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Abstract

There exist myriads of off-shell worldline supermultiplets for (IV < 32)-
extended supersymmetry in which every supercharge maps a component
field to precisely one other component field or its derivative. A subset of
these extends to off-shell worldsheet (p, q)-supersymmetry, and is char-
acterized herein by evading an obstruction specified visually and com-
putationally by the “bow-tie” and “spin sum rule” twin theorems. The
evasion of this obstruction is proven to be both necessary and sufficient
for a worldline supermultiplet to extend to worldsheet supersymmetry; it
is also a necessary filter for dimensional extension to higher-dimensional
spacetime. We show explicitly how to “re-engineer” an Adinkra—if per-
mitted by the twin theorems—so as to depict an off-shell supermulti-
plet of worldsheet (p,q)-supersymmetry. This entails starting from an
Adinkra depicting a specific type of supermultiplet of worldline (p+q)-
supersymmetry, judiciously re-defining a subset of component fields and
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partitioning the worldline (p+g¢)-supersymmetry action into a proper
worldsheet (p, ¢)-supersymmetry action.

When eating an elephant, take a bite at a time.
...and keep an eye on the elephant.
— Anonymous

1 Introduction, results and summary

Supersymmetry has been studied for almost four decades in physics and
more than that in mathematics, yet there is still no complete theory of
off-shell representations. That is, the complete off-shell structure of super-
multiplets is known only for a low-enough total number of supercharges,
counting independent components of spinors separately [1-5]. To remedy
this, Gates and Rana [6] proposed to dimensionally reduce to 1d (worldline)
supersymmetric Quantum Mechanics, obtain a complete off-shell represen-
tation theory, then dimensionally extend' back to the spacetime of desired
dimensionality, employing the geometric fact that all higher-dimensional
spacetimes include continua of worldlines.

In this spirit, the authors of [9-15] developed a detailed classification of
a huge class (~10'? for no more than 32 supersymmetries) of worldline
supermultiplets wherein each supercharge maps each component field to
precisely one other component field or its derivative, and which are faithfully
represented by graphs called Adinkras; see also [16-22]. The subsequently
intended dimensional extension has been addressed recently [7,8], and the
purpose of the present note is to complement this effort and identify an
easily verifiable obstruction to dimensional extension.

To this end, we focus on the worldline to worldsheet extension, being
that all higher-dimensional spacetimes include worldsheets, which in turn
include worldlines. Worldsheet dimensional extension is thus a stepping
stone towards dimensional extension to higher-dimensional spacetimes. Of
course, worldsheet supersymmetry is also important in its own right [23—26]
and affords comparison with numerous known results; see [2,5,27-35], to
name but a few.

The paper is organized as follows. Requisite definitions and notation
are provided in the remainder of this introduction, whereupon Section 2

n a bout of chemical inspiration, Gates and Rana [6] used the term “oxidization”
as the reverse of dimensional reduction. Subsequently, “enhance” was used in [7, 8].
Herein, “extend” and “extension” will be used instead, in their standard group-theoretic,
representation-theoretic and geometric sense.
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presents the main result (twin Theorems 2.1 and 2.2 and Corollary 2.1 lead-
ing to Theorem 2.3), a criterion that all worldsheet supermultiplets must
satisfy. Section 3 illustrates the use of this criterion by presenting the case of
dimensional extension from worldline N =4 supersymmetry without central
charges to worldsheet (2,2)-supersymmetry without central charges. Sec-
tion 4 illustrates the ease of use of this criterion in (4k, 4k)-supersymmetric
examples. Our conclusions are summed up in Section 5, and technically
more involved (and explicit) details are deferred to the appendix.

Notation and definitions:

We study off-shell and on-the-half-shell [35] linear and finite-dimensional
representations of the centrally unextended (1, 1|p, ¢)-supersymmetry, i.e.,
the worldsheet (p,q)-extended super-Poincaré symmetry generated by p
Majorana-Weyl (real, 1-component), left-handed superderivatives? Dg,,
g Majorana—Weyl right-handed ones, D e and the light-cone worldsheet
derivatives 0+ and 0—. Among these,

{Da+, Dg+ } = 210,304, {Da-, Dy} =2i0,50-, (1.1)
are the only non-zero supercommutators. Being abelian, worldsheet Lorentz
symmetry Spin(1,1) ~ GL(1; R) ~ R* (the multiplicative group of non-zero
real numbers, i.e., the non-compact cousin of U(1)) has only one-dimensional
irreducible representations, upon each of which it acts by a multiplicative
real number [37,38]. Eigenvalues of the Lorentz generator are called spin
for simplicity:

spin(Day) = +3 = —spin(Dg_), spin(dx) = +1 = —spin(d=), (1.2)

where the “+” subscripts count spin in units of i%h, but A is not written
by convention; superscripts count oppositely. We emphasize that the a and
¢ indices count “internal” (not spacetime) degrees of freedom. In addition
to spin, all objects also have an engineering (mass-) dimension, defined by

Dasl = 5 =Dal, (03] =1=[0_]. (1.3)

As usual in relativistic field theory, we work with natural units A and c,
and which are then not written explicitly. The physical dimensions/units

2While not strictly necessary to use superdifferential operators to study supersymmetry,
we find it simpler to do so, and there is no loss of generality: supersymmetry implies
superspace [36]. In turn, left- and right-handedness refers to the fact that functions of
the worldsheet light-cone coordinate ot := (t4+0) move to the left along a horizontal
worldsheet spatial coordinate o as worldsheet time 7 passes.
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of every quantity can thus be expressed as a power — the engineering (or
mass-)dimension — of a common unit of mass or energy.

The operators in (1.1) are first order differential operators in (1, 1|p, q)-
dimensional superspace, RUHP9  and act on general functions over this
superspace, the superfields ®, ¥, etc. Component fields

¢:: (I.|7 ¢; = iDOl+¢’7

¢ :=iDe®|, -+ Fo5:=4Das,Dpi]®|, etc., (1.4)

«,

are — up to numerical factors chosen for convenience — defined by project-
ing the

D* =D % A---AD,D A---AD",  aa,bs € {0,1}, (1.5)

superderivatives of the superfields to the (1,1|0,0)-dimensional (purely
bosonic) worldsheet. A worldsheet superfield is off-shell if it is subject
to no worldsheet differential equation (one involving d4+ and/or 0—, but
neither Do+ nor Dy ). If it is subject to only unidextrous worldsheet dif-
ferential equations [29,32] (involving either 0+ or O— but not both), it is
said to be on the half-shell [35]; such superfields are not off-shell in the
standard field-theoretic sense on the worldsheet, but are off-shell on a con-
tinuum of unidextrously embedded worldlines and can provide for dynamics
not describable otherwise [39]. Calling a superfield, operator, expression,
equation or another construct thereof ambidextrous emphasizes that it is
not unidextrous.

Adinkras:

Adinkraic supermultiplets admit mutually compatible bases of component
fields and supersymmetry generators, such that each supersymmetry gen-
erator maps each component field to precisely one other component field
or its spacetime derivative. All such worldline supermultiplets are faith-
fully depicted by Adinkras (see table 1), which are far more compact and
comprehensible than the often very large systems of supersymmetry trans-
formation rules that they depict. The present note explores adopting this
graphical tool for worldsheet supermultiplets. As done, e.g., in [1, 34, 40],
we introduce a collection of otherwise intact (i.e., unconstrained, ungauged,
unprojected. .. ) component superfields, and correspond the supersymmetry
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Table 1: Adinkras depict supermultiplets (1.6) by assigning: (white/black)
nodes < (boson/fermion) component fields; edge color/index < Dy; edge
dashed <» ¢ = —1; nodes are placed at heights equal to the engineering
dimension of the corresponding component field, thus determining A in equa-
tions (1.6).

Adinkra Supersymmetry action Adinkra Supersymmetry action

B D Yl 'i’A o5 D Yp| _ci)A
Il ey ™ |iwp I, Heal — [-i¥p

A oA

A D Dyl i\ilB o4 D Dy —i‘ilB
II Hwg| — | &4 I Twp| ~ | BFy

B é:5

The edges may labeled by I or drawn in the I*" color.

transformation with superderivative constraint equations?

D; &4 = i(Ly) B (91 >}
Dy W= (L) (0)@.)

- {@1 64 =—(L)A" (O Mp). 0a:=Bal,

1.6
Qriog = —iLi) A (0P6n), wgi= Wy, O

where the exponent A = 0,1 depends on I, A, B , and the matrices IL; have
exactly one entry, £1, in every row and in every column. This type of
(adinkraic) supersymmetry action is then depicted using the “dictionary”
provided in table 1. For example,

D;® =iV, Dy ® =Wy, (1.7a)
D, ¥, =, Dy Wy =— (1.7b)
D, ¥, =F, D, Wy = D, (1.7¢)
D, F =iW,, Do F=—iW, (1.7d)

3The correspondence (1.6) derives from the superspace relation Q = iD + 26-Y between
supercharges () and superderivatives D, and the fact that if the D’s act from the left then
the @’s act from the right [1,4]. Here, 6 denote the fermionic coordinates of superspace,
V the gradient operator with respect to the bosonic coordinates of superspace and V is its
contraction with a suitable basis of Dirac matrices so that the super-Poincaré symmetry
transforms Q, iD and 0-Y identically.
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and
D1 Bl :7:51, ,=.1 D2 Bl :iEQ, (18&)
Dy By =i 5, D, By, =—ig,, (1.8b)
D1 El = Bl7 DQ El == —Bg, (18C>
D, E, = B, B D, 2, = By, (1.8d)

define two clearly distinct worldline N=2 supermultiplets. Since all nodes
of an Adinkra are always placed at heights proportional to the engineering
dimensions of the component fields that they represent, we may use ‘height’
and ‘engineering dimension’ interchangeably. In the superdifferential sys-
tems (1.7)—(1.8), all superfields ®, ¥;, F', B;, 2; may be chosen to be real,
as seen by writing the superderivative action in terms of supercommutators,
so that

(D;®) := [Dy, @],

= (' =[(-iD;), @' = [®, (—iD))T] = ~[iD;,®] = ¥, (1.92)
(D1®s3) := {D1, ¥2},

= (F)' ={D;, @}t = (¥ DI} = +{D), ¥} = F, ectc. (1.9b)

Given the comparative brevity and ease of comprehension, supersymmetry
transformation rules such as (1.7)—(1.8) will subsequently be depicted by
Adinkras rather than written out explicitly; see the appendix for examples of
the relation Adinkra < explicit equations. This formulation affords writing
supersymmetric Lagrangians in the manifestly supersymmetric fashion, in
superspace [1,4].

Given the obvious distinction between the Adinkras (1.7) and (1.8) we
refer to nodes drawn at the same height as being on the same level; the
number of levels then counts the number of distinct engineering dimensions
of the component fields in a supermultiplet [10,19].

2 An obstruction for extension to worldsheet
supersymmetry

Unlike higher-dimensional spacetimes, worldlines and worldsheets have in
common the abelian nature of the respective Lorentz groups, Spin(1,0) ~ Zs
and Spin(1,1) ~ R*, whereupon all physical quantities may be parameter-
ized in terms of independent real 1-component variables. In addition, the
operator J; transforms as the trivial representation of the worldline Lorentz
group Spin(1,0), which underlies the classification efforts of [10, 12-15].
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However, the operators 0+ and d— do not transform trivially under the
worldsheet Lorentz group Spin(1,1). They have spin +1 and —1, respec-
tively, and this induces the key differences between any classification of
worldsheet supermultiplets and classifications of representations of world-
line supersymmetry. This fact has also been employed in [11], to introduce
a Z-bigrading defined by the linear combinations of the engineering dimen-
sion (1.2) and spin (1.3):

hgt, (X) := [X]+spin(X) and hgt_(X):=[X]-spin(X). (2.1)

Using further that the worldsheet (p,q)-supersymmetry algebra consists of
two separate and independent algebras that are both isomorphic to a p- or
g-extended worldline algebra, Doran et al. [11] prove that formal off-shell
representations of the worldsheet (p,q)-supersymmetry algebra are equiv-
alent to certain Z-bigraded representations of the direct sum of the two
supersymmetry algebras (1.1).

Herein, this feature is employed as a filter to distinguish those worldline
off-shell supermultiplets, say from the huge? collection of [12-15] that do
extend to worldsheet off-shell supermultiplets, some of which would possibly
further extend to higher-dimensional off-shell supermultiplets.

In particular, the combinatorial explosion of worldline supermultiplets
[12-15] owes also to the fact that replacing a worldline field with its deriva-
tive, ¢ — ¢ = (0,¢), changes only the engineering dimension of the field and
produces only minor, though important changes in the supersymmetry rela-
tions [42]. By contrast, replacing a worldsheet field ¢ with either (0+¢) or
(0= ¢) changes both the engineering dimension and the spin of the relevant
field:

spin(0+¢) = spin(¢) + 1, and spin(d=¢) = spin(¢) — 1. (2.2)

Replacements such as ¢ — (0+¢) and ¢ — (0 ¢) will then — in general —
obstruct the supersymmetry relations! For example, consider the (p,q) =

4The sheer number, > 10%7, of distinct real worldline supermultiplets — which come in
> 10'? equivalence classes — is daunting [12-15]. This is further multiplied by a combi-
natorially growing abundance of height assignments, as well as added structures, such as
complexification and group actions, which further diversify the possible interactions; see
for example [30,41] for direct consequences of this fact.
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(1,1) case (1.7):
(i0+ ®) F

W, w_

(i0— ®)

F F
J J
0. 0.
R R
o, W o, v
\ (I,‘/

Let us discuss the meaning of this diagram with some care. If the central
Adinkra (“ambidextrous two-(colored) diamond,” henceforth) is taken to
depict a worldline N = 2 supermultiplet, the node ® could be “lifted” to
obtain the Adinkras to the right or left, both 04+ and d— would be 0., and
the Adinkra on to the far right would be identical with the one on the far left.

(2.3)

In the context of a representation of worldsheet (1,1)-supersymmetry,
either O+ or O— can be used, as shown in the left-hand side and the right-
hand side Adinkras (2.3), respectively. The use of distinct partial derivatives
then leads to the distinct diagrams as shown. In particular, if the component
superfields in (2.3) are drawn with their relative left—right position propor-
tional to their relative spin and their vertical position proportional to their
engineering dimension,

(1) D-edges are drawn in the “\” direction, while
(2) D_-edges are drawn in the “,” direction.

It is then easy to see that in the diagrams (2.3) all the edges — except for
the ones flagged by a question-mark — do depict the action by either D,
(red) or D_ (blue), such as:

(T) =D, ®) = (B, :=D,D &), (¥, :=D,®) 5 (i043), etc.
(2.4)
However, the edges flagged by the question-marks

?

(W=D &) 7 (i04®), and (¥, :=D,®) - (10_®) (2.5)

evidently require a spin—(i%) operator of engineering dimension —1—%, of which
there are none within the supersymmetry algebra (1.1); tracing along the
Haag—FLopusanski-Sohnius theorem [43] shows that no such local operator
can exist. Thus, in adinkraic worldsheet (p, ¢)-supermultiplets for p, g # 0,
height (i.e., engineering dimension) rearrangements are much more restricted
than they are in the worldline case [9,10,13,15].

More to the point, the inability to perform individual “node-raising” (2.3)
leads to:
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Theorem 2.1. Adinkras depicting off-shell supermultiplets of worldsheet
(p, q)-supersymmetry contain no “ambidextrous two-color bow-ties”:

PRI
(2.7)

(2.8)

Clearly, equations (2.7) and (2.8) cannot both be true, i.e., there is no
consistent spin assignment for X to complete the (sub)supermultiplet as
depicted in (2.6). O

A result about directed graphs that is equivalent to this theorem was known
to Landweber [44]. This result may be reformulated in the following useful
form:

Theorem 2.2 (Spin Sum rule). Within any Adinkra depicting an off-shell
supermultiplet of worldsheet (p, q)-supersymmetry, to every edge depicting
the transformation Dy : Fy — Fp (up to worldsheet derivatives and multi-
plicative constants of convenience), assign the height-weighted spin:

5,0 = spin(D)((Fp] — [Fal). = (at).(6-).  (29)

A

The sum of o;* around any two-colored closed quadrangle must vanish:

Tr, (6] :=6,.° + 610" +5,0" + 615", Tr,, [6]=0, (2.10)

with no sum on I,J, indicating two edge-colors, i.e., two supersymmetry
transformations.

For example, in the putative (sub-)Adinkra (2.6), if we start from X
of engineering dimension —3%, and follow the edges: D (straight up), D_
(down left), D, (straight up), —D_ (down right) through the “ambidextrous
two-colored bow-tie,” the sum of &; z*’s is:

)0 = (H]+ DD - O] + D10 - (1)

D=

(+
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+(-D[(-3) -] =+3+1+5+1=+1#0,
~ spin ((-D_)"' oD, o (D_)"'oD,), (2.11)

where the inverses denote that the action (and the spin) of the operator is
being reversed, going from a higher to a lower node. By way of contrast, the
same computation for the ambidextrous two-diamond in the middle of (2.3),
starting from the bottom node ® and following counter-clockwise gives:

1
1
~ spin (D) ' o (-D_)"'oD, oD_). (2.12)

The next section will demonstrate the filtering efficiency of Theorems 2.1
and 2.2, i.e., Corollary 2.1 on the particular case of extending worldline
N =4 supersymmetry without central charges into worldsheet (2,2)-super-
symmetry without central charges.

In view of their role in Theorems 2.1 and 2.2,

Corollary 2.1 (Extension obstruction). The ambidextrous two-color
bow-tie sub-Adinkra (2.6) and its numerical counterpoint, Tr,, [&], is an
obstruction for dimensional extension of worldline off-shell N -extended
supersymmetry without central charge into worldsheet off-shell (p, N—p)-
supersymmetry without central charges for 0 <p < N.

However, before continuing with explicit examples, few general remarks
are in order:

(1) The “spin sum rule” is independent of the “dashing rule” [9,10] whereby
the number of dashed edges in any quadrangle within any Adinkra
must be odd, and which stems from the anticommutivity of the D’s;
see below, at the end of this section. In fact, the above “spin sum
rule” is unaffected by changes in the solid/dashing assignments.

(2) Since spins are eigenvalues of the Lorentz generator, their engineering
dimension weighted sum along concatenated edges is the net height-
weighted spin of the corresponding D-monomial. Each closed path
depicts a closed D-orbit®, so that the sum of height-weighted spins
along a closed path is the trace of the height-weighted Spin(1, 1)-action
over the given closed D-orbit.

®An orbit generated by a sequential application of superderivatives is considered closed
it if returns to a constant multiple of a 0" 92 -derivative of the initial component field for
some non-negative integers m, n.
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(3) This height-weighted “spin sum rule” generalizes straightforwardly
to all higher dimensional spacetimes, since every higher-dimensional
Lorentz group:

(a) contains a continuum of Spin(1,1) subgroups,

(b) acts on supercharges (@) and superderivatives (D) admitting the
%Z—grading defined by the engineering dimensions [D] = —i—% =[Q],
with dimensionless Lorentz generators.

The “spin sum rule” must hold for all Spin(1,1) C Spin(1,d—1) sub-

groups. The “remaining” Spin(1,d—1)/ Spin(1,1) Lorentz symmetry

evidently must also act consistently, which poses additional obstruc-

tions—presumably generating the criteria of Refs. [7,8].

(4) In turn, note that both two-colored unidextrous and four-colored
ambidextrous bow-ties:

v, R Wy
v
~
..
. 5
~
‘e
~
.~
P, ‘P,

satisfy Theorems 2.1 and 2.2, and indeed are perfectly consistent
(sub-) Adinkras.

D, Dy,

(2.13)

We then immediately have:

Corollary 2.2 (valises). Off-shell adinkraic two-level supermultiplets (so-
called valises [12, 15], short multiplets of [16], and the default member of the
“root superfield representations” of [45]) with no gauge equivalence condition
can exist only in one-dimensional (no space, one time) models, and for
unidextrous supersymmetry. The latter is known to exist only in spacetimes
of signatures (t,s) with t—s = 0 mod 8. Only these cases admit models with
Majorana—Weyl (real chiral) fermions of only one helicity [46], and reality
(Hermiticity) is required for Lagrangians of all physically acceptable models.

For example, the four off-shell supermultiplets of worldsheet (4, 0)-super-
symmetry examined in [30] are all valises; they conform to our criterion
straightforwardly, since these models exhibit unidextrous (chiral) supersym-
metry, wherein no “ambidextrous two-color bow-tie” obstruction (2.6) can
exist,.

In turn, there exist two fairly self-evident ways of avoiding the obstruction
defined pictorially and computationally in Theorems 2.1 and 2.2, respectively:

Proposition 2.1 (unidextrous extension, off-shell). All off-shell super-
multiplets of N-extended worldline supersymmetry without central charges
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extend to off-shell supermultiplets of worldsheet (N, 0)-supersymmetry with-
out central charges through the unidextrous identifications

{Dr,0;} — {Dry,0+ }, (2.14)

where the O -action on component (super)fields remains unrestricted. The
analogous holds for parity-mirrored extension to worldsheet (0, N)-super-
symmetry.

Proof. Since 0— commutes with {Dr, 0+ }, it suffices to allow all component
fields to be arbitrary functions of o=. O

It is also possible to use the unidextrous extension { D7, d; } — { Dy, 04 }
even within a supersymmetric theory that does include non-trivial Dg_-
transformations, but these superderivatives — and then also 0— — must
annihilate the supermultiplet:

Proposition 2.2 (unidextrous extension, on the half-shell). All off-
shell supermultiplets of N-extended worldline supersymmetry without cen-
tral charges extend to supermultiplets of worldsheet (N, q)-supersymmetry,
for arbitrary q, but such supermultiplets are annihilated by Dg_ and conse-
quently also by O—, so that they are on-the-half-shell [35]. The analogous
holds for parity-mirrored extension to worldsheet (p, N )-supersymmetry, for
arbitrary p.

Proof. By being annihilated by {Dg_, 0 }, such supermultiplets are in fact
off-shell supermultiplets of the N-extended worldline supermultiplets of
supersymmetry algebra generated by {D,4,0+} on the o~ -parametrized
continuum of oF-worldlines within the worldsheet. ]

Given that the only essential difference between the worldline and the
worldsheet Poincaré groups is spin, that the resulting obstruction has beed
identified the twin Theorems 2.1 and 2.2 and Corollary 2.1, and having
dispatched in Propositions 2.1 and 2.2 the cases where this obstruction is
self-evidently avoided, we can state:

Theorem 2.3. Avoiding the obstruction identified in the twin Theorems 2.1
and 2.2 and Corollary 2.1 is both necessary and sufficient for extending
worldline N -extended supersymmetry without central charge into worldsheet
(p, N—p)-supersymmetry without central charges, for all0 < p < N.

Proof. The twin Theorems 2.1 and 2.2 establish the necessity of avoiding
ambidextrous two-colored bow-ties (2.6). It remains to prove that this is also



“ATMP-16-6-A2-GAT” — 2013/5/27 — 20:23 — page 1631 — #13

ON DIMENSIONAL EXTENSION OF SUPERSYMMETRY 1631

sufficient: that every supermultiplet of worldline N-extended supersymmetry
without ambidextrous two-colored bow-ties admits a globally consistent
assignment of spins for the component fields when the N worldline super-
charges are partitioned into p left-moving and (N—p) right-moving
supercharges.

In the manner of the central ambidextrous two-diamond Adinkra in (2.3)
and for the purposes of this proof, we draw the nodes at relative heights pro-
portional to their engineering dimension, and their relative left-right posi-
tion proportional to their spin; nodes with the same engineering dimension
and same spin are stacked over each other in a third dimension of “depth”.
For example, we re-draw the (sub-) Adinkra quadrangles (2.15) and the
ambidextrous two-diamond Adinkra from the center of (2.3) as

lII\I’ZJr \Il+ w_ -
Diy d =
DY % y v, v (2.15)
DiNe
o P2 o Py 3

Since every D, -edge is now oriented in the “\” direction, the relative spin
increases along any so-oriented D, -edge by % and the target node is placed
% a unit to the left. Since every Dg_-edge is oriented in the “ 7 direc-
tion, spin decreases along so-oriented D4 _-edges by %, while height increases
by % Following the edges against this orientation has the opposite effect.
This defines the relative height and relative spin for every node in every
allowed quadrilateral as shown in (2.15), including their boson « fermion
flips: bosonic and fermionic nodes are placed

height: at alternate levels, separated by the height %,
spin: in alternate columns, separated by the left—right distance of %,

(2.16)
and edges only connect nodes from adjacent levels and adjacent columns.

We are now in position to re-use the proof of Proposition 3.1 from [10],
which was framed for the height function. It refers to worldline N-extended
supersymmetry, but clearly applies just as well for the worldsheet supersym-
metry (1.1):

(1) The assignments (1.3) induce a height /engineering dimension Z-grading
and a global height function on off-shell supermultiplets without cen-
tral charge, generated by the relative height-assignments as stated in
the “height” item in the listing (2.16).
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(2) The global height function arranges the nodes of the entire Adinkra
into levels, bosonic and fermionic nodes at alternating levels, and edges
connecting only nodes from adjacent levels.

The cited proof from [10] now directly applies and defines a globally well-
defined spin function on the Adinkra if we turn the graph 90° clockwise and
reinterpret the spin function as a new “height” function. We but need to
select a starting node, and specify its spin as integral if it is boson or half-
integral if it is a fermion to insure that all bosonic and all fermionic nodes
have the standard spin-statistics assignment. O

Alternatively, one may use the bigrading defined by the two “height”-
functions (2.1) of [11]. The proof of Proposition 3.1 in [10] now extends
to both of these “height” functions, and therefore also to their difference,
the spin function.

Jointly, the height and the spin values define the so-called taxi-cab metric
on the Adinkra, whereby the nodes with the same spin and same height
are “at the same address,” albeit stacked over/under each other in the
3'4 dimension of “depth.” Alternatively, the Reader may wish to think
of the Adinkra as a judiciously suspended macramé, hanging under the
force of familiar (vertical) gravity, as done in [10]. Here, however, the
Adinkra is additionally “polarized” by a left-right directed magnetic field
that pulls® the nodes with positive spin leftward and those with negative
spin rightward, to a left-right position proportional to the value of their spin.

The proofs of Theorem 4.1 and its Corollary 4.1 in [10] similarly apply
also with regard to the spin function, and imply that in order to depict a
worldsheet supermultiplet — in addition to the specifications of an Adinkra
depicting a worldline supermultiplet — it suffices to specify a subset of
nodes the spin of each of which is the maximum (or minimum) within its
nearest-neighbor nodes.

Combinatorial Complexity

Every Adinkra admits a “one-hooked” configuration [10], which is easiest to
understand by regarding the graph of the Adinkra as an actual macramé,
suspended /hooked at a single knot (=node) while the rest of the Adinkra
hangs freely under the influence of familiar gravity. The dashing rule for
turning such a “one-hooked hypercube” into an Adinkra [10] is partially
responsible for the existence of the myriad of Adinkras. The number of ways

5This mnemonic pretends that nodes have dipole magnetic moments proportional to
their spins.
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a hypercube can be turned into such an Adinkra was recently calculated by
Yan Zhang [47] and found to be:

#(“one-hooked Adinkras”) =2- N!- 92" -1 (2.17)

so that it can be seen that a double exponential drives some of the growth
with N.

In turn, there is also a fast-growing group of equivalences: An N-cube
has 2V nodes, each of which corresponds to a component field. The compo-
nent field redefinition of changing the sign of a component field also flips the
solid/dashed assignment of all the edges incident with that node. This yields
22" distinct sign choices for the component fields. Also, the horizontal rear-
rangements of the nodes within the one-hooked Adinkra, generates another

(sub)group of evident equivalences, and has H,];[:O (]I:,f )! elements. Thus, the

group of equivalences has at least 22" ‘Hszo (]X )! elements. Finally, note
that this huge group of equivalences does not act transitively on the set
of all variously dashed one-hooked hypercubes, so the number of inequiv-
alently dashed one-hooked hypercubes is not simply the ratio of (2.17) by
(22N- Hé\[:o (]IX ) !). In fact, all one-hooked N-cubical Adinkras are equivalent
to each other.

Adinkras with more complicated height-arrangements depict supermulti-
plets with more complicated choices of relative engineering dimension assign-
ments for the component fields. The numbers of such inequivalent Adinkras
then grows combinatorially with N; the “node choice group” of [13,15] was
defined to encode the symmetries in arbitrary Adinkras.

It is then gratifying to note that the severe restrictions on the combinato-
rial variety of Adinkras placed by the twin Theorems 2.1 and 2.2 markedly
reduce the number of Adinkras that may depict off-shell worldsheet (p, q)-
supermultiplets for any fixed p,q. Clearly, a computer-aided classification
of worldsheet supermultiplets akin to the classification of [10,12,13,15,48]
would highly desirable, and hopefully can be implemented by appropriate
encoding the results presented herein.

3 Examples: worldsheet (2,2)-supersymmetry

The authors of [13, 15] depict all adinkraic representations of (N =4)-
extended worldline supersymmetry by listing 28 Adinkras, but without show-
ing (1) the solid/dashed edge distinction, (2) the boson < fermion flipped
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versions, (3) the twisted” versions of the 4 “half-sized” supermultiplets.
This gives a total of 2-(24 + 2-4) = 64 distinct Adinkras, still not counting
nodal permutations.® Of these, only:

(intact) (semi-chiral)
- (decomposes — D+E) (chiral) (tw.-chiral)
s 2t B B e
B ~ n/v\"%/‘ D \3/ E

and their upside-down and boson < fermion flipped versions have no ambi-
dextrous two-colored bow-ties, and so satisfy Theorems 2.1 and 2.2, respec-
tively. For example, one of the “half-sized” supermultiplets from the tables
of [13] that does not pass this requirement is

which contains two ambidextrous two-colored bow-ties, as highlighted in the
two copies to the right, where the edges forming the extension-obstructing
“bow-ties” have exaggerated thickness and the remaining graph elements
are rendered in paler hues.

We now examine the five Adinkras (3.1). The differences between them
are encoded in their chromotopology (the underlying graph, with the nodes
bipartitioned into bosons and fermions, and the edge N-colored and selec-
tively dashed [12,15]), and the height-arrangements of the nodes. The
authors of [12,13,15] then prove that the chromotopology of an Adinkra
must be a k-fold iterated Zo quotient of an N-cube, encoded by a doubly
even binary linear block code.

Of the five Adinkras (3.1), A—C have the chromotopology of a 4-cube,
while the chromotopologies of D and E are two inequivalent Zy quotients
thereof; see below. Suffice it here to say that the first three of these are
one-color-decomposable: they disconnect upon deleting all edges of a single
color; the last two are two-color-decomposable.

"Twisting flips the solid/dashed parity of edges of an odd number of colors in an
Adinkra [10].

8These are permutations of white and separately black nodes across different heights:
they leave the node-per-height count unchanged and horizontal permutations are
inconsequential.
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Adinkra A:

Up to flipping the sign of the four “inner” four component bosons in the
middle row,” the nodes in this Adinkra depict the superderivatives used to
project component fields [10,32]:

1[D1y, Doy][Dy—, Dy ]

/ R #\

;[D1+7D2+]D1— 31y, D2+]D27 - 3[D1-, Do D1y | 21—, Do Doy
. T~ \l 3 A
)y \\ . \\'l\\
i1y, D; +] 'LD1+D1— ZD2+D1— ZDH-Dz— ZD2+D1— 5D1-, D] (33)

\ /

Herein, the edges (each associated with a superderivative: Dj. <« red,
Doy < green, Di_ < blue, ) connect those superderivatives
(1.5) which differ in precisely that one D. The factor i[**! is included in (3.3)
to insure that the component fields (1.4) projected with the operators (1.5)
are real:

p qa
[a.b] == (P51, Ja,b|:=al+[b], |a|:=) aa, [bl:=) b
a=1 a=1

(3.4)
Both the operators in (1.5) and the corresponding component fields of the
supermultiplet are stacked in the order of increasing engineering dimension,
1 (la, b[). Dashed edges indicate the application (from left) of the negative
of the superderivative associated to such a dashed edge. For example, iD;
is connected to 5[D14, D2 ] by a dashed green (D) edge, indicating that

Ds .
D1 2 Dy Dy = 5(D14D2y — Doy Diy) = §[Diy, Doyl.

(3.5)

By applying this tesseract of superderivatives (3.3) to a single, intact
superfield a la Salam and Strathdee [49,50] and projecting the result to the
worldsheet (i.e., setting the fermionic coordinates of the super-worldsheet to
zero), we obtain the component fields of this familiar supermultiplet. The
edges in the Adinkra (3.3) then depict the action of the supersymmetry
transformations within the supermultiplet defined by the Salam—Strathdee

9Flipping the sign of a component field depicted by the node n also flips the
solid/dashed assignment of each edge incident to n; edges connecting two sign-flipped
nodes remain unchanged.
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superfield. Alternatively, we may introduce a superfield in place of each
node of the tesseract (3.3):

_ / \=g+

Q \'\\% (3.6)
R, P \\\\ /

whereupon the edges depict the superdifferential relations generalizing
(1.7)—(1.8). This results in the same supermultiplet as defined by the single
Salam—Strathdee superfield; the lowest component fields in the sixteen com-
ponent superfields (3.6) are (up to multiplicative constants for convenience)
identical with the component fields defined by projection using the tesseract
of superderivatives (3.3), applied to a single intact superfield.

Adinkra B:

This Adinkra represents a Doy <> Dg_ mirror pair of distinct (2, 2)-super-
multiplets. The Adinkra itself is a tensor product of the two Adinkras (1.7)
and (1.8):

M ® \:\' (3.7)

and it is possible to identify the first factor as depicting the D14, Doy action
and the second one the D;_,Dy_ action — or the other way around. In
this case, boson « fermion flipping coincides with upside-down flipping after
some additional judicious component field sign-changes.

Notice the left-right asymmetry between the D,-action (red and green
edges) and the D4_-action (blue and edges). As shown in the appen-
dix, this implies that the real component (super)fields depicted by the nodes
of the Adinkra may be complexified simultaneously with the two real com-
ponents of D, . The appendix also proves that the supermultiplet depicted
by (3.7) is one of the two semi-chiral supermultiplets [31, 33|, the other
one obtained by swapping the assignment to the edges Doy <> Dg_. The
conjugate supermultiplets are of course obtained by swapping ¢ <> —i in
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the complex combinations of the component fields and the superderivatives
assigned to the edges of the left-hand side factor in the tensor product (3.7);
the real Adinkra stays the same.

Adinkra C:

A field redefinition shows this Adinkra to be a direct sum of the Adinkras D
and E; see [12,13,15] for general criteria. This owes to a Zg symmetry that
commutes with supersymmetry, which is made manifest by rearranging the
nodes of this Adinkra horizontally:

2 » @w CE (38)
L L

then flipping the signs of the component fields represented by the encircled
four nodes. This produces the right-hand side rendition of this Adinkra,
which has a perfect literal left-right symmetry, so that its right-hand and
left-hand halves may be identified — node-by-node and edge-by-edge:

<4

R Of
Y7
b b

resulting in a half-sized Adinkra, identical to E in (3.1). Identifying instead
the negative of the right-hand nodes with those in the left-hand half flips the
solid/dashed parity of only the golden edges, yielding Adinkra D in (3.1).
Such projections are fully explored and catalogued in [12,13,15].

Adinkra D and E:

After a complex combination of the component fields, these Adinkras depict
the chiral and twisted-chiral worldsheet supermultiplets [28], respectively.
Note that the complex combination of the component fields is consistent
with simultaneously combining

DS =D, +iDy; with red and green edges, (3.10a)
D¢ :=Dy_+i with blue and edges, (3.10b)
or the other way around, which however turns out to be equivalent by a

simple sign-change in the two (auxiliary) component fields corresponding to
the two top nodes.
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Remark:

The real supermultiplets discussed here may well be endowed with additional
structures:

(1) A complex structure indicates the ability to combine the real compo-
nent fields into complex combinations in a way that is consistent with
supersymmetry, as done in the example worked out in the appendix. If
possible, the conjugate version is automatically also possible.

(2) A group G-action indicates the property that the component fields and
the superderivatives may be combined into representations of G: Rp
for the bosons, Ry for the fermions and Rg for the superderivatives. It
then must be the case that:

Rs®Rg DO Rr and Rs® Rrp O Rp. (3.11)

Faux et al. [40] uses this approach to construct worldline Lagrangians
for various types of so-called ultra-multiplets, but the approach is equally
applicable for worldsheet models, and also for models in higher-
dimensional spacetime.

Thus, two supermultiplets may well have identical Adinkras and so be iden-
tical as far as supersymmetry transformations are concerned, but differ by
such additional structures, which are also applied to the supersymmetry
generators. The simplest such difference is between a complex supermulti-
plet and its complex conjugate: depicted by the same Adinkra, they differ
in having the complex structure i vs. —i.

4 Examples: worldsheet (4k,4k)-supersymmetry

In fact, the filtering role of Theorem 2.1 may be used to “re-engineer” a
worldline Adinkra by raising/lowering its nodes so that the end result — if
possible — faithfully depicts an off-shell supermultiplet of worldsheet (p, q)-
supersymmetry. This may be achieved by either of the following procedures:

(0) Select an Adinkra depicting a supermultiplet of N-extended worldline
supersymmetry.

(1) Partition the edge-colors N +— (p, N—p), to depict Dyy- and D _-
action, respectively.

(2) Hide either all D,-edges or all Ds_-edges.

(3) Reveal the hidden edges one color at a time.
If the just revealed edges reveal an obstruction as specified by
Corollary 2.1,
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(a) if possible, reposition the minimum number of nodes so as to remove
the obstruction.

(b) if not, no Adinkra with this chromotopology can depict a world-
sheet supermultiplet;
exit procedure.

(4) The the above repositioning of nodes removed all instances of the
Corollary 2.1 obstruction, resulting Adinkra depicts an off-shell repre-
sentation of worldsheet (p, N—p)-supersymmetry.

Alternatively,

(1) Select a valise Adinkra of an off-shell supermultiplet of worldline N-
supersymmetry, and interpret it as an off-shell supermultiplet of
worldsheet (0, N)-supersymmetry.

(2) Reinterpret Dy _-edges into D,-edges, one color at a time.

If the just reinterpreted edges reveal an obstruction as specified by

Corollary 2.1,

(a) if possible, reposition the minimum number of nodes so as to remove
the obstruction, and shift p — p+1;

(b) if not, go to step 2 and try another color.

(3) The the above repositioning of nodes removed all instances of the Corol-
lary 2.1 obstruction, resulting Adinkra depicts an off-shell representation
of worldsheet (p, N—p)-supersymmetry.

(4) While p < N, shift p — p+1 and go to Step 2.

Although the first procedure may start with any Adinkra, we start from
valise Adinkras for simplicity; see the subsequent examples. Note that the
second procedure is designed to produce an array of Adinkras with the
chromotopology of the starting Adinkra, which depict worldsheet off-shell
supermultiplets of (p, N—p)-supersymmetry, for 0 < p < N.

4.1 (4,4)-Supersymmetry

Start with a valise version of the smallest N = 8 worldline supermultiplet,
the so-called “ultramultiplet” [6], depicted as

(4.1)

which was studied extensively in terms of Adinkras in [40], is a four-fold
iterated Zg-quotient of the 8-cube, encoded by the (binary) doubly even
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linear block code “eg” [12,13,15]. As it is, Corollary 2.2 implies that this
Adinkra can represent an off-shell worldsheet supermultiplet only for (8, 0)-
or (0,8)-supersymmetry. Aiming for an off-shell supermultiplet of (4,4)-
supersymmetry, it is clear that the edge-colors must be partitioned into two
groups (to be identified with D,+4- and D4_-action), such that no edges from
the first group forms a bow-tie with any of the edges from the second group.

To this end (although the end result may perhaps appear to be evident),
we may start by hiding all but two of the edge-colors, and horizontally
rearrange the nodes if necessary so as to exhibit the regular pattern:

© 0o 0 0

§ o &0

(4.2)

and associate these edges with D;, and Ds;. We now aim to place edges
of two more colors — to be associated with D3y and — in a way that
may (and in fact will) form two-color bow-ties amongst themselves, but will
permit adding the remaining four colors — to be associated with D;_ —
without forming ambidextrous two-color bow-ties. Placing edges in the third
color in this fashion — and maintaining an odd number of dashed edges for
every quadrangle, we have:

where we have raised the white nodes in the right-hand half, anticipating the
second (Dg_) group of edges to connect the left-hand half to the right-hand
half and so avoid forming ambidextrous two-color bow-ties. Edges of the
fourth color indeed do fit in without connecting the two halves:

o_R

¥ ~
. ) L J (4.4)
) /
V& (only the first four
6 - “6 supersymmetries)

The edges of the remaining four colors, to be associated with Ds;_ may now
be added without forming two-colored ambidextrous bow-ties, as shown here




“ATMP-16-6-A2-GAT” — 2013/5/27 — 20:23 — page 1641 — #23

ON DIMENSIONAL EXTENSION OF SUPERSYMMETRY 1641

pair-wise:

where the nodes have been repositioned horizontally simply to highlight
the similarity with the left-hand-side Adinkra in (3.8). Indeed, a careful
comparison shows that the Adinkra C in (3.1) depicts the a supermultiplet
with the same component field content, but with its (2,2)-supersymmetry
enhanced in (4.6) to a maximal (4, 4)-supersymmetry.

In turn, while Adinkra C in (3.1) decomposes as D @ E by virtue of pos-
sessing the Zo symmetry that was made manifest in (3.8), it is not hard
to see that the edges depicting the action of the additional four supersym-
metries in (4.6) obstruct this symmetry, and thus also the decomposing
projection (3.9).

The Adinkra (4.6) thus depicts an indecomposable off-shell supermultiplet
of worldsheet (4, 4)-supersymmetry. In fact, it is also irreducible, since there
exists no smaller (4,4)-supermultiplet.

R * E—

There currently exists a whole menagerie [27,28,51-65] of supermultiplets
described in the physics literature that all possess the properties of providing
a linear realization of off-shell worldsheet (4, 4)-supersymmetry with:

(1) a finite number of auxiliary fields, and
(2) with no central charges.

There exists an even larger literature for on-shell such supermultiplets and /or
supermultiplets with infinite sets of auxiliary fields and/or central charges.

Since we are concerned with identifying only the supermultiplet described
graphically in (4.6), we can restrict our consideration to only the papers
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of [27,28] in the description of the menagerie. The supermultiplet described
graphically in (4.6) possess (8|8) bosonic/fermionic degrees of freedom. This
observation alone informs us that the works in only the first two cited papers
can be relevant as the other supermultiplets possess more off-shell degrees of
freedom. We will use the nomenclature of [66,67] where these two relevant
cases are called the TM-I and TM-II supermultiplets.

The twisted supermultiplet I (o, 7, ¢|1;iA|G, Gi/), denoted TM-I, of [28]
was described by supersymmetry transformation laws (4,B = =+, 7,7, k,{ =
1,2 and +',~2,~43 are suitable 2 x 2 Dirac matrices while C;j and C,p are
‘charge conjugation matrices’ [1], chosen here to be equal to the second Pauli
matrix)

Dist =2Cij b, Dino = —ihia, Diamw = (v2)a® Py, (4.7a)
Diah?” = 67 [ (1) a” (8e0) + i(7°7) 4" (Oerr) |

+3[07(7*)APG +i5.°G ], (4.7b)

Diat? =i Cii(v)a” (0c0), DiaG = —2i (v°7°)u" (Octhi),  (4.7¢)

DiaGj* = 4[5;56% — 16,76, 1(v°) 4" (Octlen)- (4.7d)

The fields o, 7, G are real, ¢ and ;4 (and also the D;,) are complex and
G;7 form a traceless Hermitian matrix of complex fields:

G/ = (GjY*, G =0. (4.8)
The invariant component-level action takes the form
Srant = / Qo[ 4000 + b0 + 1606 + it (1) (Do ')
_1G o lgy Gji] (4.9)

The twisted multipet I1 (¢, ¢i?|xia|S, P, F), denoted TM-II [28,52,55] has
the following transformation laws:

Disp = (v*)a%xin, Diapj"® =i[076;" — 16,76 xea,

DiAXjB = %OijCABFa (410&)
D' axjr = i0'j (Y’ ar(8ap) + 2(v*) a5 (Oap;’)
DiAF =0, Dj,F= —4iCij(7a)AB(8a>‘<jB), (410(3)

Dis S = =2(Va)a"(OaXin), DiaP = —Qi(’YgVa)AB(aaXiB)a (4.10d)
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where the fields ¢, S, P are real, F' and ;4 are complex and ¢,/ form a
traceless Hermitian matrix of complex component fields

e = (p;")*, @it =0. (4.11)

An invariant component-level action for this supermultiplet is

Stvar = /dQU [%SODSO + ;" 00 +ixia(Y)*" (0eX'5)

— 4P+ PP+ FF)]. (4.12)

As first noted in [52, 55] and discussed in [66, 67], these supermulti-
plets in two dimensions are easily shown to be usefully inequivalent in the
sense of [68] — i.e., there exist Lagrangians that involve combinations of
such supermultiplets that cannot be transformed by field redefinition into
Lagrangians that involve only one type of these supermultiplets. For exam-
ple, using both the TM-I and TM-II supermultiplets, it is possible write a
supersymmetric mass term of the form

Spaw) = %1‘40/d2(7 (08 = 7P = L(OF + 6F) - koG’ — oG
+2(ia X+ he) | (4.13)

Via a series of straightforward but involved calculations it can be shown
that no such mass term exists using solely TM-I supermultiplets or TM-II
supermultiplets.

To compare the transformation laws in (4.7) and (4.10) with those implied
by the graph (4.6) we must work in a real basis where light-cone coor-
dinates of spinors are used. To that end, we switch from the complex
one-component Weyl bases D4, 14, etc., to two-component real (Majo-
rana) bases D;4, U4, etc. In doing so, the two components of the Majorana
spinor W, for each of the two values of the index ¢ provide the four left-
handed fermions in (4.6) and ¥;_ provide the right-handed ones. In a sim-
ilar manner, the D;1-operators in these equations are also two-component
real (Majorana) operators, tallying up a total of four left-handed and four
right-handed superderivatives, corresponding to (4, 4)-supersymmetry and
depicted by the total of eight edge-colors in (4.6).

In case of (4.7), we find

Dijro = \Ifii, Djpm = q:i(]lg X 0'2)ij \Ifji, (4.14&)
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Diton) = —i(c” @ a”)/ ‘l’]:I:a
Diroy = +i(o? @ )i Uy, (4.14b)
Diy G = —21(]12 ® 0'2) (0+¥;_),
Di- G = —2i(ly ® 0%)7 (0= V;,), (4.14c)
Dit Gi' = +2(0® @ 15)7 (04 9;-),
D Gi' = —2(6® ® 1n)7 (0= T, ), (4.144)
Dit Gi{g) = 2i(0? @ 1p)/ (94 ¥;-),
Di- Gi{py = —2i(0? ® 12):7 (0= V1), (4.14e)
Diy Gifyy = 2i(0! @ 02)7 (049;-),
Di- Gifyy = —2i(a! © 02)i (0= T;4), (4.14f)

where ¢y and ¢(;) denote the respective real and imaginary parts of the
complex spin-0 field ¢. In the same manner Gl%R) and Gl%l) denote the real

and imaginary part of the complex spin-0 field G;2. We need not give an
explicit expressions for Go! and Go2, since (4.8) implies that G2 = —G1?
and Ggl == (G12)*.

The key property — of being adinkraic [10] — of the supersymmetry
transformation rules (4.14) is that each supercharge maps each component
field to precisely one other component field or its derivative; owing to this
feature the supermultiplet (4.7) may be depicted by an Adinkra. Analo-
gous remarks apply to the TM-II supermultiplet (4.10), and that system of
supersymmetry transformation rules also has a real (Majorana) rendition
analogous to (4.14).

The fact that both supermultiplets (4.7) and (4.10) may be depicted by
the same Adinkra (4.6) implies that there is an intimate relation between
these two distinct representations of worldsheet (4,4)-supersymmetry. The
difference between the two supermultiplets evidently owes to the complex
and tensor structure (the latter indicated by the indices i, j, k,¢), which
may be employed to represent a group action, not unlike those discussed
in [40], which then serves to further distinguish TM-I supermultiplets from
the TM-IT ones.

With the appropriate choice of the lagrangian densities (4.9) and (4.12),
the lower white nodes correspond to propagating physical bosons, whereas
the upper white nodes depict non-propagating auxiliary component fields;
all the fermions (depicted by black circles) then have Dirac-like first order
differential equations of motion. The Adinkra (4.6) in which the nodes are
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bundled to reflect the real/complex and tensorial nature of (o, 7, ¢l |G, Gi¥)
is then evidently upside-down as compared to the same Adinkra in which
the nodes are bundled to reflect the real/complex and tensorial nature of
(0, i |xialS, P, F). This feature then depicts the type of duality between
the supermultiplets TM-I (4.7) and TM-II (4.10), which in turn permits
the existence of the mass terms (4.13). In this duality, the fermions in the
two supermultiplets are simply identified, ;4 < x;4, but the correspond-
ing identification of the bosons, (o, 7, d|G,G/) < (¢, v|S, P, F), must be
non-local owing to the differing engineering (mass) dimensions of the like
component fields. These and related topics will be explored under a sepa-
rate cover.

4.2 (8, 8)-Supersymmetry

In a fashion rather similar to the procedure (4.1)-(4.6), it is straightfor-
ward to produce two Adinkras that depict off-shell supermultiplets of world-
sheet (8,8)-supersymmetry. One may start from a valise supermultiplet
of worldline 16-extended supersymmetry, and judiciously raise half of the
bosonic nodes, so that 8 of the 16 supersymmetries act exclusively within
each of the two valise-shaped halves of the Adinkra, while the other 8 act
so as to connect the two halves. Unlike with (4,4)-supersymmetry, (8, 8)-
supersymmetry will turn out to permit two distinct solutions.

We begin with the valise version of the 128+128-component N = 16 world-
line supermultiplet with the eg @ eg-encoded chromotopology [12], and hide
all edges but those corresponding to the first few supersymmetries:

A A A A A L DL

(first two supersymmetries shown) (4.15)
WH%TLB?IH&TWWW%M%WWWWWWWW% e
U] (6irst four supersymmetries shown) 4.16

where the 8+8-node valise-shaped blocks have been patterned according
to (4.1) and so use up the edges corresponding to the eight left-handed super-
symmetries — the maximum for eight bosons and eight fermions. Next, we
start adding the edges corresponding to the right-handed supersymmetries,
and lower block after block of 8 bosons, so as to avoid forming ambidextrous
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two-color bow-ties:

some 8+8 blocks remain to be judiciously ‘lowered’

(first ten supersymmetries shown) ( 4.1 8)

i

N

NW v)’“‘h

some 848 blocks remain to be judiciously ‘lowered’

|| (first ten supersymmetries shown) (4 19)

Thus, the ninth and tenth color edges indicate the relative positioning of the
first four 8+8 blocks. Hiding these edges for clarity and revealing the edges
corresponding to the 11th and 12th supersymmetry indicates which of the
next eight-tuples of bosonic nodes need to be ‘lowered’:

some 8+8 blocks remain to be judiciously ‘lowered’

(first eight plus 11th and 12th supersymmetry shown)

The second half of the 8+8-node valise-shaped blocks will have to follow
this relative positioning pattern within the right-hand half. Hiding the 11th
and 12th color edges, and revealing the edges corresponding to the 13th and
14th supersymmetry determines the relative positioning of the 8+8 blocks
in the right-hand half as compared to the left-hand half:

.r//////.‘vm'

.“'Z'H‘M!l’“' (4.21)

Finally, swapping 13th and 14th for 15th and 16th supersymmetry verifies
that this arrangement produces no ambidextrous two-colored bow-ties:

s

FerredTH
= T
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Thus, the edges of the first eight colors connect nodes within the 84-8-
node blocks and do form two-colored bow-ties, but all correspond to, say,
left-handed supercharges. In turn, edges of the latter eight colors connect
nodes from a “lowered” 8+8-node block to another that is “higher,” and
these edges depict the action of right-handed supercharges. This then avoids
forming ambidextrous two-colored bow-ties. Putting this together results in:

o

e

1////

In a similarly depicted fashion, we could alternatively proceed as follows:

L e e A AT

M (first two supersymmetries shown; same as (4.15)) ( 4.9 4)

T TR

et A e e e G e I

(first four supersymmetries shown; already different from (4.16)) ( 4 25)

Note the different pattern emerging as more and more edges, to be identified
with D,4-action, are added

(first eight supersymmetries shown;
maximally different from (4.16))

(4.27)

At this point all eight edges, to be identified with D, -action, have been
added, dividing the nodes into two two similar 64+64-node Adinkras — in
sharp distinction from (4.17). In particular, the edges corresponding to the
D, +-action partition the Adinkra (4.17) into 16 separate valises (4.1), each
with the minimal number (8+8) of bosons and fermions [12]. By contrast,
the edges corresponding to the eight D, -action partition the Adinkra (4.27)
into only two valises, each with 64464 bosons and fermions — the maximal
size, given that the other half must remain in a relatively rises position to
allow for adding the Dg;_-edges without forming ambidextrous two-colored
bow-ties.
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The next eight edges, to be identified with Dg_-action, are now being
added so as to mot form bow-ties with the previous eight:

(first ten supersymmetries shown)

(4.28)

swapping the 9th and 10th for the 11th and 12th supersymmetry:

Putting this together results in:

all 16 supersymmetries:

(4.32)

Both (4.23) and (4.32) are eight-fold iterated Zs-quotients (in the man-
ner of (3.9)) of the 16-cube rearranged so that all fermions are at the same
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height (have the same engineering dimension), while the bosons are judi-
ciously partitioned into the “lower” and the “upper” half, so as to exhibit
a (Z2)® symmetry. The particular (Zs)®-action that has been employed to
produce (4.23) from the 16-cube is encoded by the (binary) eg @ eg doubly
even linear block code, whereas quotienting by an ejg-encoded (Zz)® sym-
metry results in (4.32). This identification is implied by a comparison of the
intermediate stages (4.17) and (4.27) of the reconstruction of the two super-
multiplets: comparing (4.17) and (4.1) reveals the eg code in the D, -action
within (4.23), and eg is a subcode of eg @ eg, but not of ejq; see [12,13,15].

As shown in the procedures (4.1)—(4.6), (4.15)—(4.23) and (4.24)—(4.32),
the partitioning of the white nodes into the ‘lower’(propagating)/‘upper’
(auxiliary) ones has been unambiguously enforced by avoiding the obstruc-
tion of Theorem 2.1 while iteratively including the edges corresponding to
all supersymmetries, for which the supersymmetry action is encoded by
the binary codes eg, eg @ eg and ejg, respectively. We therefore conclude
that the depictions (4.6) are essentially unique for each chromotopology,
i.e., each binary code encoding the supersymmetry action [12]. That is,
all other choices depict supermultiplets that are field redefinitions of those
given here — except for the twisting [12], which is alternatively obtained:

(1) either by swapping the white < black node assignments, flipping the
Adinkra upside-down, and then repeating the procedures (4.1)—(4.6),
(4.15)—(4.23) and (4.24)—(4.32),

(2) or by swapping the solid/dashed designation of the edges of a single
color, corresponding to flipping the sign of a single D superderivative.

Now, the papers of [13,15] prove that — appearances to the contrary —
the valise rendition of (4.23) depicts a worldline supermultiplet that is in
fact isomorphic — and by judicious component field redefinitions only — to
the supermultiplet depicted by the valise rendition of (4.32). In turn, the
Adinkras (4.23) and (4.32) admit twisted variants that are not equivalent
to the un-twisted originals. That the valise supermultiplets should be iso-
morphic follows from the fact that the Clifford algebra €[(16,1) = R(256) @
R(256) [69], thus having precisely two inequivalent 256-dimensional repre-
sentations — and one is obtained from the other by twisting, not the dif-
ference between the valise renditions of (4.23) and (4.32); see [13,15] for
details.

We thus propose:

Conjecture 4.1. The (\-)isomorphism between the supermultiplets depicted
by the valise renditions of (4.23) and (4.32) is not obstructed by the par-
tititoning of the bosonic nodes into the “upper” and “lower” half as done
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in the process (4.15)-(4.23) and (4.24)-(4.32), so that the (64|128|64)-node
Adinkras (4.23) and (4.32) in fact represent “internally” isomorphic super-
multiplets.

In support of this conjecture, we note that unlike twisting, which requires
a redefinition of the basis of superderivatives (and supercharges), this A-
isomorphism requires only a component field redefinition. Such redefinitions
depend on numerous continuous parameters, making it plausible that the
A-isomorphism may indeed “lift” together with the node raising/lowering
performed when following either of the alternative procedures outlined and
illustrated in this section. Somewhat akin to the adaptation and general-
ization of the proof techniques from [10] as done above when proving the
present Theorem 2.3, it seems reasonable that one merely needs to ascertain
that the method of proof of the worldline A-isomorphism given in [13, 15]
can be made spin-equivariant. Hubsch [70] presents a detailed argument —
albeit not a rigorous proof — in this vein, regarding however two off-shell
supermultiplets of worldsheet (8,2)-supersymmetry, constructed from ten-
cube quotients by the codes dyig and eg, respectively. A detailed analysis and
a possible (dis)proof of this conjecture is however beyond our present scope.

If the A-isomorphism between the valise renditions of (4.23) and (4.32)
does “lift” to their half-raised versions depicted in (4.23) and (4.32), these
Adinkras simply depict two distinct but equivalent component field bases
for the same supermultiplet. If in turn the A-isomorphism is obstructed
by the height arrangements of (4.23) and (4.32), these then depict gen-
uinely distinct supermultiplets, and together with their twisted variants this
would imply the existence of four distinct irreducible off-shell (64]|128|64)-
component supermultiplets of worldsheet (8, 8)-supersymmetry. This would
then permit finding Lagrangians that could not be written with only one kind
of supermultiplet and its twisted variant, generalizing the useful inequiva-
lence of the chiral and the twisted-chiral supermultiplets exhibited in [28].

A comparison of the off-shell worldsheet (8,8)-supermultiplets depicted
by the Adinkras (4.23) and (4.32) with the constructions in the literature is
beyond the scope of this note, as is the exploration of the number of usefully
inequivalent variants, as indicated for the supermultiplets (4.7) and (4.10).

4.3 (16,16)-Supersymmetry

In fact, owing to the generative similarities in the explicit construction of
these minimal supermultiplets of (2,2),- (4,4)- and (8, 8)-supersymmetry
and their twisted variants, we conjecture that the same construction produces
an irreducible off-shell (214]21%|214)-component supermultiplet of worldsheet
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(16, 16)-supersymmetry and its twisted variant. This time, there are actu-
ally 85 doubly even linear block codes [71,72] that can be used to project
the 32-cube folded to the three levels such as (4.23) and (4.32). This results
in 85 distinct Adinkras, together with a twisted variant of each.

Now, the valise renditions of all 85 Adinkras, projected using the respec-
tive 85 distinct doubly even codes, all depict isomorphic worldline super-
multiplets, as do their twisted variants, thus merely giving varied depictions
of only two distinct valise worldline supermultiplets. This also follows from
the fact that the Clifford algebra €[(32,1) = R(2!6) @ R(2!6) [69] has two
distinct 2'6-dimensional representations.

We assume Conjecture 4.1 to extend and imply that raising a judicious
half of the bosons to the “upper” level in each of these 85+85 Adinkras
does not obstruct the A-isomorphism, which then extends to the depicted
worldsheet supermultiplets. If so, then this collection of 85 distinct three-
level Adinkras simply depicts 85 usefully distinct distinct bases for only one
equivalence class of off-shell worldsheet (16,16)-supermultiplets, and the
same holds for their twisted variants.

5 Conclusions

In the foregoing analysis, the twin Theorems 2.1 and 2.2, and Corollary 2.1
have been used to filter those worldline off-shell supermultiplets from the
huge class of [12-14] that extend to off-shell supermultiplets of worldsheet
(p, q)-supersymmetry.

In extending to worldsheet (2, 2)-supermultiplets, only five Adinkras (3.1)
and their boson < fermion flips (from a total of 64 [13] — not counting
numerous nodal permutations!) depict off-shell worldsheet (2,2)-super-
multiplets. Of these, Adinkra C decomposes into a direct sum of Adinkras
D and E. In turn, Adinkras A, B, D and E correspond to the well-known
intact (unconstrained, ungauged, unprojected. .. ), semi-chiral, chiral and
twisted-chiral superfield, respectively.

The Reader may find it gratifying that no surprising off-shell (2, 2)-super-
multiplets have been uncovered by dimensionally extending supermultiplets
from the collection of 64 worldline supermultiplets of (N =4)-extended
supersymmetry [13]. However, this by no means guarantees that no sur-
prises will be found for p+¢q > 4, and the following remarks are in order:

(1) The number of inequivalent chromotopologies of Adinkras is a strongly
combinatorially growing function of N: to date, even distributed
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computing efforts running on supercomputer clusters have stalled at
N =29 [48] — and this is without considering the combinatorial com-
plexity involved with assigning different possible engineering dimensions
to the component (super)fields in a supermultiplet! Even with a filtering
based on the obstruction described in Corollary 2.1, it is likely that the
number of off-shell supermultiplets of ambidextrous worldsheet (p,q)-
super-symmetry (i.e., when p,q # 0) is nevertheless a combinatorially
growing function of p+¢. In turn, for unidextrous (N,0)- and (0, N)-
super-symmetry, this obstruction is always absent and the whole huge
class [12-14] of worldline off-shell supermultiplets extends to worldsheet
off-shell supermultiplets.

(2) It is always possible to construct an indefinite number of new supermul-
tiplets by “linear algebra”: by subjecting direct sums of tensor prod-
ucts of these adinkraic supermultiplets to superdifferential constraints,
gauging and projection. Such constructions extend the Weyl construc-
tion from Lie algebra representation theory, the discussion of which is
deferred to subsequent effort. Suffice it here to say, however, that the
well-known linear supermultiplet [1-4] is but a simple example of such a
construction, the Adinkra of which does not occur in the line-up (3.1),
but which can be constructed in terms of those; see also [73,74].

Comparisons:

It is worthwhile comparing the present approach with that of [7,8], where the
line-up of 30 “half-sized” supermultiplets of the (/N =4)-extended worldline
supersymmetry is explicitly tested for extending directly to supermultiplets
of N'=1 supersymmetry in (3+1)-dimensional spacetime. These supermul-
tiplets are depicted by the various “nodal permutations” of the Adinkras in
figure 1. For these 30 Adinkras, the computations of [7,8] require numeri-
cally checking a system of certain 4 x 4 matrix equations for each Adinkra,
which adds up to 2 x 30 - (2 x 30) = 3,600 such 4 x 4 matrix equations.

By contrast, simple inspection reveals that of the Adinkras in figure 1
only the two shown second from the right satisfy the twin Theorems 2.1
and 2.2, and for these we must select the red—green pair for D, and the
blue— pair for Ds_. Any permutation of nodes across the levels (other
than a simple upside-down flip) necessarily violates these theorems and we
conclude that
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e

(1 NP

Py

Figure 1: The four distinct height configurations of the “half-sized” N =4
Adinkras, their relatively twisted variants (such as the chiral and twisted-
chiral Adinkras, second from the right) stacked one above the other. The
number of inequivalent nodal permutations (NP’s) are shown in parentheses.

are the only distinct “half-sized” N =4 Adinkras that extend to depict
worldsheet (2,2)-supermultiplets: the second one is the upside-down ver-
sion of the first, and the fourth one is the upside-down version of the third;
the right-hand side two are twisted variants of left-hand side two, where
the solid/dashed parity is flipped for only the golden edges. However, on
closer inspection, we note that changing the signs of the two right-hand
side fermions and the two top bosons turns the second Adinkra in the
line-up (5.1) into the left-right mirror image of the first one, proving that
these two depict the same supermultiplet. Whence only the two “half-sized”
Adinkras in the line-up (3.1) and their boson « fermion flips extend to depict
supermultiplets of worldsheet (2,2)-supersymmetry.

As worldsheet supersymmetry is a subset of the N'= 1 supersymmetry
in (3+1)-dimensional spacetime, the filtering presented herein (twin The-
orems 2.1 and 2.2, i.e., Corollary 2.1) provides an intermediate step that
enhances the criteria of [7,8]. This effectively reduces the need for compu-
tations of [7], already 30-fold for the lowest-N case!®! Being that the huge
number of Adinkras depends highly combinatorially on N, this improvement
increases dramatically with NN; see Section 4 for some (4,4)- and (8, 8)-
supersymmetric examples.

Even in the case of (2,2)-supersymmetry, a simple inspection of the 64
Adinkras (most of which admit many nodal permutations) leaves only the
five Adinkras in (3.1) and their boson < fermion flips. Furthermore, as

. . . . L(d+1)/2]
10Supersymmetry in d-dimensional spacetimes has N = 2 N real generators,

except for (d—2) = 0 (mod 8) when a model can have half as many chiral supersymmetries,
such as on the worldsheet.
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shown above in the illustration (3.9) and guaranteed by the work of [13], the
Adinkra C in the line-up (3.1) decomposes as a direct sum D & E, so that
we need only consider the Adinkras A, B, D, E and their boson « fermion
flips — a total of eight. We leave it to the Reader to tally up the number of
numerical criteria ¢ la [7] required to check this list, and the improvement
factor afforded by the reduction to (3.1).

In turn, the intuitive (see Sections 3 and 4) considerations presented
herein suffice for adinkraic supermultiplets of all worldsheet (p,q)-super-
symmetry, which are not subject to gauge equivalence or Bianchi-type self-
(anti)duality conditions; these will be addressed under separate cover.

Summary and outlook

The unpublished work in [45] made an unexpected assertion, bringing to
light evidence for the existence of a “supersymmetry holography” that was
unknown at the time. This evidence was garnered from many works refer-
enced here from that period and made on the basis of observation of “Garden
Algebra” structures found universally in all unconstrained supersymmetric
quantum mechanical systems [75].

Adinkras are graphical representation of these algebraic structures. The
correctness of the assertion implies that Adinkras are actually holograms of
representations of supersymmetry in higher dimensional spacetimes. As a
hologram, an Adinkra must contain all the information of the higher dimen-
sional theory and permit a reconstruction of the higher dimensional theory
only from the data solely contained in the Adinkra. The works of [7,8] show
this in some specific examples in the context of (3+1)-dimensional, N' =1
supersymmetric representations. The current work gives a filtering proce-
dure that can be applied to this end to (0+1)-dimensional systems, and
is expected to produce all intact off-shell (p, g)-supermultiplets in (141)
dimensions.

Finally, the criterion employed herein (twin Theorems 2.1 and 2.2, i.e., the
Corollary 2.1) is necessary for dimensional extension to higher-dimensional
theories (see remark 2 to Corollary 2.1), but is evidently not sufficient:
For example, Adinkras D and E in the line-up (3.1), the chiral and the
twisted-chiral (2,2)-supermultiplet, cannot both simultaneously extend to
(341)-dimensional spacetime and indeed one of them (depending on the
spin-structure) fails the numerical tests of [7]. That is, extension from
worldsheet to higher-dimensional supersymmetry does involve additional
obstructions, evidently related to the fact that the Lorentz groups in all
higher-dimensional spacetimes is non-abelian.
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Appendix A The Semi-Chiral Supermultiplet

The Adinkra (3.7) defines a supermultiplet by assigning a component super-
field to each node:

; N "\\: (A1)

and read off the superdifferential relations following the dictionary in Table 1:

D@1 =1¥;, Doy® =1V,
D ®; =iV, P, =Ty, (A.2a)
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Dy ®o=1i¥,, Do, ®Py=—1¥,

Dy &, =¥y, Py =iV, (A.2D)
D ¥ =—f, Doy ¥ =—f,

D ¥ =0_®, U= —f_, (A.2¢)
D O =—f, Dy ¥ =1,

D U = d_ &y, O = £, (A.2d)
D ] =02®y, Doy P = 0%y,

D;_P; =fi, U = fs, (A.2e)
D W, =0:®y, Doy U, =01,

D;_P, = f, U, = f, (A.2f)
Dy Wy =—f3, Dy, W5 = —fy,

D, ¥ =f;, T =0_®, (A.2g)
D Uf =, Dy Of =1,

D, ¥ =f, T =0_®,, (A.2h)
Dy fy =—i04 0, Doy =io-¥7,

Di_f; =i0-¥7, fi = —i 2], (A.2i)
Difo=—i0:9F, Dofy=—ids¥],

Di_fh =i0_¥;, f = —i 25, (A.2))
Dy fic =i8f, Doifio =iE],

Dy_fi- =io_¥], fi_ = —i0_ ], (A.2k)
D £ =187, D2+f2:lt =—1 8],

D, ff =ido- ¥}, fif = —i0_ Wy, (A.21)
Dify=—i0sWS, Doyfy=i0-T],

Dy fy =2, f3=i0_- 07, (A.2m)
Dify=—i0:0), Dofy=—i0.¥],

Dy_fy =iE], fi =i0-T;, (A.2n)
D Ef =0.fi, Do Ef = —0.f],

D, Ef = 0_ @3, B =-0_f, (A.20)

Dy B =048, Do B =0,
Dl_E;— = 8: <I)4, E; = —8: fg. (A2p>
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It is possible to complexify simultaneously the component superfields

D¢ = (P1+iP), Wi = (T +iP]), @ = (¥ +i¥,),

5= (g +iP]), (A.3a)
f$ = (fi+ify),  fo = (F+ify), fS:= (f3+ify),
B = (B +iEy), (A.3b)

and also the left-handed superderivatives, D¢ := (D14 + D2y ), leaving
however the D;_, Do_-action unchanged. This simplifies the Adinkra (A.1):

=7 =y il

BaNGN N
AN AN i i s
:SQE:?\:?\\??;Sa 1\\\\\ \\\\\1 (A.4)

LY, Y ) ‘ ; 5
D4 | I
<l '
3, >, &

The red-green double edge indicates the complex action of D€ ; by contrast,
the action of D;_ (blue edges) and is not so paired,
which hints at the possibility that (A.1) is a particularly constrained, but
initially complex supermultiplet. The graded dimension count (number of
real degrees of freedom per height level) suggests that (A.1) is the Adinkra
of the semi-chiral supermultiplets [31,33], and we now turn to prove this.

Proof that the Adinkra (A.1) depicts the semi-chiral superfield: The semi-
chiral supermultiplet is defined as a complezx intact (2, 2)-superfield subject
to the single complex superdifferential constraint [31,33]:

D¢ % =0. (A.5)

Rewriting D¢ = Dy_ —iDo_ and 3¢ = X + iX,, this is seen to consist of
two real superdifferential constraints:

_ D 3 =-Dy X
D=0 & =l S (A.6)
D1_¥y; =Dy 3.
We use the definitions of real component fields of 3:
Sii=1[D14,Da4][D1-, Dy |5, (A.7a)

% = 3[D14, Doy |Ds Byl X = §[D1-, Dy Doy X, (A.7b)

1
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Sz: = %[D1+7D2+]2i‘7 Siozo'z = %[Da+7Dd—]2i|)

St = 1[D1_, D], (A.7c)
O-i—’c—'x = Z‘Do‘é*zilv O = iDa+2i|7 (A7d)
si=1Dg %, 1=1,2. (A.7e)

and project the components of the superdifferential constraint by applying
the tesseract of superderivatives (3.3) on the equation and projecting to
the worldsheet. Evaluation of the components (with convenient constant
pre-factors) of (A.5) produces, in turn:

iDCX =0: ofy=—07;, 0y =0 (A.8a)
iD1+ D X =0:  Soia=—5111, So11 = S112; (A.8b)
iDoy DE X =0: Sggo = —S121, So21 = S129; (A.8c)
D, D3| =0: S =(d=s1), ST =—(9=s59); (A.8d)
iDy DX =0: ditto, ditto; (A.8e)
5014, Do | DEEC| =0 X5 =-%7, I5 = Yn; (A.8f)
D14, D1 DX =0: 2f, = —(0-0py), 2§, =(0=03); (ARg)
3D14, Do |DEX| =0:  ditto, ditto; (A.8h)
Dy DD =0: 5= —(0-0p), Sf=(0-0p): (A8
$[D24, Do DX =0:  ditto, ditto; (A.8j)
UDi_. Do DS =0 (9-05) = (0-01y), (0-08) = —(0-07,);
(A.8Kk)
[these are implied by (A.8a)]
$D14, Doy DD = =0: Sy =—(0=57), S1=(0-57); (A8l
$[D14,D24 DD % =0: ditto, ditto; (A.8m)
1D1-,Do_ D1 DX =0: (9= So11) = (0= S112),
(0= S212) = — (9= S111); (A.8n)

[these are implied by (A.8b)]

%[Dl_,Dg_]D2+DC_EC| =0: (B: 5221) = (8: 5122),

(0= S222) = — (9= S121); (A.80)
[these are implied by (A.8c)]

i[D14, D24 ][D1-, Do |[DEXE| =01 (9=35) = —(0=37)),

(0_55,) = (0_%7,). (A.8p)
[these are implied by (A.8f)]
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The identifications noted as implied by earlier identifications or being a copy
(“ditto”) of a previous identification may be dropped. In deriving these, the
following operatorial identities were useful:

D11, D1_]Di_ = 2D, D;_D;_ = 2id_D., (A.92)
[D14,D1-]Dy_ =2D14Dy_Dy_ = [D1_,D2_]Dy4, (A.9b)
D1y, Do D1 = 2D, Dy Dy = —[D1_, Do_|D1y, (A.9¢)
D11, Ds_]Ds_ = 2D14 Dy Dy = 2i0_ Dy, (A.94)
Doy, D1 D1 = 2Dg,D;_Dy_ = 2id_ Doy, (A.9¢)
Doy, Dy_|Ds_ = 2Dy, D;_Dy_ = [Dy_, Dy_|Dos, (A.9f)
Doy, Dy Dy =2Dg; Dy Dy = —[D;_,Dy_]Doy, (A.9g)
Do, Ds_|Ds_ = 2Dg, Dy Dy = 2id_ Doy, (A.9h)
[D;_,Dy_|D;_ = —2Dy_D;_D;_ = —2id_Dy_, (A.90)
[D1_,Dy_]Ds_ = 2D;_Dy_Dy_ = 2i0_D_. (A.9))

These component field level identifications (A.8) imply the corresponding
identifications of the nodes in the Adinkras A(X;) and A(X2), and “fuse”
them by identifying each node from .A(3;) that corresponds to a component
field appearing in the identifications (A.8) with precisely one node from
A(X5). In the resulting fusion, A(X1)#A(Xs):

(1) There are (2/6/6|2) nodes per height. For example, the top (fifth level)
nodes have been identified: S; = (0=.55 ) and Sy = —(0= ST ), so that
all edges that used to lead to the top (fifth) level, now lead to the ST
and S5~ nodes in the previously middle (third) level.

(2) Each remaining node again has precisely one edge of each kind adjacent
to it and so belongs to a proper Adinkra, which by the classification
of [10,12] filtered by Theorems 2.1 and 2.2 must be the one in (A.1).

This above identification process is depicted below:

Edges being identified must match
in their sold/dashed quality

RN AN\

NN

(A.10)
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where the curved arrows spanning between A(X) and A(X2) indicate a few
of the identifications (A.8); note that these “real part” and “imaginary part”
Adinkras were drawn in mirror image to each other. The illustration in the
middle depicts the result of the identifications, where the transported nodes
were brought close, but not precisely to their destination so as to show the
perfect overlay — upon sign-changes in a few component fields consistent
with (A.8). Upon some horizontal repositioning of the nodes, the result is
the right-hand side Adinkra, which is identical with (A.1), thus proving that
this is indeed the Adinkra of the semi-chiral supermultiplet. O

Appendix B Dirac algebra and related conventions

For the discussion around equations (4.7)-(4.14), the following set of con-
ventions for the y-matrices was followed:

oy = diag(1, —1),  eqe™ = =5, 0%, % =+1, (B.1)
(1) (1")e® = 0™ 847 — (7). (B.2)
The last one of these relations implies
e =21, Pt = ey (B-3)
Moreover, it follows that

(V*)a” ()6 =0, (B.4)
()" ()" = 3ea(7?) " (1) ()" = 3 (W) a(Y)e” = 04" . (B.5)

Denoting the spinorial metric C,5, some useful Fierz identities are:

CABCCD - 5[AC 6B]D, (BG)

(7)) as(12) " + () ap(7?) P = =64 6", (B.7)
(’Ya)(AC(’Ya)mD + (73)<AC(73)B)D = 5(AC 5B)Dv (B.8)
(1) (a)ey” = —2(v*) as ()", (B.9)

2(v)a(10)"" + (V) (7)) = =604 65", (B.10)
(Ya)a”65% + (7*72) 4" (V) 5" = (v*7a) an (*) 7, (B.11)
(737a’Y3)AD = _(’Ya)ADa (B-12)

(V)4 (re)e” + (V) a" (7%)e” = 867 647 = Cac CPP, (B.13)
(Y)a°(P1e)e” = Cas(7)7” + (1) as C°P. (B.14)
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As an explicit representation, we may define the 141-dimensional ~-
matrices in terms of the usual Pauli matrices according to

(4" = (04", (A" ==i(0M)a"  (1)a" = (074" (B.15)
The spinor metric C45 and its inverse C*? may then be chosen as
Cap = (0%)an, C*% = —(c?)"P. (B.16)

Using this explicit representation, it is easy to show the following symmetry
properties

(Y)az = ()5as  (V7)as = (V) sas  Can = —Cha, (B.17)
(,ya)AB — (Va)BA’ (WB)AB _ (73)3,4’ CAB _ —CBA. (B18)

In a similar manner the following complex conjugation properties can be
derived

(V)" = ()4, [()a"] = +(7")4", (B.19)
(") as]" = (") a5, [(’YS)AB]* = —(VB)ABa [Capl” = —Clag, (B.20)
(V)P = (v, ()] = =()*", [C*P]" = -C*". (B.21)

Due to the relation [(7*) 4®]* = —(7*) 4", we see that this choice of gamma

matrices is in a Majorana representation and thus the simplest spinors such
as 1*(x) may be chosen to be real, i.e.,

[ (2) |" = 9" (), (B.22)
and we can raise and lower spinor indices according to
vi(@) = CP Pp(x), Ya(r) =¢°(2) Cpa (B.23)
It then follows that
[Ya(z) | = —ta(z). (B.24)

Of course, it is always possible to introduce complex spinors also.

The extraction of light-cone coordinates begins with the observation that
+2 in this set of conventions is diagonal. This means that our 2-component
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Majorana spinors can be written as

w) = | . (8.25)

By defining chiral projection operators via the equations
PE=111+ 4], (B.26)
it follows that
Bty B _ | ¥+(2) 5\ B _ 0
(PT) A" Yp(z) = { 0 ] , (P7)a" Yp(x) = |: W_(z) ] ) (B.27)
in terms of the one-component Majorana spinors 1 (x) and ¢_(z).
The projection operators p* satisfy the following relations:
PE3 pE= L pE pEA3PF =, (B.28)
PFA* Pt =0, PT~34%PF =0, (B.29)

and project the following worldsheet derivatives:

Pt P8, = :8 _i(8T0+ 8")] - [8 _ioa*] , (B.30)
PPt o, = -i(afoac,) 8} = L.aoz 8} : (B.31)
Pry3~42 P9, = _8 _i(aTOJF a")] = [8 _Zg*] , (B.32)
P~ 342 Pt 9, = __Z.(aTO_ 9,) 8] = [_Z%_ 8] : (B.33)

Finally, our rules for manipulating the SU(2) indices are very similar to
the ones used for the Spin(1, 1) ~ SL(2, R) spinor indices. The SU(2) metric
C;; and its inverse C*/ can be identified as

Ciy = (0D, € = (0?7, (B.34)
so that
Cyj=—Cj, CY=-C7 C;COM=5F6' 56" (B.35)
We raise and lower SU(2) indices according to

V(x) = CY (), di(x) =¥ (2) O, (B.36)
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that are directly the analogs for raising and lowering indices on SL(2,R)

tensors. Note also that

(CY)* =Cy, and (Cy)*=CY. (B.37)
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