

There are many ways to do that, based on the structure of the commuting
differentials (3.54). For instance, one way is to pick a relation in the infinite
set (3.53) labeled by N ∈ Z, and to study its implications. Thus, in our
present example, the relation (3.53) with N = 2 says that the homology of
HS2

i,j,k(T 2,5) with respect to the differential d2 should be isomorphic to the

S2 colored sl(2) homology Hsl(2),S2

i,j (T 2,5),
(

HS2

∗,∗,∗(K), d2

)

∼= Hsl(2),S2

∗,∗ (K) ∼= Hso(3),V
∗,∗ (K), (3.73)

where in the last isomorphism we used the identification between the sym-
metric representation R = S2 of sl(2) and the three-dimensional vector rep-
resentation of so(3). The latter homology was studied in [43], where explicit
answers were tabulated for all prime knots with up to 7 crossings.4 In
particular, for the (2, 5) torus knot T 2,5 the homology Hso(3),V

i,j (K) is also
25-dimensional, and by matching the results of [43] with the specialization
PS2

(T 2,5; a = q2, q, t) one can restore the t-grading of every term in (3.72):

PS2
(T 2,5; a, q, t) = a6

(

qt6 + q4t8 + q5t8 + q7t10
)

+ a5(q−2t3 + q−1t3 + qt5 + 2q2t5 + q3t5 + q4t7

+ 2q5t7 + q6t7 + q7t9 + q8t9)

+ a4(q−4 + q−1t2 + t2 + q2t4 + q3t4 + q4t4

+ q5t6 + q6t6 + q8t8), (3.74)

where we tacitly assumed that the entire S2-colored homology HS2

i,j,k(T 2,5) is
indeed 25-dimensional, so that Qsl(2),S2

= 0 in (3.9) for the present example.

4It is not difficult to extend these calculations to larger knots; see, e.g., [44] for the
calculation of the Kauffman homology for the (3, 4) torus knot T 3,4 = 819.
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This can be easily justified by looking at the other differentials in (3.53) or
the corresponding Poincaré polynomials (3.9)–(3.10).

Everything we saw in this simple example can be easily generalized to
other knots (in fact, not just torus knots) and other representations. As
the knot K is getting bigger, the size of the colored HOMFLY homology
HR

i,j,k(K) typically grows as well. At the same time, for larger knots and
larger homology more differentials act on HR

i,j,k(K) in an interesting way,
thus providing non-trivial constraints. Among the infinite set of differen-
tials in (3.54) there are some special ones, which always act non-trivially,
no matter how large or small the knot K is. These are the so-called
canceling differentials which get their name after the fact that, when acting
on HR

i,j,k(K), they cancel almost all of the terms, except a single one, i.e.,

dim
(

HR(K), dcanceling

)

= 1. (3.75)

At first, even the very existence of such differentials might seem very sur-
prising. However, they all usually have a simple origin and interpretation.

Let us consider, for example, the Sr-colored HOMFLY homology HSr

i,j,k(K)
relevant to the present paper. Then, as we already pointed out in the dis-
cussion below (3.8), the sl(1) homology Hsl(1),Sr

i,j (K) should be trivial (i.e.,
one-dimensional) for every knot K. When combined with (3.53), this basic
property implies that the differential d1 must be canceling for the Sr-colored
HOMFLY homology HSr

i,j,k(K).

Another canceling differential in the same theory is d−r, whose origin is
very similar: the representation R = Λr of sl(N) is trivial when N = r. As
a result, Hsl(r),Λr

i,j (K) should also be one-dimensional for every knot K, and
from (3.56) it follows that d−r is also a canceling differential for HSr

i,j,k(K).
To summarize, in our standard conventions the canceling differentials in the
Sr-colored HOMFLY theory have degree

deg(d1) = (−1, 1,−1) and deg(d−r) = (−1,−r,−3). (3.76)

These canceling differentials pair up almost all of the terms in the Poincaré
polynomial of the homology HSr

i,j,k(K) which, therefore, has the
structure (3.9):

PSr
(K; a, q, t) = arsq−rst0 + (1 + a−1qt−1)Q1(K; a, q, t)

= arsqr2st2rs + (1 + a−1q−rt−3)Q−r(K; a, q, t), (3.77)
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with a monomial “remainder” R(a, q, t) = aiqjtk and (α, β, γ) = (−1, 1,−1)
or (−1,−r,−3) for d1 or d−r, respectively. Since (3.77) is obtained by taking
the Poincaré polynomial of both sides in (3.75), the polynomials Q1 and
Q−r have non-negative integer coefficients. Furthermore, the (a, q, t)-degrees
of the “remainder” are determined by a single integer s(K), the so-called
S-invariant of the knot K (see [44] for details).

The structure (3.77) is a “colored generalization” of the familiar prop-
erty of the ordinary HOMFLY homology [27] that corresponds to r = 1 and
comes equipped with two canceling differentials d1 and d−1. In that context,
the S-invariant is expected to provide a lower bound on the slice5 genus
g∗(K) of the knot, which in our normalization reads

|s(K)| ≤ g∗(K) (3.78)

and is often tight. The slice genus of the (p, q) torus knot is [56, 57]:

g∗(T p,q) =
(p− 1)(q − 1)

2
(The Milnor Conjecture)

so that for (2, 2p+ 1) torus knots we expect

s(T 2,2p+1) = p. (3.79)

Substituting (3.79) into (3.77), it is easy to verify that our result (3.74)
indeed has the expected structure, thereby, illustrating how a combination
of the structural properties that follow from action of differentials can deter-
mine HR

i,j,k(K). In practice, starting with the colored HOMFLY polynomial
PR(K; a, q), usually one needs only a few of the relations like (3.53) in order
to find its homological lift (a.k.a. “categorification”). Then, the rest of the
relations can be used as consistency checks. For simple knots (with less than
10 crossings or so) this typically gives a largely overconstrained system, that
miraculously has a solution.

Just like it is easier to differentiate a function f(x) rather than to integrate
it, it is much easier to use the structure based on the commuting differen-
tials (3.54) to verify the correctness of a particular result than to derive it.
Thus, even though in principle we could extend the derivation of (3.74) to

5The slice genus of a knot K in S3 (sometimes also known as the Murasugi genus
or four-ball genus) is the least integer g∗, such that K is the boundary of a connected,
orientable surface of genus g∗ embedded in the 4-ball B4 bounded by S3. The slice genus
is also a lower bound for the unknotting number of the knot K, i.e., the least number of
times that the string must be allowed to pass through itself in order to “untie” the knot.



“ATMP-16-6-A3-FUJ” — 2013/5/25 — 9:47 — page 1703 — #35
�

�

�

�

�

�

�

�

VOLUME CONJECTURE: REFINED AND CATEGORIFIED 1703

more general torus knots and higher dimensional representation, verifying
the correctness of our results (3.61) and (3.65) is much easier. Indeed, spe-
cializing to a = −qt−1 and a = −q−rt−3 in (3.61) we can verify (3.77) in no
time!

Similarly, we can run a test on the Λr-colored superpolynomials (3.65)
of the (2, 2p+ 1) torus knots. In view of the mirror symmetry (3.55), this
is not really an independent test, but it is still instructive to see how it
works. (In particular, it helps to understand the role of mirror symmetry.)
As we already discussed earlier, passing from R = Sr to Rt = Λr can be
achieved by changing the sign of N . Therefore, if d1 and d−r are canceling
differentials in HSr

i,j,k(K), then d−1 and dr must be canceling differentials
in the Λr-colored HOMFLY homology HΛr

i,j,k(K). According to (3.54), the
degrees of these differentials are

deg(d−1) = (−1,−1,−3) and deg(dr) = (−1, r,−1), (3.80)

so that (3.75) implies the following structure of the Λr-colored superpoly-
nomial, cf. (3.9) and (3.77):

PΛr
(K; a, q, t) = arsqrst2rs + (1 + a−1q−1t−3)Q−1(K; a, q, t)

= arsq−r2st0 + (1 + a−1qrt−1)Qr(K; a, q, t). (3.81)

It is easy to verify that all our results indeed have this remarkable struc-
ture. Indeed, using (3.79) for K = T 2,2p+1 and specializing to a = −q−1t−3

and a = −qrt−1 in (3.65) we find that, respectively, only � = r and � = 0
contributions survive.

For completeness, let us describe how the same structure looks in the
“DGR conventions” (3.68) and (3.69). The grading of the canceling differ-
entials d1 and d−r for R = Sr can be read off directly from (3.54):

degDGR (d1) = (−2, 2,−1) and degDGR (d−r) = (−2,−2r,−2r − 1),
(3.82)

and, similarly, the gradings of the canceling differentials d−1 and dr for
R = Λr are

degDGR (d−1) = (−2,−2,−3) and degDGR (dr) = (−2, 2r,−1). (3.83)

Substituting these values of (a, q, t)-degrees (α, β, γ) in the general formula
(3.9), we arrive to the following structure of the colored superpolynomials
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in the grading conventions of [27]:

PSr

DGR(K; a, q, t) = a2rsq−2rst0 + (1 + a−2q−2t−1)QDGR
1 (K; a, q, t)

= a2rsq2r2st2r2s + (1 + a−2q−2rt−2r−1)QDGR
−r (K; a, q, t),

(3.84)

PΛr

DGR(K; a, q, t) = a2rsq2rst2rs + (1 + a−2q−2t−3)QDGR
−1 (K; a, q, t)

= a2rsq−2r2st0 + (1 + a−2q2rt−1)QDGR
r (K; a, q, t). (3.85)

Using s = p for K = T 2,2p+1, it easy to verify that our results (3.68) and
(3.69) exhibit this structure, ensuring the validity of some of the steps in
Section 3.1.1.

While the above discussion hopefully makes it fairly convincing how pow-
erful and elegant the structure of differentials is, it is just the tip of an ice-
berg! Indeed, besides the canceling differentials that we discussed in detail
and that, in many cases, alone suffice for deducing the superpolynomials
from the colored HOMFLY polynomials, there is yet another class of “uni-
versal” differentials found in [44]. These differentials are called “colored”
because they relate homology theories associated with different represen-
tations. The simplest example of a colored differential discussed in [44]
is a differential that, when acting on the S2-colored HOMFLY homology,
leaves behind the ordinary, S-colored HOMFLY homology, modulo a simple
re-grading:

(

HS2
(K), dcolored

)

2i,k+2j,2k

∼= H�
i,j,k(K). (3.86)

As in our discussion of (3.75) and (3.77), we can take Poincaré polynomials of
both sides to learn the following structure of the S2-colored superpolynomial,

PS2
(K; a, q, t) = P(K; a2, q2, qt2) + (1 + q)Q(a, q, t), (3.87)

which corresponds to the first colored differential on our list (3.54). Sim-
ilarly, the second colored differential in (3.54) acts a little differently and
leads to a similar, but different relation:

PS2
(K; a, q, t) = asP(K; a, q2, t) + (1 + a−1t−1)Q(a, q, t). (3.88)

Both superpolynomials PS2
(K; a, q, t) and P(K; a, q, t) that participate in

these relations can be easily determined from the corresponding HOMFLY
polynomials by using the structure of either d2 or canceling differentials.
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Indeed, as a yet another illustration of this method, let us explain how it
works for the torus knots we are interested in.

In the case of torus knots, the starting point of this construction —
namely, the colored HOMFLY polynomial — is available, e.g., from [55].
In fact, for R = S, the explicit expression for the (uncolored) HOMFLY
polynomial of an arbitrary torus knot was written already by Jones [58]. In
our conventions, the answer for (2, 2p+ 1) torus knots reads

P (T 2,2p+1; a, q) = −ap+1
p
∑

i=1

q2i−p−1 + ap
p
∑

i=0

q2i−p. (3.89)

The corresponding (uncolored) superpolynomials of torus knots have the
same structure [27]. In fact, for T 2,2p+1 torus knots, all of the terms in
the superpolynomial P(T 2,2p+1; a, q, t) are “visible” in the HOMFLY poly-
nomial (3.89) and, therefore, can be determined from the structure (3.77)
associated with two canceling differentials d1 and d−1. In our grading con-
ventions (3.76), these canceling differentials for r = 1 have degree (−1, 1,−1)
and (−1,−1,−3), respectively. Hence, restoring the powers of t in (3.89)
consistent with d1 and d−1 we get

P(T 2,2p+1; a, q, t) = ap+1
p
∑

i=1

q2i−p−1t2i+1 + ap
p
∑

i=0

q2i−pt2i

= apqpt2p aq
−1t(1 − q−2pt−2p) + 1 − q−2p−2t−2p−2

1 − q−2t−2
.

Similarly, starting with the S2-colored HOMFLY polynomial (see, e.g., [55]),
one can derive the S2-colored superpolynomial for all (2, 2p+ 1) torus knots,

PS2
(T 2,2p+1; a, q, t) =

q4t4(aq2t2)2p(1 + at)(q + at)
1 − q2(1 + q)t2 + q5t4

− q2t2(1 + q)(aqt)2p(q + at)(1 + aq2t3)
1 − q2(1 + q2)t2 + q6t4

+
(aq−1)2p(1 + aq2t3)(1 + aq3t3)

1 − q3(1 + q)t2 + q7t4
(3.90)

which, of course, is consistent with our earlier result (3.61). Substituting
these colored superpolynomials into relations (3.87) and (3.88), it is easy to
verify that they work like a charm.

Finally, after an exciting discussion of colored and canceling differentials
that have a universal nature, let us consider a somewhat more rudimentary
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differential d2 that, according to (3.53), controls specialization to the sl(2)
knot homology; see also figure 2. This differential is actually very important
for the subject of our paper since it accompanies the specialization to a =
q2 and, hence, the definition of the invariant Pn(q, t) that appears in the
refined volume conjectures (2.1) and (2.6). This invariant is defined as a
specialization (3.11):

Pn=r+1(K; q, t) := PSr
(K; a = q2, q, t) (3.91)

and, contrary to (3.8), for (2, 2p+ 1) torus knots appears to coincide with
the Poincaré polynomial of the n-colored sl(2) knot homology Hsl(2),Vn(K).
Indeed, as one can see directly from (3.90), for the trefoil knot T 2,3 = 31

the S2-colored HOMFLY homology simply contains no terms that can be
killed by d2. For the next torus knot T 2,5 = 51, there are such terms, but
according to our discussion around (3.74), none of them are canceled by d2,
i.e., Qsl(2),S2

= 0 in (3.9), etc.

The fact that Pn(T 2,2p+1; q, t) defined in (3.91) appears to coincide with
the Poincaré polynomial Psl(2),Vn(T 2,2p+1; q, t) of the n-colored sl(2) knot
homology has an important implication: it suggests that the homological
volume conjectures (2.1) and (2.6) can be formulated directly in terms of the
sl(2) knot homology, as in (2.2), rather than in terms of the specialization of
the colored superpolynomial (3.11). For example, such homological version
of the generalized volume conjecture (2.6) has a nice form

∑

i,j

qitj dimHsl(2),Vn

i,j (K) � exp

(

1
�
S0(u, t) +

∞
∑

k=0

Sk+1(u, t) �
k

)

(3.92)

and describes the asymptotic growth of the dimensions of the n-colored sl(2)
homology groups in the limit (2.5):

q = e� → 1, t = fixed, x ≡ eu = qn = fixed. (3.93)

Similarly, the homological version of the quantum volume conjecture (2.1)
presumably can be formulated in the form of an exact sequence

0 −→ Cn −→an
Cn+1 −→an+1

Cn+2 −→an+2 · · · Cn+d −→ 0, (3.94)

where

Cn(K) =
⊕

i,j∈Z

Hsl(2),Vn

i,j (K) (3.95)
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and the maps aj are determined by the coefficients of the quantum operator

̂Aref(x̂, ŷ; q, t) =
d
∑

j=0

aj(x̂; q, t) ŷj . (3.96)

Although we believe that both volume conjectures (2.1) and (2.6) work
equally well for the sl(2) homological knot invariants (2.2) as well as for the
specialization of the colored superpolynomial (3.11), we leave this question
to a future work.6

In what follows, we simply adopt (3.11) as a definition of Pn(q, t). Then,
from (3.61) we have

Pn(T 2,2p+1; q, t) =
n−1
∑

�=0

(−1)n−1
[

(−1)�q
(n−1)(n+1)−�(�+1)

2 t
3
2
(n−1)−�

]2p+1

× q
n−1

2
−�t

1
2
(1−2p)(n−1)−�

×

(q; q)n−1(t2q; q)�(t2q2; q)2�(−t3q2; q)n+�−1

(−tq; q)n−�−1

(−t3q2; q)n−1(q; q)�(t2q; q)2�(t2q2; q)n+�−1(q; q)n−�−1
.

(3.97)

Our next goal is to use this result to test the refined/categorified volume
conjecture (2.1).

3.2 Recursion relations for homological knot invariants

In this section, we find recursion relations which are satisfied by homological
knot invariants, therefore, providing concrete examples for one of the new
volume conjectures proposed in Section 2.

In other words, we find refined quantum A-polynomials ̂Aref(x̂, ŷ; q, t).
These are the objects which generalize the unrefined quantum curves con-
sidered, e.g., in [3, 7, 17, 19, 59]. Even though we consider simple examples
of knots — the unknot and the trefoil — the fact that such refined relations
exist and can be explicitly written down is already nontrivial. Having found
these examples, we have no doubt that their generalization to the entire
family of torus knots, and even more general knots, exists. Moreover, an

6All examples considered in this paper suggest that this may be the case. However, a
proper understanding of this issue requires a closer look at how the differential d2 acts on
the colored HOMFLY homology.
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important hint about the general structure of refined quantum curves for
(2, 2p+ 1) torus knots is given in the next section, where the analysis of
the asymptotics of their colored superpolynomials reveals the form of the
refined classical curves Aref(x, y; t) = 0. To find the full quantum curves in
this class of examples, one should “just” reintroduce the dependence on q.

We will derive refined quantum curves from the analysis of the homolog-
ical knot invariants found in Section 3. It would also be interesting to find
general methods of deriving refined recursion relations, similar to [7, 19] in
the unrefined case, which a priori do not rely on the knowledge of homolog-
ical invariants. We plan to address this problem in the follow-up work.

3.2.1 Unknot

As we already mentioned in (3.34) and (3.59), in every approach to knot
homologies based on the refined BPS invariants [26, 35] the colored super-
polynomial of the unknot is given essentially by the Macdonald polyno-
mial [36]. In particular, after the change of variables (3.58), the Sr-colored
superpolynomial reads:

PSr

(©; a, q, t) = (−1)
r
2a−

r
2 q

r
2 t−

3r
2

(−at3; q)r

(q; q)r
. (3.98)

Note that when we talk about the unknot, only the unreduced superpolyno-
mial (resp. homology) is non-trivial; the reduced one is trivial by definition
(which involves normalizing by the unknot). Specializing further to a = q2

we find

Pn=r+1(©; q, t) = (−1)
r
2 q−

r
2 t−

3r
2

(−q2t3; q)r

(q; q)r
. (3.99)

Note, at t = −1 this expression reduces to the n-colored Jones polynomial
of the unknot

Jn(©; q) =
q

n
2 − q−

n
2

q
1
2 − q−

1
2

, (3.100)

which can be written as the partition function of the SU(2) Chern–Simons
theory on a solid torus S1 × D2 ∼= S3 \ unknot,

ZCS
SU(2)(S

1 × D2; q) =

√

−�

2πi
(

x− x−1
)

(3.101)
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normalized by the partition function of the Chern–Simons theory on S3,

ZCS
SU(2)(S

3; q) =

√

−�

2πi

(

e� − e−�

)

, (3.102)

where we used x = eu and u = n�, cf. (3.18).

As the homological knot invariant (3.99) has a product structure, we can
immediately write down the recursion relation it satisfies

Pn+1(©; q, t) =
1 + t3qn+1

1 − qn
(−q−1t−3)1/2 Pn(©; q, t). (3.103)

This means that Pn(©; q, t) obeys the refined version (2.1a) of the quantum
volume conjecture with

̂Aref
© (x̂, ŷ; q, t) = (1 + t3qx̂)(−q−1t−3)1/2 − (1 − x̂)ŷ. (3.104)

In the classical limit q → 1, this recursion relation reduces to the refined
classical curve Aref(x, y; t) = 0 defined by

Aref
© (x, y; q = 1, t) = (1 + t3x)(−t−3)1/2 − (1 − x)y. (3.105)

On the other hand, in the unrefined limit t = −1 the relation (3.104) takes
the form

̂Aref
© (x̂, ŷ; q) = q−1/2(1 − qx̂) − (1 − x̂)ŷ, (3.106)

and specializing further to q = 1 we get the classical A-polynomial

A©(x, y) = (1 − x)(1 − y). (3.107)

It is also interesting to consider the second-order equation satisfied by
(3.99). Writing the three consecutive colored polynomials it is not hard to
see that the following equation is satisfied:

Pn+1 − (−qt3)1/2 1 − qt3 + 2xt3 − x2t3 + 2qxt3 + qx2t6

q(x− 1)t3(1 + xt3)
Pn + Pn−1 = 0,

(3.108)

with x = qn. Interestingly, in the unrefined limit t = −1 the dependence on
x cancels and Jn(©; q) satisfies the recursion relation

Jn+1 − [2]qJn + Jn−1 = 0 (3.109)
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with [2]q = q1/2 + q−1/2. This means that in the quantum volume conjecture
(1.5) for the unknot we have

̂A©(x̂, ŷ; q) = ŷ − (q1/2 + q−1/2) + ŷ−1. (3.110)

In the classical limit q → 1 this becomes equivalent to

A©(x, y) = (y − 1)2. (3.111)

On the other hand, we can also write the classical limit of (3.108) in the
polynomial form as

Aref
© (x, y; t) = (1 − x)(1 + t3x)y2 − (−t−3)1/2

(

1 + t6x2 − t3(1 − 4x+ x2)
)

y

+ (1 − x)(1 + t3x). (3.112)

Starting from this form the unrefined limit reads A©(x, y) = (x− 1)2

(y − 1)2, which captures the cases (3.107) and (3.111) which we considered
above.

3.2.2 Trefoil

Our next task is to derive refined recursion relations for the trefoil. Similarly
as in the unknot case, we will be able to determine these relations from the
structure of the sl(2) specialization Pn(T 2,3; q, t) of the colored superpoly-
nomial. For general (2, 2p+ 1) torus knots, we found an explicit expression
for this homological invariant in (3.97), which for the present purpose of
deriving recursion relations we write in the form7

Pn(T 2,3; q, t) =
n−1
∑

k=0

P (n, k), (3.113)

where each P (n, k) has a product structure

P (n, k) = qn−1+nkt2k
k
∏

i=1

(1 − qn−i)(1 + qit)
1 − qi

. (3.114)

In particular,

P (n, 0) = qn−1, P (n, n) = 0. (3.115)

Note that for t = −1 simplifications occur and only one set of products
remains in (3.114).

7The equivalence between this expression and (3.97) can be easily verified to sufficiently
large n. Plus, both expressions enjoy the structural properties discussed in Section 3.1.3.
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To derive recursion relations let us write down the following ratios, which
is immediate due to the product structure of P (n, k):

P (n+ 1, k)
P (n, k)

= qk+1 1 − qn

1 − qn−k
, (3.116)

P (n, k + 1)
P (n, k)

= qnt2
(1 − qn−k−1)(1 + qk+1t)

1 − qk+1
, (3.117)

P (n+ 1, k + 1)
P (n, k)

= qn+k+2t2
(1 − qn)(1 + qk+1t)

1 − qk+1
. (3.118)

These equations are equivalent to the following ones (obtained by clearing
the denominators):

qkP (n+ 1, k) − qnP (n+ 1, k) = (1 − qn)q2k+1P (n, k), (3.119)

qkP (n, k + 1) − qn+kt2(1 − qnt)P (n, k) = −q2n−1t2P (n, k)

+ q2k+1
(

P (n, k + 1) + t3qnP (n, k)
)

, (3.120)

P (n+ 1, k + 1) − t3qn+2k+3(1 − qn)P (n, k)

= qk+1
(

P (n+ 1, k + 1) + t2qn+1(1 − qn)P (n, k)
)

. (3.121)

These are linear equations in P (n, k) (possibly with shifted arguments n or
k). Therefore, ideally, we would like to perform the sum over k as in (3.113)
to transform them into equations for various Pn (possibly with shifted n’s).
However, such summation cannot be directly performed because of
k-dependent factors qk and q2k. Nonetheless, we can take these factors
into account at the expense of introducing auxiliary quantities:

Rn =
n−1
∑

k=0

qkP (n, k), Sn =
n−1
∑

k=0

q2kP (n, k). (3.122)

Now resummation of (3.119)–(3.121) can be performed and the answer writ-
ten in terms of Pn, Rn, and Sn. Note that because of shifts in n we need
to take care of some boundary terms arising in various cases for k = 0 or
k = n. However, all such boundary terms ultimately cancel and we get the
following system of equations:

Rn+1 + aPn+1 = bSn, (3.123)

cRn + dPn = eSn, (3.124)

Pn+1 −Rn+1 + fRn = gSn, (3.125)
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where

a = −qn, b = q(1 − qn), c = q−1 − t2qn(1 − qnt), d = t2q2n−1,

e = q−1 + t3qn+1, f = −t2qn+2(1 − qn), g = t3qn+3(1 − qn). (3.126)

Now we can determine Sn from the first equation and substitute to the
remaining two equations. This gives a system of two equations, which allows
to determine Rn and Rn+1 in terms of Pn and Pn+1:

Rn =
−d(b+ g)Pn + (1 + a)ePn+1

bc− ef + cg
, (3.127)

Rn+1 =
−bdfPn + (bc+ aef − acg)Pn+1

bc− ef + cg
. (3.128)

Finally, we notice that Rn is related to Rn+1 simply by a shift of n by one
unit. Therefore, shifting the second equation above and comparing with the
first one we get a homogeneous, 3-term recursion relation

αPn−1 + βPn + γPn+1 = 0, (3.129)

where

α =
q3n−1(qn − q)t4

(q + q2nt3)(1 + qn+1t3)
, (3.130)

β = − t2

q−2n + qt3
− q − qn+1t2 + q4nt6 + q2nt2(1 + t+ qt)

(q + q2nt3)(1 + qn+1t3)
, (3.131)

γ =
1

q + q2n+2t3
. (3.132)

We can also rewrite the above relation in the operator form (2.1a):

̂Aref(x̂, ŷ; q, t)Pn(T 2,3; q, t) = 0. (3.133)

Here, as in (2.4), ŷ acts as a shift operator Pn → Pn+1 and x̂ acts by mul-
tiplication by qn, so that x̂ and ŷ obey the commutation relation ŷx̂ = qx̂ŷ.
Then, the relation (3.129) can be expressed in terms of the refined quantum
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A-polynomial

̂Aref(x̂, ŷ; q, t) = αŷ−1 + β + γŷ, (3.134)

with

α =
x3(x− q)t4

q(q + x2t3)(1 + xqt3)
, (3.135)

β = − t2x2

1 + x2qt3
− q − xqt2 + x4t6 + x2t2(1 + t+ qt)

(q + x2t3)(1 + xqt3)
, (3.136)

γ =
1

q + x2q2t3
. (3.137)

In what follows we analyze various limits of this relation. In particular, we
study the classical limit q = 1 and the associated asymptotic structure of
the sl2 colored polynomial, and generalize these results to other (2, 2p+ 1)
torus knots. The classical refined A-polynomials which we find for other
values of p provide an important guidance in generalizing the full-quantum
relations (3.134) to other torus knots.

3.2.3 Recursion in various limits

In order to understand better the refined recursion relation (3.129), let us
consider what happens in various special limits, when t = −1 or q = ±1. We
begin with the unrefined limit t = −1, which is special for several reasons.
First, a direct substitution t = −1 in (3.129) gives rise to the following
3-term homogeneous relation:

α(t=−1)Jn−1 + β(t=−1)Jn + γ(t=−1)Jn+1 = 0, (3.138)

with the coefficients (rescaled by q2 − q1−n compared to (3.130)–(3.132))

α(t=−1) =
q2n(qn − q)
q2n − q

, (3.139)

β(t=−1) = q
(

1 + q−n − qn +
q − qn

q2n − q
− qn − 1
q2n+1 − 1

)

, (3.140)

γ(t=−1) =
q − q−n

1 − q2n+1
. (3.141)

This is precisely the homogeneous relation found in [5] by hand and obtained
more systematically in the recent work [7, 19] by quantizing A(x, y).

Moreover, in the t = −1 limit, there is also an inhomogeneous 2-term rela-
tion, which does not exist for other values of t. To derive this inhomogeneous
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relation we again start from the ratios (3.116)–(3.118). The crucial point
is that at t = −1 the factors (1 − qk+1) in the numerator and denominator
cancel. As a result, equations (3.117) and (3.118) take the form

qn−1q−kJ(n, k) = J(n, k) − q−nJ(n, k + 1), (3.142)

q−kJ(n+ 1, k + 1) = qn+2(1 − qn)J(n, k), (3.143)

and factors q2k do not appear.8 Moreover if we shift the indices n and k
by one unit in the second equation, we can explicitly solve for the factor
q−kP (n, k) to obtain a single relation

J(n, k + 1) = qnJ(n, k) − q3n−1(1 − qn−1)J(n− 1, k − 1).

Performing the sum over k and using the definition (3.113), as well as taking
care of the boundary terms, we get

Jn = qn−1 1 − q2n−1

1 − qn
− q3n−1 1 − qn−1

1 − qn
Jn−1. (3.144)

This is the same 2-term inhomogeneous relation as presented in [5]. In fact,
the homogeneous relation (3.138) also follows from (3.144): if we normalize
(3.144) so that the inhomogeneous term is an n-independent constant, we get

const = δnJn + εnJn−1 = δn+1Jn+1 + εn+1Jn,

or, equivalently,

εnJn−1 + (δn − εn+1)Jn − δn+1Jn+1 = 0.

It is not hard to check that this structure reproduces (3.138), with
α(t=−1) ∼ εn, β(t=−1) ∼ (δn − εn+1), and γ(t=−1) ∼ −δn+1.

Other interesting limits of (3.129) arise when q takes special values. Thus,
when q = 1 the coefficients in (3.130)–(3.132) simplify and, up to an overall
factor 1 + t3, take the form

α(q=1) = 0, β(q=1) = −(1 + t2 + t3), γ(q=1) = 1. (3.145)

8Note that for general t it is not possible to solve for combinations qkP (n, k) directly,
which is why we had to sum over k first using auxiliary Rn and Sn, to get 3-term homo-
geneous relation.
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Vanishing of α(q=1) means that the recursion reduces to the 2-term form:

Pn+1 = (1 + t2 + t3)Pn. (3.146)

In fact, in the classical limit q = 1, even the full-fledged superpolynomial
(3.61), without the specialization to a = q2, enjoys a simple and elegant
recursion relation, which for (2, 2p+ 1) torus knots looks like:

PSn
(T 2,2p+1) = ap

[

1 − t2p+2

1 − t2
+ at3

1 − t2p

1 − t2

]

PSn−1
(T 2,2p+1). (3.147)

In the limit q = −1 there are also simplifications. However, the recursion
(3.129) still involves 3 terms with

α(q=−1) =
(

1 + (−1)n
)

t4, (3.148)

β(q=−1) = (1 + t3)
(

− 1 + (−1)nt2 + t3
)

, (3.149)

γ(q=−1) = −1 + (−1)nt3. (3.150)

All these limits have a nice physical interpretation that follows from (3.29)
and will be discussed elsewhere. Basically, setting the parameters q and t to
special values means that in the corresponding generating functions (3.31)–
(3.33) one ignores the dependence on either the spin F or the D0-brane
charge P .

3.3 Refined A-polynomials and the refined “volume” S0(u, t)

One next goal is to test the second new conjecture of the present paper –
namely, the refinement of the generalized volume conjecture (2.6a) – in a
large class of examples associated with (2, 2p+ 1) torus knots. Specifically,
in this section we derive the refined A-polynomials Aref(x, y; t) for (2, 2p+ 1)
torus knots and analyze the refined “volume” S0(u, t) that dominates the
asymptotic behavior (2.6a), thereby verifying (2.7).

At a very practical level, the refined A-polynomials arise as the q → 1
limit of ̂Aref(x̂, ŷ; q, t), as we explained earlier and illustrated in figure 1.
Therefore, if one knows the quantum operator ̂Aref(x̂, ŷ; q, t), say, as in the
case of the unknot or the trefoil knot, then it is trivial to find its classical
version, Aref(x, y; t). However, our conjecture (2.6) provides another way to
look at the refined A-polynomial. Namely, according to (2.7), it determines
the asymptotic behavior of the n-colored homological invariants Pn(q, t) in
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the limit (2.5). Our conjecture says that, in this limit, the homological
invariants Pn(q, t) exhibit exponential growth with the leading term S0(u, t),
such that

y = eS′
0(u,t) = e

d
du

S0(u,t) = ex d
dx

S0(log x,t). (3.151)

This gives another way of expressing the dependence of y on x, which is
equivalent to the equation Aref(x, y; t) = 0. In other words, the leading order
free energy S0(u, t) computed directly from the asymptotics of Pn(q, t) must
agree with the integral (2.7) on an algebraic curve Aref(x, y; t) = 0. In this
section, we will test this equivalence and our conjecture (2.6a). We also
determine the refined A-polynomials even in those examples where the full
quantum curve ̂Aref(x̂, ŷ; q, t) is not known at present!

In particular, for the unknot and for the trefoil knot, for which we already
found ̂Aref(x̂, ŷ; q, t) in the previous section, we will show that their q → 1
limits indeed agree with the refinedA-polynomials computed from the asymp-
totics of the corresponding colored homological invariants. Furthermore,
even for more general (2, 2p+ 1) torus knots, for which the full quantum A-
polynomials are not known at present, we will find the refined A-polynomials
by testing our conjecture (2.6). Impatient reader can skip directly to table 3,
where we list the explicit form of Aref

T 2,2p+1(x, y; t) for several small values of
p. In Section 4, we will use analogous techniques to analyze the refined
A-polynomials and asymptotic expansions in examples coming from refined
BPS state counting.

3.3.1 Refined A-polynomial and S0(u, t) for the unknot

We start our analysis with the example of the unknot. This example is quite
instructive: being relatively simple, it captures all essential ingredients that
arise for more complicated knots. Recall, that we already determined the
quantum refined curve in (3.104), and its classical limit reads (3.105):

Aref
© (x, y; t) = (1 + t3x)(−t−3)1/2 − (1 − x)y = 0. (3.152)

We would like to verify our conjecture (2.6a) and to confirm that the same
curve controls the asymptotic expansion of the n-colored homological invari-
ants (3.99):

Pn(©; q, t) = q−
n−1

2 (−t−3)
n−1

2
(−q2t3; q)n−1

(q; q)n−1

= (−t−3)
n−1

2 q1/2x−1/2 (−q2t3; q)∞
(−q2t3x; q)∞

(x; q)∞
(q; q)∞

, (3.153)
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where we introduced x = eu = qn. Now we can use the expansion of the
quantum dilogarithm function, see, e.g., [59, 60],

log(x; q)∞ =
1
�

Li2(x) +
1
2

log(1 − x) −
∞
∑

k=1

B2k

(2k)!
U2k−1(x)�2k−1

(1 − x)2k−1
, (3.154)

where q = e� and Uk(x) is a polynomial of degree k satisfying

Uk(x) = (x− x2)U ′
k−1(x) + kxUk−1(x), U0 = 1. (3.155)

From this expansion, we find the asymptotics

Pn(©; q, t) = exp
1
�

(

log x log(−t−3)1/2 + Li2(x) − Li2(−t3x)

+ Li2(−t3) − π2

6
+ O(�)

)

, (3.156)

so that we identify

S0(u, t) = log x log(−t−3)1/2 + Li2(x) − Li2(−t3x) + Li2(−t3) − π2

6
.

(3.157)

Computing the derivative of this result and using the relation (3.151) we
finally obtain

y = eS′
0(u,t) = (−t−3)1/2 1 + t3x

1 − x
, (3.158)

which is clearly equivalent to the refined A-polynomial (3.152).

Let us also stress an interesting feature of the leading order free energy
(3.157). In the unrefined limit, t = −1, this free energy vanishes:

S0(u, t = −1) = 0, (3.159)

which is consistent with the form of the unrefined A-polynomial A©(x, y) =
(1 − x)(1 − y) given in (3.107). The factor (1 − y) in this classical, unrefined
A-polynomial is a universal factor associated with abelian flat connections.
Usually, it does not lead to an interesting contribution to the free energy, as
the integral (2.7) is trivial in this case. Therefore, our result (3.157) could
be interpreted as a contribution of a “refined” abelian flat connection, which
becomes non-trivial once t �= −1.

In what follows, we use similar methods to analyze more interesting knots.
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3.3.2 Refined A-polynomial and S0(u, t) for the trefoil

The next example is naturally the trefoil knot T 2,3 = 31. First, let us discuss
the structure of its refined A-polynomial and the associated free energy
S0(u, t) from the viewpoint of the quantum A-polynomial given in (3.134).
The refined A-polynomial can be determined by setting q = 1 in (3.134):

Aref
T 2,3(x, y; t) = y2 − 1 − xt2 + x3t5 + x4t6 + 2x2t2(t+ 1)

1 + xt3
y +

(x− 1)x3t4

1 + xt3

= 0. (3.160)

We stress that for generic values of t this form does not factorize, as the
discriminant

Δ =
(1 + x2t3

1 + xt3

)2(
1 − 2t2x+ (4t2 + 2t3 + t4)x2 + 2t5x3 + t6x4

)

is not a complete square. This means that the abelian branch — represented
by a factor y − 1 in the classical, unrefined A-polynomial – is “mixed” in
together with the non-abelian branch for generic values of t �= −1. Indeed,
the value t = −1 is very special because the discriminant factorizes

Δ(t=−1) = (1 + x3)2,

and, as a result, the A-polynomial also factorizes

Aref
T 2,3(x, y; t = −1) = (y − 1)(y + x3). (3.161)

In the latter expression, y − 1 represents the abelian branch, while the
“interesting” factor y + x3 is what sometimes referred to as the reduced
A-polynomial for the trefoil knot. We see that for generic values of t such a
factorization does not occur, and the “character variety” Aref(x, y; t) = 0 is
irreducible, with only one component. For t = −1 it becomes reducible and
splits into two (or, in general, several) components.

Once we found the refined curve, we can easily compute S0(u, t) =
∫

log
y dx

x using (2.7). For the trefoil knot there is no compact expression for this
integral, but one can write it as a Taylor series in (t+ 1). Namely, by solving
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the quadratic equation Aref
T 2,3(x, y; t) = 0, we find

y =
1 − xt2 + x3t5 + x4t6 + 2x2t2(t+ 1)

2(1 + xt3)
− 1

2

√
Δ

= −x3 + (t+ 1)x3 (x− 2)(3x2 − 2x+ 2)
(x− 1)(1 − x+ x2)

+ O
(

(t+ 1)2
)

(3.162)

The first term −x3 corresponds to the non-abelian branch in (3.161). Then,
expanding the integrand log y dx

x in powers of (t+ 1) and integrating term
by term we find the following structure

S0(u, t) = S0(u) + (t+ 1)S(1)
0 (u) +

∞
∑

k=2

(t+ 1)kS
(k)
0 (u), (3.163)

where S0(u) is the ordinary Chern–Simons action of the flat SL(2,C) con-
nection on the trefoil knot complement:

S0(u) =
1
6

(

log(−x3)
)2
,

S
(1)
0 (u) = log

(1 − x)3

x4(1 − x+ x2)
,

S
(2)
0 (u) =

1
2
S

(1)
0 (u) +

−8x4 + 9x3 − 12x2 + 5x− 3
2(x− 1)(1 − x+ x2)2

,

...

S
(k)
0 (u) =

1
k
S

(1)
0 (u) +

1
k!

Rk(x)
(x− 1)k(1 − x+ x2)2k−2

In other words, the kth order term S
(k)
0 (u) includes 1

kS
(1)
0 (u) and also a

rational function with k!(x− 1)k(1 − x+ x2)2k in the denominator and a
certain polynomial Rk(x) in the numerator. In particular, we can sum over
all S(1)

0 (u) contributions, so that

S0(u, t) =
1
6

(

log(−x3)
)2

− log(−t) log
(1 − x)3

x4(1 − x+ x2)
+R(x, t), (3.164)

where R(x) is certain (complicated) function, whose (t+ 1)k coefficient is
1
k!

Rk(x)
(x−1)k(1−x+x2)2k . We note that for t = −1 all t-dependent terms vanish.

In the next subsection we will confirm that the same refined A-polynomial
and the same S0(u, t) arise from the analysis of the asymptotic expansion of
the colored superpolynomials (3.97).
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Let us point out that the curve (3.160) also factorizes in the t = 0 limit:

Aref
T 2,3(x, y; t = 0) = y(y − 1),

and there is an associated singularity in S0(u, t) when t→ 0. It would be
interesting to understand this singularity better.

3.3.3 Saddle point analysis of the homological torus knot
invariants

In this section, we analyze general (2, 2p+ 1) torus knots (p ≥ 1). For
this class of knots, the quantum refined curves ̂Aref

T 2,2p+1(x̂, ŷ; q, t) are not
known at present (apart from the case of trefoil, i.e., p = 1, with the quan-
tum curve determined in (3.129)). Therefore, we cannot determine refined
A-polynomials by taking the classical limit of ̂Aref, as we did for the trefoil
knot or for the unknot. Nevertheless, we can determine refined
A-polynomials from the asymptotic behavior of the colored superpolyno-
mials and their specializations (3.97). For general values of p, we determine
parametric representation of such A-polynomials, and for several first values
of p we rewrite this parametric form as a polynomial Aref

T 2,2p+1(x, y; t); see
table 3.

There is one fundamental difference between the specialization Pn(K; q, t)
of the colored superpolynomial for torus knots found in (3.97) and that of
the unknot (3.99). Namely, the latter is given by an infinite product, whose
asymptotic expansion is obtained simply from the expansion of the quantum
dilogarithm (3.154). On the other hand, the homological invariants of torus
knots are expressed as infinite sums, with each term in those sums given
by infinite products. Therefore, the analysis of the asymptotic behavior for
torus knots is more delicate and requires new methods.

In order to find the “refined volume” S0(u, t) for torus knots, we apply
the saddle point approximation [61, 62] to (3.97) and replace the quantum
dilogarithm function by

(z; q)k ∼ e
1
�
(Li2(z)−Li2(zqk)). (3.165)

Furthermore, via an analytic continuation we can approximate the summa-
tion in (3.97), in the asymptotic limit (2.5), by the following integral:

Pn(T 2,2p+1; q, t) ∼
∫

dz e
1
�
(V(2,2p+1)(z,x;t)+O(�)), (3.166)
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Table 3: Refined A-polynomials for p = 1, 2, 3, 4.

Knot Aref
K (x, y; t)

T 2,3 y2 − 1

1 + xt3
(1 − xt2 + x3t5 + x4t6 + 2x2t2 + 2x2t3)y +

(x − 1)x3t4

1 + xt3

T 2,5 y3 − 1

1 + t3x
(1 − t2x + 2t2x2 + 2t3x2 − 2t4x3 − 2t5x3 + 3t4x4 + 4t5x4

+ t6x4 + t7x5 − t8x5 + 2t8x6)y2 +
t6(−1 + x)x5

(1 + t3x)2
(2 − t2x + t3x

+ 3t2x2 + 4t3x2 + t4x2 + 2t5x3 + 2t6x3 + 2t6x4 + 2t7x4 + t9x5

+ t10x6)y − t12(−1 + x)2x10

(1 + t3x)2

T 2,7 y4 − 1

1 + t3x
(1 − t2x + 2t2x2 + 2t3x2 − 2t4x3 − 2t5x3 + 3t4x4 + 4t5x4

+ t6x4 − 3t6x5 − 4t7x5 − t8x5 + 4t6x6 + 6t7x6 + 2t8x6 + t9x7

− 2t10x7 + 3t10x8)y3 +
t8(−1 + x)x7

(1 + t3x)2
(3 − 2t2x + t3x + 6t2x2 + 8t3x2

+ 2t4x2 − 3t4x3 − 2t5x3 + t6x3 + 6t4x4 + 12t5x4 + 10t6x4 + 4t7x4

+ 3t7x5 + 2t8x5 − t9x5 + 6t8x6 + 8t9x6 + 2t10x6 + 2t11x7 − t12x7

+ 3t12x8)y2 − t16(−1 + x)2x14

(1 + t3x)3
(3 − t2x + 2t3x + 4t2x2 + 6t3x2

+ 2t4x2 + 3t5x3 + 4t6x3 + t7x3 + 3t6x4 + 4t7x4 + t8x4 + 2t9x5

+ 2t10x5 + 2t10x6 + 2t11x6 + t13x7 + t14x8)y +
t24(−1 + x)3x21

(1 + t3x)3

T 2,9 y5 − 1

1 + t3x
(1 − t2x + 2t2x2 + 2t3x2 − 2t4x3 − 2t5x3 + 3t4x4

+ 4t5x4 + t6x4 − 3t6x5 − 4t7x5 − t8x5 + 4t6x6 + 6t7x6 + 2t8x6

− 4t8x7 − 6t9x7 − 2t10x7 + 5t8x8 + 8t9x8 + 3t10x8 + t11x9

− 3t12x9 + 4t12x10)y4 +
t10(−1 + x)x9

(1 + t3x)2
(4 − 3t2x + t3x + 9t2x2

+ 12t3x2 + 3t4x2 − 6t4x3 − 6t5x3 + 12t4x4 + 24t5x4 + 18t6x4 + 6t7x4

− 6t6x5 − 9t7x5 − 6t8x5 − 3t9x5 + 10t6x6 + 24t7x6 + 27t8x6 + 16t9x6

+ 3t10x6 + 4t9x7 − 6t11x7 − 2t12x7 + 12t10x8 + 18t11x8 + 6t12x8

+ 3t13x9 − 3t14x9 + 6t14x10)y3 − t20(−1 + x)2x18

(1 + t3x)3
(6 − 3t2x

+ 3t3x + 12t2x2 + 18t3x2 + 6t4x2 − 4t4x3 + 6t6x3 + 2t7x3 + 10t4x4

+ 24t5x4 + 27t6x4 + 16t7x4 + 3t8x4 + 6t7x5 + 9t8x5 + 6t9x5 + 3t10x5

+ 12t8x6 + 24t9x6 + 18t10x6 + 6t11x6 + 6t11x7 + 6t12x7 + 9t12x8

+ 12t13x8 + 3t14x8 + 3t15x9 − t16x9 + 4t16x10)y2

+
t30(−1 + x)3x27

(1 + t3x)4
(4 − t2x + 3t3x + 5t2x2 + 8t3x2 + 3t4x2 + 4t5x3

+ 6t6x3 + 2t7x3 + 4t6x4 + 6t7x4 + 2t8x4 + 3t9x5 + 4t10x5 + t11x5

+ 3t10x6 + 4t11x6 + t12x6 + 2t13x7 + 2t14x7 + 2t14x8

+ 2t15x8 + t17x9 + t18x10)y − t40(−1 + x)4x36

(1 + t3x)4
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with the “potential” function

V(2,2p+1)(z, x; t)

:= −p log(−t) · log x+ (p+ 1)πi log x+ log(x
1
2 z−1) · log t

+ (2p+ 1)
(

πi log z +
1
2
(

(log x)2 − (log z)2
)

+ log(x
3
2 z−1) · log t

)

+ Li2(z) − Li2(x) − Li2(t2z) + Li2(−t3x) + Li2(t2xz)

− Li2(−t3xz) + Li2(xz−1) − Li2(−txz−1) + Li2(−t) − Li2(1), (3.167)

and where the parameter z is related to � in (3.97) via � = 1
�

log z. Now, the
dominant contribution to this integral comes from the saddle point9

∂V(2,2p+1)(z, x; t)
∂z

∣

∣

∣

∣

∣

z=z0

= 0, (3.168)

and the value of the “potential” V (z, x; t) at this saddle point determines
S0(u, t):

V(2,2p+1)(z0, x; t) = S0(u, t). (3.169)

For the above potential VT 2,2p+1(z, x; t), the critical point condition can
simply be expressed as 1 = exp

(

z∂V(2,2p+1)/∂z
)

|z=z0 :

1 = − t
−2−2p(x− z0)z−1−2p

0 (−1 + t2z0)(1 + t3xz0)
(−1 + z0)(tx+ z0)(−1 + t2xz0)

. (3.170)

9To be more precise, there can be subtleties in the treatments of the analytic continua-
tion [63], and the convergence and non-perturbative contributions like O(e�) of the contour
integrals should be discussed more carefully. Luckily, none of these subtleties affect our
derivation of the refined A-polynomial in the asymptotic limit � → 0 around the exponen-
tial growth point. For this reason, we will only discuss the saddle point approximation in
a sense of the optimistic limit, relegating a more detailed analysis a la [64–67] to future
work.
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Moreover, according to (2.7), the solution of Aref
T 2,2p+1(x, y; t) = 0 is related

to S0(u, t) via

y(x, t) = exp
(

x
∂V(2,2p+1)(x, z0; t)

∂x

)

=
t2+2p(−1 + x)x1+2p(tx+ z0)(1 + t3xz0)

(1 + t3x)(x− z0)(−1 + t2xz0)
. (3.171)

Equations (3.170) and (3.171) constitute our desired result: they provide an
expression for the refined A-polynomial, parameterized by z0, for a general
(2, 2p+ 1) torus knot. Moreover, for a fixed value of p it is possible to
eliminate z0 from these equations and write an explicit form of the refined
A-polynomials Aref

T 2,2p+1(x, y; t). For p = 1, 2, 3, 4, the explicit expressions of
the refined A-polynomials are presented in table 3. For p = 1, this result
is consistent with the semi-classical limit of the recursion relation (3.160).
Further examples are also summarized in Appendix C. Note that for t = −1
the first equation above (3.170) simply specifies the value of z0 as z2p+1

0 =
−1, whereas the second equation (3.170) reduces to the well-known ordinary
A-polynomial for T 2,2p+1 torus knot:

y + x2p+1 = 0.

Let us also reveal some remarkable properties of the refined A-polynomials
found above. We recall that the ordinary A-polynomials AK(x, y) are known
to be reciprocal [3, 59, 68]:

AK(x, y) = xaybAK(x−1, y−1). (3.172)

This property can be understood either as a consequence of the Weyl reflec-
tion in SL(2,C) Chern–Simons theory or, alternatively, as a symmetry
induced by the orientation-preserving involution on the knot complement,
M = S3 \K, which acts as an endomorphism (−1,−1) on H1(∂M) ∼= Z × Z.
It beautifully generalizes to the refined case: as a careful reader will notice,
equations (3.170) and (3.171) are invariant under the following transforma-
tion:

t→ t, x→ −t−3x−1, z → t−2z−1, y → t−2py−1. (3.173)

Therefore, the refined A-polynomials satisfies a deformed reciprocity:

Aref
T 2,2p+1(x, y; t) = xayb(−t)cAref

T 2,2p+1(−t−3x−1, t−2py−1; t). (3.174)
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Once we found the refined A-polynomials, from (2.7), we can also deter-
mine the classical action S0(u, t) by computing it iteratively around t = −1.
The solutions z0 = zj (j = 1, . . . , 2p) for (3.170) around t = −1 are10

zj = −ξj +
(1 + t)
2p+ 1

(

−(1 + x)2

x
− (2p− 1)ξj +

2
1 + ξj

+
x2

x+ ξj

+
1

x(1 + xξj)

)

+ O((1 + t)2), (3.177)

where ξj = exp( 2πij
2p+1), j = 1, . . . , 2p. Plugging this solution into (3.171), we

find the power series expansion for yj(x, t):

yj(x, t) = −x2p+1 + (1 + t)
x2p+1

(−1 + x)(x+ ξj)(1 + xξj)

× (−3x− 2px+ 2px2 − 2ξj − 2pξj − xξj + 2pxξj
− 4x2ξj − 2px2ξj + x3ξj + 2px3ξj − 3xξ2j − 2pxξ2j + 2px2ξ2j )

+ O((1 + t)2). (3.178)

In turn, plugging this expansion into (2.7), we obtain a power series expan-
sion of the classical action S0(u, t):

S0(u, t) = S0(u) +
∞
∑

k=1

(t+ 1)kS
(k)
0 (u),

S0(u) =
1

4p+ 2
(

log(−x2p+1)
)2
,

S
(1)
0 (u) = log

(

(1 − x)3

x2(p+1)(x+ ξj)(1 + xξj)

)

10There are also the other solutions:

z0 = ±1

t
. (3.175)

Plugging these solutions into (3.170), we find

y(x, t) =
t2+2p(−1 + x)x1+2p(±1 + t2x)2

(∓1 + tx)2(1 + t3x)
. (3.176)

We assume that these factors correspond to the solutions z0 which are not the saddle
points but the critical points of the potential V(2,2p+1)(z, x; t). To treat this point in more
detail, we need to specify the integration path more carefully. Since for p = 1 this solution
is not included in (3.160), we conclude that these solutions do not describe the saddle
points relevant to us.
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S
(2)
0 (u) =

1
2
S

(1)
0 (u)

− 1
2(2p+ 1)(−1 + x)(x+ ξj)2(1 + xξj)2

×
(

9x2 + 12px2 + 6px3

+ 11xξj + 18pxξj + 3x2ξj + 18px2ξj + 21x3ξj + 30px3ξj + x4ξj

+ 6px4ξj + 3ξ2j + 6pξ2j + 2xξ2j + 12pxξ2j + 30x2ξ2j + 48px2ξ2j

+ 6x3ξ2j + 24px3ξ2j + 13x4ξ2j + 18px4ξ2j + 11xξ3j + 18pxξ3j + 3x2ξ3j

+ 18px2ξ3j + 21x3ξ3j + 30px3ξ3j + x4ξ3j + 6px4ξ3j + 9x2ξ4j

+ 12px2ξ4j + 6px3ξ4j
)

,

...

S
(k)
0 (u) =

1
k
S

(1)
0 (u) +

1
k!

Rk(x)
(x− 1)k(x+ ξj)2(k−1)(1 + xξj)2(k−1)

. (3.179)

Summing the terms 1
kS

(1)
0 , we find the following general form of the classical

action:

S0(u, t) =
1

2(2p+ 1)
(

log(−x2p+1)
)2 − log(−t)

× log
(

(1 − x)3

x2(p+1)(x+ ξj)(1 + xξj)

)

+R(x, t). (3.180)

For p = 1, this result agrees with (3.164), which was derived from the refined
quantum curve (3.134). Therefore, this agreement proves the consistency of
our conjectures in the case of the trefoil knot.

We also note that, because the values of the classical action S0(u, t)
for z0 = zj and z0 = zj+p coincide, there are in total p independent solu-
tions. This indicates that the non-abelian branch of the character vari-
ety in the unrefined theory “splits” into p independent branches in the
refined/categorified theory. The same splitting and the same number of solu-
tions can be seen more directly from the form of the refined A-polynomials
for (2, 2p+ 1) torus knots.

3.3.4 Asymptotic behavior in different grading conventions

It is instructive to study the asymptotic behavior of the colored superpoly-
nomial and its specialization (3.11) in different grading conventions. For
example, another popular set of grading conventions is the one where differ-
entials dN<0 have degree (−2, 2N, 2N − 1), see (3.54). One important lesson
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of this exercise will be the fact that the limit (2.5) has to be slightly mod-
ified depending on which grading conventions one chooses. Conceptually,
and also as a simple way to remember which limit to take, one wants

qβtγ = e� → 1, (3.181)

where the exponents β and γ represent the degree11 of the colored differ-
ential; cf. (3.9),

deg(dcolored) = (0, β, γ). (3.182)

Indeed, with the refined volume conjectures (2.1) and (2.6) we wish to probe
the “large volume” asymptotics of the homological knot invariants Pn(q, t),
as n goes to infinity. On the other hand, as we explained in Section 3.1.3,
the dependence of homological knot invariants on the “color” R = Sn−1 is
controlled by the colored differentials which (in the basic case) change the
value of n by one unit, see, e.g., (3.87).

Therefore, in order to study the asymptotic behavior of the homological
knot invariants under n→ n+ 1 for sufficiently large n, one needs to take
a limit in which discrete values of n are replaced by a continuous variable
x = eu and different terms in the chain complex (3.94) are clumped together
in a continuous distribution, described by S0(u, t). Therefore, this continu-
ous limit is precisely the limit in which dcolored changes gradings by a tiny
amount, i.e., the limit (3.181).

For example, in the grading conventions of [27], the first colored differen-
tial listed in (3.54) has (a, q, t)-degree (0, 2, 2). Therefore, the right limit to
take in this case is the limit (3.181) with β = 2 and γ = 2 or, more precisely,

q2t2 = e� → 1, t = fixed, x ≡ eu = en� = fixed. (3.183)

In order to make this a little bit more concrete and to understand the
issue better, let us illustrate how it all works in the large class of examples
associated with (2, 2p+ 1) torus knots. We already computed the colored
superpolynomial (3.68) for these knots in the grading conventions of [27],
and now to study its asymptotic behavior we will need a couple of useful

11For simplicity, here we assume that the a-degree of dcolored is equal to zero, as for the
first set of colored differentials in (3.54).
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identities. First, applying the Euler-Maclaurin formula [60]:

N
∑

m=M

f(m) =
∫ N

M
f(t)dt+

1
2

(f(N) + f(M)) +
n
∑

k=1

B2k

(2k)!

{

f (2k−1)(N)
}

−
∫ N

M

B2n(t)
(2n)!

f (2n)(t) dt. (3.184)

to the function f(m) = log
(

1 −X(q2t2)m
)

, we find

log(X; q2t2)∞ =
1

� + ε
Li2(X) +

1
2

log(1 −X)

+
∞
∑

k=1

B2k

(2k)!
U2k−1(X)

(1 −X)2k−1
(� + ε)2k−1 (3.185)

where we temporarily introduced ε := log t. In particular for X = e
s
� , one

finds the following expansion:

log(X; q2t2)∞ = −s
2

�
2 − iπs� +

π2

3
+ O(e−�s), (3.186)

which we can apply to our result for the superpolynomial (3.68) or, to be
more precise, to its specialization (3.91) at a = q2.

First, let us see what would happen if, instead of the correct limit (3.183)
that comes from the gradings of colored differentials, we naively used the
limit (2.5) (suitable for the homological invariants in the grading conven-
tions of [44], where deg(dcolored) = (0, 1, 0)). We would find that the desired
specialization of the colored superpolynomial (3.68) can be approximated
by an integral, much like in (3.166),

PSn−1

DGR (T 2,2p+1; a = q2, q, t) ∼
∫

dz e
1

�2 V DGR
(2,2p+1)

(z,x;t)+O(�−1)
, (3.187)

with a very simple potential function V DGR
T 2,2p+1(z, x; t):

V DGR
(2,2p+1)(z, x; t) = (2p+ 1)ε

(

(log x)2 − (log z)2
)

. (3.188)

Clearly, the critical point of this potential is z0 = 1 and, therefore, the col-
ored superpolynomial in this grading and in the limit � → 0 behaves as

PSn−1

DGR (T 2,2p+1; a = q2, q, t) ∼ e
1

�2 V DGR
(2,2p+1)

(z0,x;t)
. (3.189)
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This behavior is way too simple to learn anything non-trivial about the
“large color” behavior of the colored superpolynomial and is not even in the
expected form (2.6a), which is yet another signal that one needs to be very
careful passing from one set of grading conventions to another.

Now, let us consider the asymptotic behavior of the same object in the
correct limit (3.183). Again, as in (3.166), we can write

PSn−1

DGR (T 2,2p+1; a = q2, q; t) ∼
∫

dz e
1
�

(

V DGR
(2,2p+1)

(z,x,t)+O(�)

)

, (3.190)

with

V DGR
(2,2p+1)(z, x; t) = Li2(−t−1) − Li2(x) + Li2(−xt−3) + Li2(xz−1)

− Li2(−xt−1z−1) + Li2(z) − Li2(zt−2) − Li2(−xzt−3)

+ Li2(xzt−2) − π2

6
+ (2p+ 1)

[

(log(−t−2)) · (log x)

+
(log x)2 − (log z)2

2
− πi log z

]

+ (log t) · (log z).

(3.191)

From this potential function, the saddle point condition (3.168) and the first
line of (3.171) we find the equations for the saddle point that dominates the
above integral:

1 =
(t2 − z)z−1−2p(−x+ z)(t3 + xz)
t(−1 + z)(x+ tz)(t2 − xz)

,

y = − t
−1−4p(−1 + x)x1+2p(x+ tz)(t3 + xz)

(t3 + x)(x− z)(t2 − xz)
. (3.192)

Eliminating the variable z, we find the refined A-polynomial ADGR
T 2,2p+1(x, y; t).

For p = 1, the refined A-polynomial will be described in Appendix C. For
t = −1, we find the same behavior as in the analysis of (3.170) and (3.171):
the first equation above only specifies the value z2p+1

0 = 1, and the second
one reduces to ordinary unrefined A-polynomial equation for T 2,2p+1 knot
y + x2p+1 = 0.

The algebraic equations (3.192) can be easily solved around t = −1:

zj = ξj +
ξj(1 + ξj)(−2x+ ξj + 2xξj + x2ξj − 2xξ2j )

(1 + 2p)(x− ξj)(−1 + ξj)(−1 + xξj)
(1 + t) + O((1 + t)2),

(3.193)
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with ξj = e
2πij
2p+1 . Plugging this solution into the second equation of (3.192),

we find the approximate solution for y (as a function of x and t):

y = −x2p+1
[

1 + (1 + t)(−3x− 4px+ 4px2 + 2ξj + 4pξj + xξj − 4pxξj

+ 4x2ξj + 4px2ξj − x3ξj − 4px3ξj − 3xξ2j − 4pxξ2j + 4px2ξ2j )

/(−1 + x)(x− ξj)(−1 + xξj) + O(1 + t)2
]

. (3.194)

From (2.7), one can also find the refined classical action S0(u, t):

S0(u, t) = S0(u) +
∞
∑

a=1

(1 + t)aS
(a)
0 (u),

S0(u) =
1

2(2p+ 1)
log(−x2p+1)2,

S
(1)
0 (u) = log

x4p+2(x− ξj)(1 − xξj)
(1 − x)3

,

S
(2)
0 (u) =

1
2
S

(1)
0

+
1

2(2p+ 1)(−1 + x)(x− ξj)2(−1 + xξj)2

×
(

−7x2 − 8px2 − 2x3 − 10px3 + 9xξj + 14pxξj + 5x2ξj

+ 22px2ξj + 19x3ξj + 26px3ξj + 3x4ξj + 10px4ξj − 3ξ2j − 6pξ2j
− 2xξ2j − 12pxξ2j − 30x2ξ2j − 48px2ξ2j − 6x3ξ2j − 24px3ξ2j − 13x4ξ2j

− 18px4ξ2j + 13xξ3j + 22pxξ3j + x2ξ3j + 14px2ξ3j + 23x3ξ3j

+ 34px3ξ3j − x4ξ3j + 2px4ξ3j − 11x2ξ4j − 16px2ξ4j

+ 2x3ξ4j − 2px3ξ4j
)

, (3.195)

and the general form of the classical action:

S0(u, t) =
1

2(2p+ 1)
(

log(−x2p+1)
)2

− log(−t) log
(

x4p+2(x− ξj)(1 − xξj)
(1 − x)3

)

+R(x, t). (3.196)

3.4 Relation to algebraic K-theory

So far in this section, we have discovered a number of refined A-polynomials
Aref(x, y; t) for various knots, including the unknot (3.105), the trefoil knot
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(3.160), and more general (2, 2p+ 1) torus knots discussed in Section 3.3.3.
For the unknot and for the trefoil knot we also found an explicit form of the
quantum A-polynomial, given respectively in (3.104) and (3.134).

There is no doubt that such refined and quantum A-polynomials exist for
other knots as well, and can be determined either by (generalizations of)
the techniques we used here or via some other methods. In any case, when
lifting the classical t-deformed A-polynomial to a quantum operator, one
encounters an important subtlety: not all classical curves are quantizable,
and the existence of a consistent quantum curve depends in a delicate way
on the complex structure12 (i.e., on the coefficients in the defining equa-
tion) of the classical polynomial Aref(x, y; t). Therefore, one should always
verify whether a classical t-deformed curve actually admits a consistent
quantization.

We should stress that this issue of quantizability is much more delicate
for refined A-polynomials compared to the ordinary ones. The coefficients
of ordinary A-polynomials are merely integer numbers, and quantizability
imposes non-trivial constraints on these numbers. Magically, all
A-polynomials of knots and 3-manifolds automatically meet these condi-
tions. In retrospect, this is not too surprising, for otherwise SL(2,C) Chern–
Simons would simply make no sense on 3-manifolds whose A-polynomials
fail to meet these constraints [3].

The coefficients of refined A-polynomials, on the other hand, are functions
of an arbitrary continuous parameter t. Hence, at first it may not be entirely
obvious how to reconcile arbitrariness of t with the fact that certain functions
of this parameter should satisfy rather strong constraints. In all examples
that we have analyzed, something beautiful happens: as we explain below,
it turns out that t can be any root of unity. Therefore, it is also natural to
think of � = log q as a purely imaginary number, valued in iQ. We conjecture
that this is a general phenomenon: for any knot, quantizability of the refined

12At first, this may seem a little surprising, because the quantization problem is about
symplectic geometry and not about complex geometry of C. (Figuratively speaking, quan-
tization aims to replace all classical objects in symplectic geometry by the corresponding
quantum analogs.) However, our phase space C

∗ × C
∗ is very special in a sense that it

comes equipped with a whole CP1 worth of complex and symplectic structures, so that
each aspect of the geometry can be looked at in several different ways, depending on which
complex or symplectic structure we choose. This hyper-Kähler nature of our geometry
is responsible, for example, for the fact that a curve C “appears” to be holomorphic (or
algebraic). We put the word “appears” in quotes because this property of C is merely an
accident, caused by the hyper-Kähler structure on the ambient space, and is completely
irrelevant from the viewpoint of quantization. What is important to the quantization
problem is that C is Lagrangian with respect to the symplectic form Ω = i

�

dx
x

∧ dy
y

.
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A-polynomial Aref(x, y; t) requires t to be a root of unity. This statement
could be verified if new examples of refined A-polynomials are found or,
conversely, this property could help in finding new examples of refined A-
polynomials.

Before we explain the condition on t, let us recall in more detail the
general quantizability criteria for curves [3]. Let us consider a curve (1.4):

C :
{

(x, y) ∈ C
∗ × C

∗
∣

∣

∣A(x, y) = 0
}

, (3.197)

and the corresponding partition function Z = exp( 1
�
S0 + · · · ) = exp

( 1
�

∫

log y dx
x + · · · ), as in (2.6). One has to make sure that this parti-

tion function is well defined, which means that all periods of the 1-form
Im log y dx

x on the curve C are trivial,

∮

γ

(

log |x|d(arg y) − log |y|d(arg x)
)

= 0, (3.198)

and that the periods of the 1-form Re log y dx
x are rational multiples of 2πi,

so that for all closed paths γ on the curve C

1
4π2

∮

γ

(

log |x|d log |y| + (arg y)d(arg x)
)

∈ Q. (3.199)

The above conditions can be nicely reformulated in terms of algebraic K-
theory [19]. Thus, the integrand η(x, y) = log |x|d(arg y) − log |y|d(arg x)
in (3.198) is the image of the symbol {x, y} ∈ K2(C) under the regulator
map [69, 70]. For curves, it is not hard to see that η(x, y) is closed, dη = 0.
However, the condition (3.198) means that η(x, y) must actually be exact.
In the language of algebraic K-theory, this means that the symbol {x, y} = 0
must be trivial in K2(C(C)) ⊗ Q. This led two of the authors of the present
paper to propose the following criterion for quantizability [19]:

C is quantizable ⇐⇒ {x, y} ∈ K2(C(C)) is a torsion class. (3.200)

Moreover, it is known that the above condition is equivalent to the existence
of a decomposition [71]

x ∧ y =
∑

i

rizi ∧ (1 − zi) in ∧2 (C(C)∗) ⊗ Q (3.201)
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for some zi ∈ C(C)∗ and ri ∈ Q. In turn, this also means that [71]:

A(x, y) is tempered, i.e., the roots of all its face polynomials are

roots of unity. (3.202)

By face polynomials we mean the following. We construct a Newton polygon
corresponding to A(x, y) =

∑

i,j c(i,j)x
iyj , and to each point (i, j) of this

polygon we associate the coefficient c(i,j). Then, each face of the polygon
consists of several points labeled, in order, by k = 0, 1, 2, . . . , so that the
corresponding monomial coefficients for a given face can be relabeled as
ck = c(i,j). The face polynomial is defined, then, as f(z) =

∑

k ckz
k. The

condition (3.202) states that all roots of face polynomials f(z), constructed
for all boundaries of the Newton polygon, must be roots of unity. It is this
latter condition that we shall consider below in order to test quantizability
of the refined A-polynomials.

3.4.1 Quantizability of refined A-polynomials

We can now analyze under what conditions the refined A-polynomials which
we found earlier are quantizable. Since we already found the explicit form of
such refined polynomials Aref(x, y; t), in order to test quantizability we can
simply apply the condition (3.202). To this end, we need to identify face
polynomials associated to the Newton polygons of various knots discussed
earlier. We will analyze separately of the unknot, the trefoil knot, and more
general (2, 2p+ 1) torus knots. We will also discuss an interesting relation
between Newton polygons in the refined and unrefined cases.

To start with we consider the unknot; as we will see, general features of
this example will also be present for more general torus knot. The refined
A-polynomial of the unknot has been found in (3.105), and in the limit
t = −1 it reduces as follows:

Aref
© = (1 + t3x)(−t−3)1/2 − (1 − x)y −−−−−→

t→−1
(1 − x)(1 − y). (3.203)

We present Newton polygons for these two polynomials in figure 7 (left).
Bigger red circles denote monomials of the refined polynomial, while smaller
yellow crosses denote monomials of the unrefined polynomial. In the unknot
case, both Newton polygons coincide. From the matrix presentation of the
refined A-polynomial given in figure 7 we can immediately write down face
polynomials for all faces of the Newton polygon. These face polynomials
are summarized in table 4; they are all linear in z and their roots are t3,
1, (−t)−3/2, and −(−t)3/2. If we insist that the criterion (3.202) should be
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Figure 7: Newton polygon for the unknot (left). Red circles denote monomi-
als of the refined polynomial, and smaller yellow crosses denote monomials
of the unrefined polynomial. In this example both Newton polygons look
the same, so that positions of all circles and crosses overlap. More detailed
structure of the refined A-polynomial is also shown in a matrix form on the
right. Note, that the role of rows and columns is exchanged in both pictures:
the monomial ci,jxiyj is put in the place (i, j) in the Newton polygon, and it
corresponds to the entry ci,j in the (i+ 1)th row and in the (j + 1)th column
of the matrix on the right.

Table 4: Face polynomials for the unknot.

Face Face polynomial

First column (−t)−3/2z + (−t)3/2

Last column z − 1

First row (−t)−3/2 − z

Last row (−t)3/2 + z

satisfied, we conclude that the deformation parameter t should be a root of
unity.

Next, let us consider the class of (2, 2p+ 1) torus knots, for which the
refined A-polynomials were found in Section 3.3.3. When t = −1 these poly-
nomials reduce, for general p, to the following form13

Aref
T 2,2p+1(x, y; t = −1) = (x− 1)p(y − 1)(y + x2p+1)p. (3.204)

Interestingly, this form is closely related to the standard A-polynomials of
(2, 2p+ 1) torus knots (y − 1)(y + x2p+1), up to an extra factor (x− 1)p

and the power of p in the last factor. While it is desirable to understand
the meaning of the form (3.204) better, here we note that its Newton poly-
gon is related in an interesting way to the Newton polygon of the refined
A-polynomial. Namely, Newton polygons of refined A-polynomials for
(2, 2p+ 1) knots have hexagonal shape, as shown in figure 8 (left) for the

13Here and in what follows, we multiply Aref
T2,2p+1 by a factor (1 + xt3)p to turn them

into a nicer polynomial form.
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Figure 8: Newton polygons for the trefoil (left). Bigger red circles denote
monomials of the refined polynomial, and smaller yellow crosses denote
monomials of the unrefined polynomial. More detailed structure of the
refined A-polynomial is also shown in matrix representation (right). All
conventions are the same as in figure 7.

trefoil, and in Appendix C for other torus knots. (In all of these figures we
use the same conventions as in figure 7.) Then, the Newton polygons for
the unrefined A-polynomials (3.204) have the same overall shape, with only
one small difference: in their center a “rhomboidal” collection of points of
size p× p is absent, as clearly seen in the figures in Appendix C.

Apart from Newton polygons, in figure 8 (right) and in Appendix C we
also present the matrix form of refined A-polynomials. From this presen-
tation it is not hard to read off the face polynomials, and conjecture their
form for general p, along each six faces of the hexagonal shape. These face
polynomials are listed in table 5. Interestingly, all these polynomials fac-
tor into linear factors in z, and the constraint (3.202) again leads to the
aforementioned conclusion: the deformation parameter t must be a root of
unity.

Table 5: Face polynomials for (2, 2p+ 1) torus knots.

Face face polynomial

First column −t2p(p+1)(z − 1)p

Last column (−1)p(z + t3)p

First row z − 1

Last row −t2p(p+1)(z − t2p)
Lower diagonal (−1)pt3p(z − t2p+1)p

Upper diagonal (−1)p+1(z + t2p+2)p
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Table 6: Face polynomials for the trefoil knot in grading conventions of [27].

Face Face polynomial with a = q2

First column −t3(z − 1)4(t2z − 1)2(t2z + 1)2

Last column −t23(tz − 1)2(tz + 1)2(t3z + 1)4

First row −t34(z − t)(t5z − 1)
Last row −(z − t3)(t3z − 1)

Lower diagonal −t3(t5z − 1)4

Upper diagonal −t11(t6z + 1)4

Finally, let us consider the A-polynomials for the trefoil knot in grading
conventions of [27]; cf. (3.54). Newton polygons for both refined and unre-
fined A-polynomials are shown in figure C7. They are also of a hexagonal
shape, though much bigger than the Newton polygon for the trefoil grad-
ing conventions of [44] shown in figure 8. The matrix form of the refined
A-polynomials in grading conventions of [27] is presented in figure C14, and
the corresponding face polynomials are listed in table 6. Again, it is easy
to see that the quantizability condition (3.202) is satisfied only if t is a root
of unity. Therefore, we conclude that, even though the explicit form of the
refined A-polynomial Aref(x, y; t) may be sensitive to the choice of grading,
the quantizability is independent of this choice.

4 Examples coming from refined BPS invariants

It is known that N = 2 gauge theories can be geometrically engineered by
considering type II string theory on appropriate toric Calabi–Yau mani-
folds [72]. The corresponding mirror manifolds have the form of a
hypersurface

z1z2 = A(x, y) (4.1)

in C
2 × C

∗ 2. Upon the suitable identification of parameters the mirror curve
A(x, y) = 0 agrees with the Seiberg–Witten curve of the five-dimensional
theory on a circle, and its appropriate scaling limit reproduces the ordinary
Seiberg–Witten curve of the four-dimensional theory. While the knowledge
of the Seiberg–Witten curve is equivalent to the knowledge of the prepoten-
tial of the gauge theory, in fact much more is known to be true: entire series
of gravitational corrections to the prepotential, which are encoded in the
Nekrasov partition function [12], can be determined from topological string
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theory on the toric Calabi–Yau manifold. More precisely, topological string
computation reproduces Nekrasov partition functions for five-dimensional
theories in the Ω-background with ε1 = −ε2, and the appropriate scaling
limit reproduces Nekrasov partition function of the four-dimensional the-
ory [73]. The corresponding BPS degeneracies are also encoded in ordinary
topological string amplitudes. For toric manifolds, these topological string
amplitudes can be computed using the topological vertex [74].

Presently, we are interested in refined BPS degeneracies. It turns out that
they are naturally encoded in Nekrasov partition functions in a nontrivial
Ω-background, parameterized by arbitrary values of q1 = eε1 and q2 = e−ε2 .
Conjecturally, these amplitudes should be reproduced by a refined version of
topological string theory on a toric Calabi–Yau manifold. So far, such gen-
uine formulation of topological strings is not known. It is however postulated
that it should be reproduced via a combinatorial formalism of the refined
topological vertex. While there are various formulations of the refined ver-
tex, see, e.g., [75], we use here a combinatorial definition in [76]. In this
case, the refined vertex amplitude can be written in terms of Macdonald
polynomials PR (see Appendix A.1) and skew Schur functions sR/S , and it
reads

CPQR(q1, q2) =
(q2
q1

)
||Q||2+||R||2

2
q

κ(Q)
2

1 PRt(q−ρ
1 ; q2, q1)

×
∑

S

(q2
q1

)
|S|+|P |−|Q|

2
sP t/S(q−ρ

1 q−R
2 )sQ/S(q−Rt

1 q−ρ
2 ). (4.2)

In particular,

C••R(q−1
1 , q−1

2 ) = (−1)|R|
(q1
q2

)|R|/2
q
||Rt||2/2
1

∏

(i,j)∈R

1

1 − q
a(i,j)+1
1 q

l(i,j)
2

, (4.3)

where a(i, j) = Ri − j and l(i, j) = Rt
j − i denote the arm-length and leg-

length in a diagram R.

A few notational remarks are in order. Parameters t and q from the origi-
nal formulation in [76] are replaced in the above expression respectively by q1
and q2, which agrees with conventions in [35,44]. The non-refined limit corre-
sponds to q1 = q2. Similarly as in [76], in computing open string amplitudes
we use vertex amplitudes with inverse parameters CPQR(q−1

1 , q−1
2 ). More-

over, following the convention in [35], we denote symmetric representation
Sr by a Young diagram R = (r).
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Figure 9: With our choice of conventions, the parameter q2 = q = e� is
responsible for quantization, whereas t = − q1

q2
is the deformation parame-

ter responsible for the refinement. Hence, the “classical limit” corresponds
to q2 = 1, while q1 = 1 is the so-called Nekrasov–Shatashvili limit. Finally,
q1 = q2 defines a locus in the space of parameters where refinement is turned
off, and the problem can be formulated in terms of ordinary topological
strings.

The framing factor (associated to the amplitude already expressed in
terms of q−1

1 and q−1
2 ) is defined as

fR(q1, q2) = (−1)|R|
(q1
q2

)n(R)
q
−κR

2
2 , (4.4)

where

n(R) :=
∑

i

(i− 1)Ri. (4.5)

We typically allow general values of framing by including this factor raised to
the power −f . So, in particular, for the representation R = (r) the framing
factor takes the form

f(r)(q1, q2)−f = (−1)frq
f
2
r(r−1)

2 .

Using the above conventions we are able to compute refined BPS state
generating functions Zopen

BPS (u, q2, q1) of toric manifolds in the presence of
branes. However, what we are really interested in are difference operators
which annihilate these open refined BPS partition functions (up to, possibly,
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some universal inhomogeneous term) and refined mirror curves which arise as
classical limits of these difference operators. As we demonstrate below, from
the knowledge of Zopen

BPS (x, q2, q1) we are able to determine such difference
operators, at least for a class of toric manifolds which do not contain compact
4-cycles. It turns out that the role of parameters in these operators is
as follows: q2 is the quantum parameter which enters the commutation
relation

ŷx̂ = q2x̂ŷ, (4.6)

and, therefore, it plays the role of q in previous sections.14 Combining
this with the fact that q1 = q2 = q defines the unrefined limit, i.e., the limit
t = −1 in the notations of the previous sections, we quickly conclude that,
up to a slight redefinition q1 �→ q21 and q2 �→ q22, the identification of the
parameters is essentially as in (3.67):

q = q2, t = −q1
q2
. (4.7)

Note, with this identification of the parameters, in the classical limit, i.e.,
when q = q2 = 1, we can simply identify t with −q1. Of course, with differ-
ent choices of the preferred direction, etc., the role of q1 and q2 could be
different.

Having found the difference operator, or quantum curve, we can ana-
lyze asymptotic behavior of Zopen

BPS (x, q2, q1) and determine the leading order
amplitude S0(x, q1) =

∫

log y dx
x . Using saddle point analysis we can also

determine the form of the refined mirror curve Aref(x, y; q1), and show that
it agrees with the classical limit q2 → 1 of the difference equation.

Before we present detailed results, let us stress that the form of the open
string amplitude depends on various choices, such as preferred direction,
framing, and the edge of a toric diagram to which the brane is attached. We
will mainly discuss the most interesting case of branes on the external edges,
along the preferred direction. This is certainly the most interesting case for
C

3 geometry, as in that case Zopen
BPS (x, q2, q1) is a nontrivial function of both q1

and q2. For branes associated to either of the two non-preferred directions of
C

3, the amplitudes Zopen
BPS (x, q2, q1) are given entirely in terms of either q1 or

14This will become clearer a little later, when in (4.10) and (4.18) we start writing the

generating functions Zopen
BPS (x, q2, q1) in terms of products of the form

∏k
i=1(1 − q1q

i−1
2 ),

where q2 plays the key role.
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q2, and essentially do not differ from non-refined amplitudes [76]. Moreover,
for branes along the preferred direction, an inhomogeneous term arises in
the difference equation. Having found such inhomogeneous equation, we
show that it implies that a homogeneous equation of a higher order is also
satisfied. For more complicated geometries, some simplifications occur for
branes along non-preferred directions, which is also a reason why the branes
along the preferred direction are most interesting in general. In all cases,
we will consider branes with arbitrary value of framing.

4.1 Refined quantum mirror curves

In this section, we derive the refined quantum curves relevant in the context
of the open BPS state counting (or topological string theory). They can
be regarded as refined and quantum versions of mirror curves A(x, y) = 0,
which appear in the mirror geometry (4.1) for toric three-folds. Specifically,
we consider open refined topological string amplitudes for branes along pre-
ferred directions, in general framing, for C

3 and conifold geometries. It
brings only some technical, but no conceptual challenges to generalize the
computations below to the case of “generalized conifolds” (i.e., toric three-
folds without compact 4-cycles). To find quantum curves in the present
context, in this section we derive the refined open topological string ampli-
tudes Zopen

BPS and find difference equations which they satisfy. Then, in the
next section we consider the classical limit q2 → 1 of the quantum curve,
show that it is equivalent to the saddle point analysis of Zopen

BPS , and describe
properties of the resulting refined mirror curves.

C
3 or tetrahedron

To start with, we consider the simplest toric geometry of C
3, in arbitrary

framing f . Its ordinary mirror curve – which is equivalent to the “single
tetrahedron” curve from the perspective of hyperbolic geometry and knot
theory — takes the form [19]:

Aref(x, y; q1 = 1) = 1 − y + x(−y)f = 0. (4.8)

To find the refined and quantum generalization of this curve we consider
the refined BPS partition function in C

3 geometry with a D-brane located
along the preferred direction. In arbitrary framing such an amplitude reads

Zopen
BPS =

∑

R

fR(q1, q2)−fC••R(q−1
1 , q−1

2 )sR(x). (4.9)
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Performing the summation we get

Zopen
BPS =

∞
∑

k=0

(−1)(f+1)kq
f
2
k(k−1)

2

(

x
q1√
q2

)k
k
∏

i=1

1
1 − q1q

i−1
2

. (4.10)

For f = 0 this result reduces, as it should, to the brane amplitude in C
3 in

phase III found in [76] (after identifying x = −Q). If we write now

Zopen
BPS =

∞
∑

k=0

ak,

we can easily determine the ratio of the consecutive coefficients, ak+1

ak
, so

that

(1 − q1q
k
2 )ak+1 = −x(−1)fqfk q1√

q2
ak. (4.11)

Performing the summation over k on both sides of this equation we find that
the open string amplitude satisfies the following inhomogeneous difference
equation

(

1 − q1
q2
ŷ +

q1√
q2
x̂(−ŷ)f

)

Zopen
BPS = 1 − q1

q2
. (4.12)

This is the refined and quantum version of the ordinary mirror curve (4.8).
Because the inhomogeneous term is independent of x, acting on it by ŷ leaves
it invariant. Therefore, if we multiply both sides of the above equation by
(1 − ŷ), the inhomogeneity on the right hand side vanishes, while the degree
in ŷ of the left hand side increases. Commuting all ŷ operators to the right
we obtain the following homogeneous equation of a higher degree

(

1 −
(

1 +
q1
q2

)

ŷ +
q1
q2
ŷ2 +

q1√
q2
x̂(−ŷ)f + q1

√
q2x̂(−ŷ)f+1

)

Zopen
BPS = 0.

(4.13)

We note the similarity of the factor (1 − ŷ), which brings the equation to
the homogeneous form, to the factor representing abelian flat connection in
SL(2,C) Chern–Simons theory.

Conifold

We now repeat the above calculation for the conifold, whose ordinary mirror
curve in general framing takes the form [19]:

Aref(x, y; q1 = 1) = 1 − y + x(−y)f +Qx(−y)f+1 = 0. (4.14)
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To find the refined and quantum version of this curve, we again consider
the brane located along the preferred direction of the conifold. More pre-
cisely, we wish to consider the brane amplitude normalized by the closed
string partition function. Such an amplitude can be written as

Zopen
BPS =

∞
∑

k=0

ak =
∑

R=(k)

sR(x)fR(q1, q2)−f bR
b•
, (4.15)

where

bR =
∑

P

(−Q)|P |CP•R(q−1
1 , q−1

2 )CP t••(q−1
2 , q−1

1 )

=
(q1
q2

)||R||2/2
PRt(qρ

1 ; q−1
2 , q−1

1 )
∞
∏

i,j=1

(1 −Qq
−i+1/2
1 q

−j+1/2+Ri

2 ) (4.16)

and Q denotes the Kähler parameter of the conifold. The normalization
factor in this case is nothing but

Zclosed
BPS = b• =

∑

P

(−Q)|P |CP••(q−1
1 , q−1

2 )CP t••(q−1
2 , q−1

1 )

=
∞
∏

i,j=1

(1 −Qq
−i+1/2
1 q

−j+1/2
2 ), (4.17)

and it follows that for representation R = (k), cf. (4.3):

b(k)

b•
= C••(k)(q

−1
1 , q−1

2 )
k
∏

j=1

(

1 −Qq
−1/2
1 q

−j+k+1/2
2

)

=
(

− q1√
q2

)k
k
∏

i=1

1 −Qq
−1/2
1 q

i−1/2
2

1 − q1q
i−1
2

.

Collecting the above ingredients, we find the following structure of the open
BPS state partition function

Zopen
BPS =

∞
∑

k=0

ak =
∞
∑

k=0

(−1)(f+1)kq
f
2
k(k−1)

2

(

x
q1√
q2

)k
k
∏

i=1

1 −Qq
−1/2
1 q

i−1/2
2

1 − q1q
i−1
2

.

(4.18)

We also find that the consecutive terms ak are related as

(1 − q1q
k
2 )ak+1 = (−1)f+1qfk q1√

q2
x(1 −Qq

−1/2
1 q

k+1/2
2 )ak. (4.19)
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Summing both sides over k gives rise to the inhomogeneous equation
(

1 − q1
q2
ŷ +

q1√
q2
x̂(−ŷ)f +Qq

1/2
1 x̂(−ŷ)f+1

)

Zopen
BPS = 1 − q1

q2
. (4.20)

This is the refined and quantum version of the conifold mirror curve (4.14).
We can also bring this equation to the homogeneous form at the expense of
increasing its degree in ŷ, by multiplying both sides with (1 − ŷ). Commut-
ing all ŷ operators to the right gives

(

1 −
(

1 +
q1
q2

)

ŷ +
q1
q2
ŷ2 +

q1√
q2
x̂(−ŷ)f +

(

Q
√
q1 + q1

√
q2

)

x̂(−ŷ)f+1

+Q
√
q1q2x̂(−ŷ)f+2

)

Zopen
BPS = 0. (4.21)

4.2 Refined mirror curves, S0(u, t) and quantizability

Once we found the refined quantum curves, we can easily determine the
classical refined mirror curves. Namely, much as in the knot theory exam-
ples, we can find them in two ways. First, they arise as q2 → 1 limit of
the quantum curves. Secondly, they can be determined by the saddle point
analysis. As we will see momentarily, both methods consistently give the
same result. The limit q2 → 1 of the C

3 quantum curve (4.12) leads to the
following refined mirror curve

Aref(x, y; q1) = 1 − q1y + q1x(−y)f . (4.22)

Similarly, the refined mirror curve for the conifold can be obtained form
(4.20) and takes the form

Aref(x, y; q1) = 1 − q1y + q1x(−y)f +Q
√
q1 x(−y)f+1. (4.23)

By looking at the form of this refined A-polynomial, a careful reader will rec-
ognize a close relation with the example of the unknot discussed in Section 3.
Indeed, a simple change of variables

Unknot Conifold
x �→ (−1)f+1t−2xyf

y �→ (−t)− 1
2 y

(4.24)

relates refined A-polynomials (3.152) and (4.23), provided that we identify
q1 = −t as in (4.7) that the Kähler parameter of the conifold is tuned to a
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special value:

Q = it−
3
2 . (4.25)

Note, the transformation (4.24) preserves the holomorphic symplectic form
Ω = i

�

dx
x ∧ dy

y on C
∗ × C

∗ relevant to quantization.

To confirm that the same refined curves (4.22) and (4.23) arise from the
saddle point analysis we follow the strategy of Section 3.3.3, where we dis-
cussed analogous curves coming from knot theory examples. Specifically,
much like in (3.166), we wish to approximate the BPS partition functions
Zopen

BPS in (4.10) and (4.18) by the integral

Zopen
BPS ∼

∫

dz e
1
�
(V (z,x;q1)+O(�)). (4.26)

As the computation is analogous for C
3 and the conifold, we present it

just in the latter case; the result for C
3 is easily obtained by setting Q = 0.

Therefore, using the conifold amplitude in the form (4.18) and the expansion
of the quantum dilogarithm given in (3.154), we find

V (z, x; q1) = (log z)
(

πi(f + 1) + log xq1
)

+
f

2
(log z)2

+ Li2(q1z) − Li2(Qq−1/2
1 z) − Li2(q1) + Li2(Qq−1/2

1 ).

The saddle point equation ∂zV |z=z0 = 0, written in the exponential form
1 = exp(z∂zV |z=z0), leads to the condition

1 = −xq1(−z0)f 1 −Qz0q
−1/2
1

1 − z0q1
. (4.27)

On the other hand, from the relation between y and S0 ≡ V we get

y = eS′
0 = ex∂xV = z0. (4.28)

Eliminating z0 from the above two equations we find

Aref(x, y; q1) = 1 − q1y + q1x(−y)f +Q
√
q1 x(−y)f+1. (4.29)

This result indeed reproduces the refined A-polynomial for the conifold
(4.23), and setting Q = 0 gives the refined curve for the C

3 geometry
obtained in (4.22).
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We also note that the two equations (4.27) and (4.28) can be rewritten
in the form

⎧

⎨

⎩

x = x(z0) = −(−z0)−f q−1
1 −z0

1−Qz0q
−1/2
1

,

y = y(z0) = z0.
(4.30)

This is a parametric form of the refined mirror curve, and for q1 = 1 it
agrees with the parametrization considered in [19], where such a represen-
tation was used to find the (unrefined) quantum curve. Nonetheless, the
framework of [19] cannot be applied to the present case since it works only
if we start from the unrefined classical curve, and upon quantization intro-
duce a single quantum parameter q = q1 = q2. On the other hand, for the
purposes of the present paper, we would like to keep the classical parameter
q1 fixed in (4.30), and perform quantization with respect to another (quan-
tum) parameter q2; this is a different quantization problem compared to the
one considered in [19].

We also note, that in fact it is possible to construct a deformed classical
curve, whose associated closed string amplitudes (computed by the ordinary
Eynard–Orantin topological recursion [22]) would coincide with refined topo-
logical string amplitudes. Such curves have been constructed in [77–79] for
toric manifolds without compact 4-cycles, and in that case a classical defor-
mation parameter was identified as β = −ε1/ε2. For example, for C

3 such a
β-deformed mirror curve can be written as [79]:

A(x, y;β) = x2y − (1 + y)1+β , (4.31)

so that for β = 1 it reduces to the mirror curve of C
3 in framing 1

2 . However,
this curve is completely different than the refined curve which we found
now in (4.22). It is desirable to understand the relation between these two
deformed classical curves, and between the two corresponding quantization
schemes.

Having found the refined mirror curves, we can finally determine the lead-
ing free energy, given by the integral S0(x, q1) =

∫

log y dx
x on an appropriate

curve. For C
3, we integrate over the curve (4.22). The explicit expression

in terms of the variable x can be written in framing f = 0, so that

S0(x, q1; f = 0) = −(log x)(log q1) − Li2(−q1x). (4.32)
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In this case, we also clearly see a singularity at q1 → 0. For general framing
we can express the exact answer in terms of y variable

S0(x, q1; f) = −f
2

(log y)2 + (log y)(log(1 − yq1)) + Li2(yq1). (4.33)

In our next example, namely the conifold, the free energy S0(x, q1) is a
Q-deformation of the C

3 result. An explicit expression in terms of the vari-
able x can again be given in framing f = 0, so that

S0(x, q1; f = 0) = −(log x)(log q1) − Li2(−q1x) + Li2

(

− Qx
√
q1

)

. (4.34)

In this case we also clearly see a singularity as q1 → 0. For general framing,
we can express the exact answer in terms of the variable y:

S0(x, q1; f) = −f
2

(log y)2 + (log y)

⎛

⎝log
1 − yq1

1 − yQ√
q1

⎞

⎠ + Li2(yq1) − Li2

(

− Qy
√
q1

)

.

(4.35)

Finally, let us comment on the quantizability of the refined classical curves
which we found in this section. These curves are, in a sense, more general
than the refined A-polynomials for knots analyzed in Section 3. This is so
because, apart from the deformation parameter q1, they in general depend
on Kähler parameters Qi. Therefore, the quantizability conditions should
impose some constraints on q1 as well as on Qi, and this is indeed what
happens.

Much as in the analysis of the refined A-polynomials for knots, we can con-
sider the quantization condition (3.202). To this end, we need to construct
face polynomials f(z) for all faces of Newton polygons for BPS quantum
curves. Such Newton polygons, for both C

3 and the conifold, are shown in
figure 10. These polygons coincide in refined and unrefined cases. In fact,

Figure 10: Newton polygons for refined (black dots) and unrefined (white
dots) A-polynomials, for C

3 (left) and conifold (right).
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they are quite simple, as each face contains only two lattice points, so that
all face polynomials f(z) are linear in z. For example, for C

3 they look like

z − q1, z + (−1)fq1, z − (−1)f . (4.36)

Therefore, in the refined C
3 case, we immediately conclude that meeting

the constraint (3.202) requires q1 to be a root of unity, much as in the knot
theory examples, where the deformation parameter t was forced to be a root
of unity. In the conifold case, we find that both q1 and Q must be roots
of unity. This imposes an interesting condition on the Kähler parameter:
logQ must be a pure imaginary rational number. We expect that similar
conditions arise for refined mirror curves of general manifolds, i.e., q1 and
all Kähler parameters Qi in general are required to be roots of unity.

4.3 Refinement as a twisted mass parameter

Now, let us discuss the physical interpretation of the general setup con-
sidered in this section and the corresponding interpretation of the classical
action S0(u, t).

As we already reviewed in the beginning of this section, compactification
of type II string theory on a toric Calabi–Yau 3-fold X is a natural arena
for a “geometric engineering” of N = 2 supersymmetric gauge theories in
the remaining four space-time dimensions. In this setup, BPS states of the
“effective” four-dimensional gauge theory are simply the closed BPS states
from the vantage point of the Calabi–Yau 3-fold X. Moreover, counting
refined closed BPS states means that, from the viewpoint of the 4d N = 2
theory, we keep track of their spin j3.

Much of our interest comes from counting open refined BPS states in a
slight generalization of this setup, with a D4-brane added:

space-time: R
4 × X
∪ ∪

D4-brane: R
2 × L

(4.37)

Since the extra D4-brane here is supported on a special Lagrangian sub-
manifold L ⊂ X, it preserves half of the supersymmetry and, as explained
in [34], yields a “geometric engineering” of a half-BPS surface operator in
N = 2 gauge theory on R

4 (see [32,80,81] for a purely field theoretic defini-
tion of surface operators). In a special case when X is the conifold and LK

is the Lagrangian submanifold associated to a knot K, the system (4.37)
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becomes identical to the physical setup (3.32) discussed in Section 3, after
compactification on a circle from M-theory to type IIA string theory.

From the viewpoint of the N = 2 gauge theory on R
4, the generating func-

tion of open BPS invariants Zopen
BPS that plays a central role in this section

can be interpreted as the instanton partition function of the gauge theory in
the presence of a surface operator [34, 82–84], much like its “closed” coun-
terpart Zclosed

BPS is the K-theory version of the equivariant instanton count-
ing on R

4 without surface operators [12, 85]. Let SO(2)1 × SO(2)2 be the
rotation symmetry of R

4 preserved by the surface operator in (4.37), such
that SO(2)2 is the rotation symmetry along the R

2 ⊂ R
4 and SO(2)1 is the

rotation symmetry of its normal bundle. Note, from the viewpoint of the
Euclidean N = (2, 2) theory on the surface operator, SO(2)2 is a rotation
symmetry (part of the two-dimensional Poincaré group), while SO(2)1 is
a global R-symmetry. In fact, both symmetries in this brane system were
already discussed in Section 3.1.1, where we gave them a name U(1)P and
U(1)F , respectively. In particular, the global R-symmetry is:

U(1)F
∼= SO(2)1 (4.38)

If, as usual, we denote by ε1 and ε2 the equivariant parameters for SO(2)1
and SO(2)2, respectively, then the generating functions Zclosed

BPS and Zopen
BPS

are known to have the following form; see, e.g., [86, 87]:

Zclosed
BPS (ε1, ε2) = exp

( 1
ε1ε2

F(ε1, ε2)
)

(4.39)

= exp
( 1
ε1ε2

F (0) +
ε1 + ε2
ε1ε2

F (1) + · · ·
)

and

Zopen
BPS (ε1, ε2) = exp

( 1
ε2
˜W + · · ·

)

, (4.40)

where F (0) is the prepotential of the four-dimensional N = 2 theory and ˜W
is the twisted superpotential of the two-dimensional N = (2, 2) theory on
the surface operator. In particular, as explained in [83] (see also [84,88,89]),
the twisted superpotential is given by the integral of the Seiberg–Witten
differential vdu = log y dx

x over a path:

˜W(u) =
∫ u

vdu (4.41)

on the curve A(x, y) = 0.
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Now, let us explain how our discussion in this paper compares to the
Nekrasov–Shatashvili limit and its relation to quantum integrable systems.
There are some similarities and some differences, and both are important.
First, the limit considered in [13] in our notations is ε1 = 0 with ε2 playing
the role of the quantization parameter (in the quantum integrable system).
This is very similar to the limit (2.5) and the discussion in this section,
where � = −ε2 also plays the role of the quantization parameter and the
only essential difference is that ε1 (equivalently, q1 = eε1) is allowed to take
any finite values, so that for small � we have t = − q1

q2
∼ −q1. In this respect,

what we consider can be viewed as a refinement of the Nekrasov–Shatashvili
limit; cf. figure 9.

There is an important difference, however, which has to do with the fact
that [13] consider the partition function of the 4d gauge theory or, from the
vantage point of the Calabi–Yau 3-fold X, the generating function of closed
BPS invariants (4.39). In particular, the Yang-Yang function of the quan-
tum integrable system is identified with the following limit of the instanton
partition function in the absence of any surface operators [13]:

lim
ε1→0

ε1 logZclosed
BPS (ε1, ε2) =

1
ε2
F (0) + F (1) + O(ε2). (4.42)

This expansion should not be confused with a similar-looking expansion in
(4.40), which describes the behavior of the open BPS partition function or,
from the gauge theory viewpoint, represents the contribution of a surface
operator. In particular, the leading term F (0) in (4.42) depends only on the
closed string moduli, whereas a similar leading term ˜W in (4.40) depends on
both open and closed string moduli. Thus, the variable u in our discussion
or, equivalently, x = eu is an open string modulus.

Keeping these remarks in mind, we can express the refined volume con-
jecture (2.6b) as a statement that the free energy logZopen

BPS (q1, q2) has a
first-order pole in the limit (2.5):

logZopen
BPS (ε1, ε2) =

S0(u, t)
�

+ · · ·

as q2 = e� → 1 and
q1
q2

= −t = finite , (4.43)

where we used (4.7). This, at the same time, is both open and refined gener-
alization of (4.42). In particular, in the special case t = −1 (or, equivalently,
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q1 = 1), we recover (4.40), with the twisted superpotential

˜W(u) = S0(u,−1). (4.44)

Therefore, we conclude that S0(u, t) which appears in the refined volume
conjecture (2.6b) is a “refinement” of the twisted superpotential in the N =
(2, 2) surface operator theory15 with a twisted mass for the global symmetry
U(1)F (= rotation in the plane orthogonal to the surface operator), cf.
(3.31):

m̃F = log(−t). (4.45)

As a simple example, let us consider a two-dimensional N = (2, 2) the-
ory with a tower of Kaluza–Klein states obtained by reducing a three-
dimensional N = 2 chiral multiplet on a circle. The twisted superpotential
of this theory has the familiar form ˜W = Li2(−tx), where we assumed that
the 3d chiral multiplet on R

2 × S1 has charge +1 with respect to both U(1)F

as well as the global U(1) symmetry with twisted mass log x. Therefore, in
the twisted superpotential (4.34) we can recognize a contribution of two chi-
ral multiplets. Similarly, in the expression (4.32) for the tetrahedron (or C

3)
we recognize contribution of a single chiral multiplet. In general, the num-
ber of chiral multiplets is equal to the number of dilogarithms in S0(u, t),
and the charges of chiral multiplets are simply the powers of t and x in the
arguments of these dilogarithms. It is easy to recognize such contributions,
e.g., in (3.166).

To summarize, each chiral multiplet in the D4-brane theory (4.37) (or, to
be more precise, in the five-brane theory on a circle, cf. (3.32)) contributes
to the twisted chiral superpotential a dilogarithm term:

tetrahedron Δ ↔ chiral φ ↔
twisted superpotential
S0(Δ; �u, t) = Li2(e�n·�u+nF m̃F ),

where nF is the charge of the chiral multiplet under the global R-symmetry
(4.38) and �n denotes the charges of the chiral multiplet under all other flavor
symmetries (with twisted mass parameters �u). Here, we also identified the
example of a single chiral multiplet (or C

3) discussed in the present section
with a single tetrahedron in examples coming from 3-manifolds; cf. [19,34,
90–92].

More generally, one can consider a three-dimensional N = 2 theory T
that contains Nf chiral multiplets φi, i = 1, . . . , Nf with charges ni

a under

15To be more precise, it is a three-dimensional N = 2 theory on a circle that is relevant
to the K-theoretic version of the vortex partition function [34].
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Table 7: Values of ni
F in prominent examples.

∣

∣

∣ Model Values of ni
F

∣

∣

∣

∣

∣

∣ Unknot 0, 3, 3
∣

∣

∣

∣

∣

∣ Tetrahedron 1
∣

∣

∣

∣

∣

∣ Conifold 1, −1
2

∣

∣

∣

global flavor symmetries U(1)a, a = 1, . . . , N . This could be either a low-
dimensional effective field theory in brane systems (3.32) and (4.37), or
a three-dimensional N = 2 theory TM associated to a triangulation of a
3-manifold M ,

M =
⋃

i

Δi. (4.46)

In either case, the refinement is achieved by assigning each chiral multiplet
φi (resp. each tetrahedron Δi) one extra charge ni

F that describes how
φi transforms under the R-symmetry U(1)F , which may already be a part
of

∏

a U(1)a. Then, using (4.45), we conclude that passing from unrefined
theory to refined theory has the effect of introducing the t-dependence in the
classical “volume functional” (= twisted superpotential) via a simple rule:

˜W(xi) =
∑

i

Li2
(
∏

a

xni
a

a

)

� S0(xi, t) =
∑

i

Li2
(

(−t)ni
F

∏

a

xni
a

a

)

(4.47)

modulo logarithmic ambiguities that depend on choices of framing, polariza-
tion, etc. In other words, at least in such models, the essential information
about the refinement is contained in a set of charges {ni

F } that need to be
assigned to chiral multiplets or, in the language of 3-manifolds, to tetrahedra
Δi. While many examples are considered in the present paper (see table 7),
a systematic rule for assigning {ni

F } will be presented in the follow-up work.
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Appendix A Miscellaneous results on knot invariants

A.1 Macdonald polynomials

Let pn be the power sum symmetric function in x = (x1, x2, . . .):

pn :=
∞
∑

i=1

xn
i . (A.1)

For any symmetric functions f and g, a scalar product is introduced as:

〈f(p), g(p)〉q1,q2 := f(p∗)g(p)|constant part, p∗n := n
1 − qn

1

1 − qn
2

∂

∂pn
. (A.2)

with p = (p1, p2, . . .) and p∗ = (p∗1, p∗2, . . .). The Macdonald function PR(x;
q1, q2) is uniquely specified by the following orthogonality condition and
normalization:

〈PR(x; q1, q2), PQ(x; q1, q2)〉q1,q2 = 0, (R �= Q) (A.3)

PR(x; q1, q2) =
∑

Q≤R

uRQ(q1, q2)mR(x), uRR(q1, q2) = 1 (A.4)

where mR(x) is the monomial symmetric function:

mR(x) :=
∑

σ

x
Rσ(1)

1 x
Rσ(2)

2 · · · , (A.5)
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and uRQ(q1, q2) ∈ Q(q1, q2). The dominance partial ordering R > Q denotes
the condition: |R| = |Q| and R1 + · · · +Ri ≥ Q1 + · · · +Qi for all i. The
scalar product of the Macdonald functions is given by

〈PR(x; q1, q2), PQ(x; q1, q2)〉q1,q2 =
∏

i,j

1 − qRi−j+1
1 q

Rt
j−i

2

1 − qRi−j
1 q

Rt
j−i+1

2

. (A.6)

Explicit form of the Macdonald function PR(x; q1, q2)

Using the definitions above, the Macdonald functions are determined explic-
itly. Up to r ≤ 3, the Macdonald functions PSr+�,r−�(x; q1, q2) and PΛr+�,r−�

(x; q1, q2) are

PS1(x, q1, q2) = p1,

PS2(x, q1, q2) =
(1 + q1)(1 − q2)

1 − q1q2

p2
1

2
+

(1 − q1)(1 + q2)
1 − q1q2

p2

2
,

PS1,1(x, q1, q2) =
p2
1

2
− p2

2
,

PS3(x; q1, q2) =
(1 + q1)(1 − q31)(1 − q2)2

(1 − q1)(1 − q1q2)(1 − q21q2)
p3
1

6
+

(1 − q31)(1 − q22)
(1 − q1q2)(1 − q21q2)

p1p2

2

+
(1 − q1)(1 − q21)(1 − q32)

(1 − q2)(1 − q1q2)(1 − q21q2)
p3

3
,

PS2,1(x; q1, q2) =
(1 − q2)(2 + q1 + q2 + 2q1q2)

1 − q1q22

p3
1

6
+

(q2 − q1)(1 + q2)
1 − q1q22

p1p2

2

− (1 − q1)(1 − q32)
(1 − q2)(1 − q1q22)

p3

3
,

PΛ1(x, q1, q2) = p1,

PΛ2(x, q1, q2) = PS1,1(x, q1, q2), PΛ1,1(x, q1, q2) = PS2(x, q1, q2),

PΛ3(x; q1, q2) =
p3
1

6
− p1p2

2
+
p3

3
,

PΛ2,1(x; q1, q2) = PS2,1(x; q1, q2) (A.7)

Using SF,16 we can generate the explicit expression of the Macdonald poly-
nomials for more examples.

16SF is package of Maple program created by J. Stembridge, which is available from
http://www.math.lsa.umich.edu/∼jrs/maple.html#SF/.
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Specialization MR(q�
2 ; q1, q2)

Specializing x = q�
2 (
j := (N + 1)/2 − j, j = 1, . . . , N), we find the poly-

nomial MR(q�
2 ; q1, q2) := PR(x = q�

2 ; q1, q2) as (3.35). Up to r ≤ 3, the Mac-
donald functions MSr+�,r−�(q�

2 ; q1, q2) and MΛr+�,r−�(q�
2 ; q1, q2) are listed as:

MS1(q�
2 ; q1, q2) =

A
1
2 −A− 1

2

q
1
2
2 − q

− 1
2

2

,

MS2(q�
2 ; q1, q2) =

(

A
1
2 −A− 1

2

)

(

A
1
2 q

1
2
1 −A− 1

2 q
− 1

2
1

)

(

q
1
2
2 − q

− 1
2

2

)(

q
1
2
1 q

1
2
2 − q

− 1
2

1 q
− 1

2
2

) ,

MS1,1(q�
2 ; q1, q2) =

(

A
1
2 −A− 1

2

)

(

A
1
2 q

− 1
2

2 −A− 1
2 q

1
2
2

)

(

q
1
2
2 − q

− 1
2

2

)

(

q2 − q−1
2

)

,

MS3(q�
2 ; q1, q2) =

(

A
1
2 −A− 1

2

)

(

A
1
2 q

1
2
1 −A− 1

2 q
− 1

2
1

)

(

A
1
2 q1 −A− 1

2 q−1
1

)

(

q
1
2
2 − q

− 1
2

2

)(

q
1
2
1 q

1
2
2 − q

− 1
2

1 q
− 1

2
2

)(

q1q
1
2
2 − q−1

1 q
− 1

2
2

) ,

MS2,1(q�
2 ; q1, q2) =

(

A
1
2 −A− 1

2

)

(

A
1
2 q

1
2
1 −A− 1

2 q
− 1

2
1

)(

A
1
2 q

− 1
2

2 −A− 1
2 q

1
2
2

)

(

q
1
2
2 − q

− 1
2

2

)2 (

q
1
2
1 q2 − q

− 1
2

1 q−1
2

)
,

MΛ1(q�
2 ; q1, q2) = MS1(q�

2 ; q1, q2),

MΛ2(q�
2 ; q1, q2) = MS1,1(q�

2 ; q1, q2), MΛ1,1(q�
2 ; q1, q2) = MS2(q�

2 ; q1, q2),

MΛ3(q�
2 ; q1, q2) =

(

A
1
2 −A− 1

2

)

(

A
1
2 q

− 1
2

2 −A− 1
2 q

1
2
2

)

(

A
1
2 q−1

2 −A− 1
2 q2

)

(

q
1
2
2 − q

− 1
2

2

)

(

q2 − q−1
2

)

(

q
3
2
2 − q

− 3
2

2

) ,

MΛ2,1(q�
2 ; q1, q2) = MS2,1(q�

2 ; q1, q2), (A.8)

where A := qN
2 , and the power sum symmetric function pn is

pn =
A

n
2 −A−n

2

q
n
2
2 − q

−n
2

2

. (A.9)



“ATMP-16-6-A3-FUJ” — 2013/5/25 — 9:47 — page 1754 — #86
�

�

�

�

�

�

�

�

1754 HIROYUKI FUJI ET AL.

A.2 Consistency check of the gamma factor (3.47) and (3.48)

Here, we check the consistency of the gamma factors (3.47) and (3.48) by
applying the identity of the q-hypergeometric function. Plugging γSr+�,r−�

SrSr

of (3.47) into the consistency condition for Zref
SU(N)(S

3, T 2,1
Sr ; q1, q2) = Zref

SU(N)

(S3,©Sr ; q1, q2) in (3.43), we expect the following relation:

PSr(q�
2 ; q1, q2) =

(A; q1)r

(q2; q1)r
A− r

2 q
r
2
2

=
r
∑

�=0

(q2; q1)�(q1; q1)r(A; q1)r+�(q−1
2 A; q1)r−�

(q1; q1)�(q2; q1)r(q1q2; q1)r+�(q1; q1)r−�

(1 − q2q
2�
1 )

(1 − q2)
(−1)r−�

×A− r
2 q

(r−�)(r+�+1)
2

1 q
3r
2
−�

2 . (A.10)

Here, we quote an identity equation (2.8.1) of [93]:

(a; q)r(b; q)r(c; q)r

(q; q)r(aq/b; q)r(aq/c; q)r

=
(λbc/a; q)r

(qa2/λbc; q)r

r
∑

�=0

(λ; q)�(1 − λq2�)(λb/a; q)�(λc/a; q)�(aq/bc; q)�

(q; q)�(1 − λ)(aq/b; q)�(aq/c; q)�(λbc/a; q)�

× (a; q)r+�(a/λ; q)r−�

(λq; q)r+�(q; q)r−�

(a

λ

)�
. (A.11)

Choosing q = q1, λ = q2 and a = A in the above identity and taking b, c→ 0
limit, we find

(A; q1)r

(q1; q1)r
(−1)rA−2rq

−r(r+1)
1 (bc)−r

= (−1)rA−2rq
− r(r+1)

2
1 qr

2(bc)−r
r
∑

�=0

(q2; q1)�(1 − q2q
2�
1 )

(q1; q1)�(1 − q2)

× (A; q1)r+�(q−1
2 A; q1)r−�

(q2q1; q1)r+�(q1; q1)r−�
(−1)�q

− �(�+1)
2

1 q−�
2 ,

where (x/b; q)n → (−x)nq
n(n−1)

2 b−n and (xb; q)n → 1 under b→ 0 limit. This
coincides with (A.10) and proves the gamma factor for R = Sr.
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For the γ factor for the anti-symmetric representation Λr, we expect the
following relation:

PΛr(q�
2 ; q1, q2) = (−1)rAr/2q

r/2
2

(A−1; q2)r

(q2; q2)r

=
r
∑

�=0

(q1; q2)�(q2; q2)r+�(A−1; q2)r+�(q−1
1 A−1; q2)r−�

(q2; q2)�(q1q2; q2)r+�(q2; q2)r+�(q2; q2)r−�

× (1 − q1q
2�
2 )

(1 − q1)
(−1)�A

3r
2 qr

1q
�(�−1)−r(r−2)

2
2 . (A.12)

Choosing q = q2, λ = q1, and a = A−1 and taking b, c→ ∞ in (A.11), we
also find the same identity as (A.12).

A.3 Wentzel-Kramers-Brillouin analysis

A.3.1 Another expression for Pn(T 2,2p+1; q, t)

As an analogy with an expression for the colored Jones polynomial for
T 2,2p+1, we find a conjecture for yet another expression of Pn(T 2,2p+1; q, t)
which is consistent with (3.97).

In [94–97], the expression for the colored Jones polynomial for (2, 2p+ 1)
torus knots is given as:

Jn(T 2,2p+1; q) = qp(n2−1)
∑

kp≥···≥k2≥k1≥0

(−1)kpq−
kp(kp+1)

2
(q1−n; q)kp(q1+n; q)kp

(q; q)kp

×
p−1
∏

a=1

q−(ka−kp)(ka−kp−1)+ka(ka−ka+1)

[

ka+1

ka

]

q

, (A.13)

where the q-binomial coefficient is defined by

[

n
m

]

q

:=
(q; q)n

(q; q)n−m(q; q)m
. (A.14)
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By comparison with (3.97) for some lower orders in r and p, we can
introduce the t deformation as follows:

Pn=r+1(T 2,2p+1; q, t)

= q(p−1)r(r+2)
∑

i+j≤r

[

∑

r−i=kp≥kp−1≥···≥k2≥k1≥0

(

qr+(r+1)(i+j)+
j(j+1)

2 t2pi+3j

× [r]′!
[i]′![j]′![r − i− j]′!

p−1
∏

a=1

t2kaq−(ka−kp)(ka−kp−1)qka(ka−ka+1)

× [ka+1]′!
[ka]′![ka+1 − ka]′!

)]

. (A.15)

where

[n]′! = [1]′[2]′ · · · [n− 1]′[n]′, [n]′ =
qn − 1
q − 1

= 1 + q + · · · + qn−1.

Furthermore, we can simplify the expression using the Cauchy’s
q-binomial identity:

(−xq; q)k =
k
∑

j=0

xjq
j(j+1)

2
(q; q)k

(q; q)j(q; q)k−j
. (A.16)

Specializing x = qr+1t3 and k = r − i in the above identity, we find

Pn=r+1(T 2,2p+1; q, t)

= q(p−1)r(r+2)
∑

r=kp≥kp−1≥···≥k2≥k1≥i≥0

[

qr+(r+1)it2pi (−t3qr+2; q)r−i(q; q)r

(q; q)i(q; q)k1−i

×
p−1
∏

a=1

t2(ka−i)q−(ka−kp)(ka−kp−1)q(ka−i)(ka−ka+1) 1
(q; q)ka+1−ka

]

. (A.17)

Now let us study the asymptotic behavior of (A.17). In � → 0 limit, we
find the following expansion:

Pn=r+1(T 2,2p+1; q, t) ∼
∫ p−1

∏

α=0

dzα e
1
�
(V(2,2p+1)(zα,x,t))+O(�), (A.18)
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V(2,2p+1)(�z, x, t) = (p− 1)(log x)2 + 2p(log t) · (log z0) + (log x) · (log z0)

+
p−1
∑

a=1

[

2(log t) · (log(zaz−1
0 )) − (log zax−1)2 + (log zaz−1

0 ) · (log zaz−1
a+1)

]

+ Li2(−t3x) − Li2(−t3x2z−1
0 ) − Li2(x) + Li2(z0) + Li2(z1z−1

0 )

− pLi2(1) +
p−1
∑

a=1

Li2(za+1z
−1
a ), (A.19)

where ka = 1
�

log za for a = 1, . . . p, i = 1
�

log z0, and r = 1
�

log x.

The critical point of this potential is determined by

1 = exp
[

zα
∂V(2,2p+1)(�z, x, t)

∂zα

]

, (α = 0, . . . , p− 1). (A.20)

Combining a condition y = exp
(

x∂V(2,2p+1)/∂x
)

, we find the following set
of algebraic equations for zα:

1 =
t2x2(z1 − z0)

z1(z0 − 1)(t3x2 + z0)
, 1 =

t2x(x− zp−1)
zp−1(zp−1 − zp−2)

,

1 =
t2x2(zp−2 − zp−1)

zp−1zp−2(zp−3 − zp−2)
, . . . , 1 =

t2x2(za − za+1)
zaza+1(za−1 − za)

, . . . ,

1 =
t2x2(z1 − z2)
z1z2(z0 − z1)

, y =
(−1 + x)z2

1z
2
2 · · · z2

p−1(t3x2 + z0)2

(1 + t3x)(x− zp−1)
. (A.21)

After eliminating zα (α = 0, . . . , p− 1), we obtain the same refined
A-polynomials AT 2,2p+1(x, y; t) as given in table 3, which are computed on
the basis of (3.61) for p = 1, 2, 3, 4, 5.

A.3.2 Asymptotic limit of PSn−1

DGR (T 2,2p+1; a, q, t) with a = q2t2

As we discussed in Section 3.3.4, for the (colored) superpolynomials in grad-
ing conventions of [27], the right limit to consider is

q2t2 → 1, (A.22)

with x = qn and t kept fixed. In other words, in this grading conventions,
the combination log(qt) plays the role of a small expansion parameter � → 0.
On the other hand, if we think of the HOMFLY variable a as a = eN� (as
opposed to a = qN ), then it might be natural to consider a specialization
of the superpolynomial to a = (e�)2 = q2t2 (instead of a = q2). With this
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motivation in mind, here we consider the “large color” asymptotics of the
superpolynomial specialized to a = q2t2.

Much as in (3.166), we find

PSn−1

DGR (T 2,2p+1; a = q2t2, q, t) ∼
∫

dz e
1
�

(

V DGR′
(2,2p+1)

(z,x;t)+O(�)
)

, (A.23)

with the potential function

V DGR′
(2,2p+1)(z, x; t) = Li2(−t3) − Li2(x) + Li2(−tx) + Li2(xz−1)

− Li2(−t3xz−1)] + Li2(z) − Li2(zt−2) + Li2(xzt−2)

− Li2(−txz) − π2

6
+ (log t) · (log zx−2)

+ (2p+ 1)(log xz−1) · (log(−x 1
2 z

1
2 )). (A.24)

From this potential function, equations (3.168) and (3.171) yield the equa-
tions for the saddle point that dominates the integral:

1 =
t(t2 − z0)z−2p−1

0 (−x+ z0)(1 + txz0)
(−1 + z0)(t3x+ z0)(t2 − xz0)

,

y(x, t) =
(−1 + x)x2p+1(t3x+ z0)(1 + txz0)

(1 + tx)(x− z0)(−t2 + xz0)
. (A.25)

Eliminating z0, we obtain the refined A-polynomial. In Appendix C the
refined A-polynomial for p = 1 is described explicitly, with Newton polygon
presented in figure C7, and matrix form given in figure C14 (right).

The saddle point equations (A.25) can be easily solved near t = −1. Up
to the second order, we find the approximate solution for y(x, t) in the form:

y(x, t) = −x2p+1

(

1 −
x+ 2ξj − 3xξj − 4x2ξj + 3x3ξj + xξ2j

(−1 + x)(x− ξj)(−1 + xξj)
(t+ 1)

)

+ O(1 + t)2. (A.26)

Note that the leading order term in this equation encodes the unrefined
curve y + x2p+1 = 0, which agrees with t = −1 specialization of the second
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equation in (A.25). From (2.7), one also finds the refined classical action
S0(u, t):

S0(u, t) = S0(u) +
∞
∑

a=1

(1 + t)aS
(a)
0 (u),

S0(u) =
1

2(2p+ 1)
log(−x2p+1)2,

S
(1)
0 (u) = log

(1 − x)x2

(x− ξj)3(1 − xξj)3
,

S
(2)
0 (u) =

1
2
S

(1)
0

+
(

−7x2 − 8px2 + 6x3 + 6px3 − 7xξj − 2pxξj + 21x2ξj + 6px2ξj

− 13x3ξj + 10px3ξj + 3x4ξj − 6px4ξj + 5ξ2j + 10pξ2j − 18xξ2j
− 12pxξ2j + 50x2ξ2j + 16px2ξ2j − 54x3ξ2j − 24px3ξ2j + 11x4ξ2j

− 2px4ξ2j − 19xξ3j − 26pxξ3j + 33x2ξ3j + 30px2ξ3j − 25x3ξ3j

− 14px3ξ3j + 15x4ξ3j + 18px4ξ3j + 5x2ξ4j + 16px2ξ4j

− 6x3ξ4j − 18px3ξ4j
)

/
(

2(1 + 2p)(−1 + x)(x− ξj)2(−1 + xξj)2
)

(A.27)

and the general form of the classical action:

S0(u, t) =
1

2(2p+ 1)
(

log(−x2p+1)
)2 − log(−t) log

(

(1 − x)x2

(x− ξj)3(1 − xξj)3

)

+R(x, t). (A.28)

Appendix B Proof of the gamma factor (3.47) and (3.48),
by Hidetoshi Awata

Let PR

[

c 1−L
1−q2

]

be the Macdonald function PR(x; q1, q2) with the specializa-

tion pn :=
∑∞

i=1 x
n
i = cn 1−Ln

1−qn
2

. The Pieri formula [51](Ch. VI.6) gives

PSr(x; q1, q2)PSr(x; q1, q2) =
r
∑

�=0

NSr+�,r−�

SrSr PSr+�,r−�(x; q1, q2), (B.1)

PΛr(x; q1, q2)PΛr(x; q1, q2) =
r
∑

�=0

NΛr+�,r−�

ΛrΛr PΛr+�,r−�(x; q1, q2) (B.2)
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with

NSr+�,r−�

SrSr :=
r−�
∏

j=1

1 − qj−1
1 q2

1 − qj
1

·
r+�
∏

j=2�+1

1 − qj−1
1 q22

1 − qj
1q2

·
r
∏

j=�+1

(

1 − qj
1

1 − qj−1
1 q2

)2

,

(B.3)

NΛr+�,r−�

ΛrΛr :=
�
∏

i=1

1 − q1q
i−1
2

1 − qi
2

·
2�
∏

i=�+1

1 − qi
2

1 − q1q
i−1
2

. (B.4)

Note that above NSr+�,r−�

SrSr and NΛr+�,r−�

ΛrΛr are invariant under the transfor-
mation q1 → q−1

1 and q2 → q−1
2 . The specialization formula [51](Ch. VI.6)

PR

[

c
1 − L

1 − q2

]

= cr
∏

(i,j)∈R

qi−1
2 − qj−1

1 L

1 − qRi−j
1 q

Rt
j−i+1

2

(B.5)

yields

PSr+�,r−�

[

c 1−L
1−q2

]

PSr

[

c 1−L
1−q2

]

= cr
∏r−�

j=1(q2 − qj−1
1 L) ·

∏r+�
j=r+1(1 − qj−1

1 L) ·
∏r

j=r−�+1(1 − qj−1
1 q2)

∏2�
j=1(1 − qj−1

1 q2) ·
∏r+�

j=2�+1(1 − qj−1
1 q22)

,

PΛr+�,n−�

[

c 1−L
1−q2

]

PΛr

[

c 1−L
1−q2

]

= cr
∏r−�

i=1(qi−1
2 − q1L) ·

∏r+�
i=r+1(qi−1

2 − L) ·
∏r

i=r−�+1(1 − qi
2)

∏2�
i=1(1 − qi

2) ·
∏r+�

i=2�+1(1 − q1qi
2)

.

Let

g� := c−r
r
∏

j=�+1

1 − qj−1
1 q2

1 − q−j
1

, (B.6)

g′� := c−r
r
∏

i=1

q1−i
2 ·

�
∏

i=1

1 − qi
2

1 − q−1
1 q1−i

2

, (B.7)

then we have
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Proposition.

PSr

[

c
1 − L

1 − q2

]

=
r
∑

�=0

g�N
Sr+�,r−�

SrSr PSr+�,r−�

[

c
1 − L

1 − q2

]

, (B.8)

PΛr

[

c
1 − L

1 − q2

]

=
r
∑

�=0

g′�N
Λr+�,r−�

ΛrΛr PΛr+�,r−�

[

c
1 − L

1 − q2

]

. (B.9)

Proof. First, let

f� := g�N
Sr+�,r−�

SrSr

PSr+�,r−�

[

c 1−L
1−q2

]

PSr

[

c 1−L
1−q2

]

= (1 − q2�
1 q2)

×
∏r

j=�+1(−qj
1)(1 − qj

1) ·
∏r−�

j=1(q2 − qj−1
1 L) ·

∏r+�
j=r+1(1 − qj−1

1 L)
∏r−�

j=1(1 − qj
1) ·

∏r+�
j=�(1 − qj

1q2)
,

(B.10)

f ′� := g′�N
Λr+�,r−�

ΛrΛr

PΛr+�,r−�

[

c 1−L
1−q2

]

PΛr

[

c 1−L
1−q2

]

= (−q1)�(1 − q1q
2�
2 )

r
∏

i=�+1

q1−i
2

×
∏r

i=r−�+1(1 − qi
2) ·

∏r−�
i=1(qi−1

2 − q1L) ·
∏r+�

i=r+1(qi−1
2 − L)

∏�
i=1(1 − qi

2) ·
∏r+�

i=� (1 − q1qi
2)

. (B.11)

The residues of f� and f ′� at q2 = q−k
1 and q1 = q−k

2 (� ≤ k ≤ �+ r), respec-
tively, are

−qk
1Resq2=qk

1
f� = q−kr

1 (q−�
1 − q�−k

1 )q(k+1)�
1

�
∏

j=1

(−q−j
1 ) ·

k−�
∏

j=1

(−qj
1)

×
∏r

j=1(−qj
1)(1 − qj

1)
∏�

j=1(1 − qj
1) ·

∏k−�
j=1(1 − qj

1)
·

×
∏r+k−�

j=k+1(1 − qj−1
1 L) ·

∏r+�
j=r+1(1 − qj−1

1 L)
∏r−�

j=1(1 − qj
1) ·

∏r+�−k
j=1 (1 − qj

1)
, (B.12)
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−qk
2Resq1=qk

2
f ′� = q−kr

2 (q−�
2 − q�−k

2 )
�
∏

i=1

(−qi
2) ·

k−�
∏

i=1

(−qi
2)

×
∏r

i=1 q
1−i
2 (1 − qi

2)
∏�

i=1(1 − qi
2) ·

∏k−�
i=1 (1 − qi

2)
·

×
∏r+k−�

i=k+1(qi−1
2 − L) ·

∏r+�
i=r+1(qi−1

2 − L)
∏r−�

i=1(1 − qi
2) ·

∏r+�−k
i=1 (1 − qi

2)
. (B.13)

Note that each second line (i.e., (B.12) and (B.13)) of the above two equa-
tions is symmetric under the replacement �↔ k − �. Thus one can show
that

Resq2=q−k
1

(f� + fk−�) = Resq1=q−k
2

(f ′� + f ′k−�) = 0. (B.14)

Next, let

f :=
r
∑

�=0

f�, f ′ :=
r
∑

�=0

f ′�. (B.15)

The residue of f at q2 = q−k
1 is

Resq2=q−k
1
f =

min(k,r)
∑

�=max(0,k−r)

Resq2=q−k
1
f�

=

⎡

⎢

⎣

 k
2
�

∑

�=max(0,k−r)

+
min(k,r)
∑

�=� k
2
�

⎤

⎥

⎦Resq2=q−k
1
f�

=
 k

2
�

∑

�=max(0,k−r)

Resq2=q−k
1

(f� + fk−�) = 0, (B.16)

and also Resq=t−kf ′ = 0. Here the floor function �x� denotes the largest
integer not greater than x and the ceiling function �x� denotes the smallest
integer not less than x. Furthermore, limq2→∞ f , limq1→∞ f ′ <∞. There-
fore, f and f ′ are constant in q2 and q1, respectively. However,

lim
q2→0

f = lim
q2→0

f0 = 1, lim
q1→∞ f ′ = lim

q1→∞ f ′0 = 1. (B.17)

Therefore, f = f ′ = 1. �
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Substituting c := (q2/L)
1
2 into (B.8) and (B.9) yields

PSr

⎡

⎣

L
1
2 − L− 1

2

q
1
2
2 − q

− 1
2

2

⎤

⎦ =
r
∑

�=0

g�N
Sr+�,r−�

SrSr PSr+�,r−�

⎡

⎣

L
1
2 − L− 1

2

q
1
2
2 − q

− 1
2

2

⎤

⎦ , (B.18)

PΛr

⎡

⎣

L
1
2 − L− 1

2

q
1
2
2 − q

− 1
2

2

⎤

⎦ =
r
∑

�=0

g′�N
Λr+�,r−�

ΛrΛr PΛr+�,r−�

⎡

⎣

L
1
2 − L− 1

2

q
1
2
2 − q

− 1
2

2

⎤

⎦ , (B.19)

where g� = γ�λ� and g′� = γ′�λ
′
� with

λ� := (L/q2)
r
2

r
∏

j=�+1

(−qj− 1
2

1 q
1
2
2 ), γ� :=

r
∏

j=�+1

q
j−1
2

1 q
1
2
2 − q

1−j
2

1 q
− 1

2
2

q
j
2
1 − q

− j
2

1

, (B.20)

λ′� := (L/qr
2)

r
2

�
∏

i=1

(−qi− 1
2

2 q
1
2
1 ), γ′� :=

�
∏

i=1

q
i
2
2 − q

− i
2

2

q
i−1
2

2 q
1
2
1 − q

1−i
2

2 q
− 1

2
1

. (B.21)

Note that γ� = γSr+�,r−�

SrSr , γ′� = γΛr+�,r−�

ΛrΛr . If we set L := qN
2 , then PR

[

L
1
2 −L− 1

2

q
1
2
2 −q

− 1
2

2

]

= MR(q�
2 ; q1, q2), λ� = λ

(+)

Sr+�,r−�(Sr, Sr) and λ′� = λ
(+)

Λr+�,r−�

(Λr,Λr). Hence we obtain

MSr(q�
2) =

r
∑

�=0

γSr+�,r−�

SrSr λ
(+)

Sr+�,r−�(S
r, Sr)NSr+�,r−�

SrSr MSr+�,r−�(q�
2 ; q1, q2),

(B.22)

MΛr(q�
2 ; q1, q2) =

r
∑

�=0

γΛr+�,r−�

ΛrΛr λ
(+)

Λr+�,r−�(Λr,Λr)NΛr+�,r−�

ΛrΛr MΛr+�,r−�(q�
2 ; q1, q2).

(B.23)

Appendix C Refined A-polynomials

In this appendix, we present detailed structure of refined A-polynomials
Aref(x, y; t) in various examples which we found in this paper: the unknot,
(2, 2p+ 1) torus knots, and the trefoil in DGR grading. In Appendix C.1, we
present Newton polygons for refined polynomials, as well as for their t = −1
limit. A red circle at position (i, j) in such a polygon represents a monomial
of the form ci,jx

iyj in the refined A-polynomial. Smaller yellow crosses
represent such monomials in the unrefined A-polynomial Aref(x, y;−1).
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In Appendix C.2, we present matrix form of refined A-polynomials. The
entry (i+ 1, j + 1) of such a matrix represents the coefficient ci,j in Aref

(x, y; t). Note that the role of rows and columns in Newton polygons and
matrices is exchanged. All these conventions are the same as in figure 7.

C.1 Newton polygons

Figure C1: Newton polygons for the unknot: refined (red circles) and unre-
fined (yellow crosses).

Figure C2: Newton polygons for trefoil, i.e., T 2,3 torus knot: refined (red
circles) and unrefined (yellow crosses).

Figure C3: Newton polygons for T 2,5 torus knot: refined (red circles) and
unrefined (yellow crosses).
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Figure C4: Newton polygons for T 2,7 torus knot: refined (red circles) and
unrefined (yellow crosses).

Figure C5: Newton polygons for T 2,9 torus knot: refined (red circles) and
unrefined (yellow crosses).

Figure C6: Newton polygons for T 2,11 torus knot: refined (red circles) and
unrefined (yellow crosses).
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Figure C7: Newton polygons for trefoil knot in DGR (see Section 3.3.4)
and DGR’ (see Section A.3.2) gradings: refined (red circles) and unrefined
(yellow crosses).

C.2 Matrix forms of A-polynomials

Figure C8: Matrix form of A-polynomial for the unknot.

Figure C9: Matrix form of A-polynomial for trefoil, i.e., T 2,3 torus knot.

Figure C10: Matrix form of A-polynomial for T 2,5 torus knot.
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