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Abstract

We define an infinite class of unitary transformations between position
and momentum fractional spaces, thus generalizing the Fourier transform
to a special class of fractal geometries. Each transform diagonalizes a
unique Laplacian operator. We also introduce a new version of fractional
spaces, where coordinates and momenta span the whole real line. In
one topological dimension, these results are extended to more general
measures.

1 Introduction

The spectral theory in fractal geometry has, by now, achieved a certain
degree of sophistication [1–3]. Given a self-similar fractal set F , one can
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construct a natural Laplacian operator thereon and study its spectrum,
which depends both on the geometry (i.e., symmetries) and on the topology
of the set. An open question, however, is how to construct a “momentum
space” Fk or, in other words, whether there exists an invertible transform
F : F → Fk generalizing the Fourier transform in R

D. Results in this direc-
tion were found for fractafolds [4] and post-critically finite fractals such as
the Sierpiński gasket [5,6]. The geometry of momentum space is, in general,
different from that of F : while F is characterized by the Hausdorff dimen-
sion dH, some evidence is in favour of identifying, for several fractals, the
dimension of Fk with the spectral dimension dS of the set [7]. Checking the
conjecture

dH(Fk)
?= dS(F) (1.1)

is tightly related to the possibility of writing the transform F explicitly.

One goal of this paper is to answer this question in the context of fractional
spaces [8–11]. Fractional spaces are continua embedded in a D-dimensional
manifold where ordinary calculus is replaced by fractional calculus of fixed
order. Giving up ordinary differentiability in this way guarantees that the
geometric and harmonic properties of fractional spaces have genuine fractal
features, such as anomalous dimensionality (non-integer Hausdorff and spec-
tral dimension) and discrete symmetries (logarithmically oscillating mea-
sures). Allowing the fractional order to change with the scale, one obtains
multi-fractional settings endowed with a multi-fractal geometry. Here, we
construct a class of unitary transforms between position and momentum
fractional Euclidean space. If these transforms are imposed to be automor-
phisms, then

dH(ED
α,k) = dH(ED

α ). (1.2)

For fractional spaces such that dS(ED
α ) = dH(ED

α ) [9], combining with (1.2)
one would verify equation (1.1) for F = ED

α . If diffusion is anomalous, how-
ever, or if momentum and position spaces are taken with different measures,
dS �= dH and the conjecture is violated.

In multi-fractals, spectral and Hausdorff dimensions change with the
probed scale. Multi-fractional spaces realize this feature and were proposed
as the fundamental building block of field theories with improved ultravio-
let (UV) properties [12–14]. A reduction of dimensionality with the physical
scale has been recognized as an agent favouring UV finiteness in the context
of quantum gravity [12,15,16]. Dimensional flow (especially towards a two-
dimensional effective spacetime in the UV) seems to be a universal property
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of independent quantum gravity models such as causal dynamical triangula-
tions [17, 18], asymptotically safe gravity [19], spin foam dynamics [20–22],
and Hořava–Lifshitz gravity [23,24] (see also [25]). A non-trivial fixed point
with a reduced Hausdorff dimension, associated with an anomalous scaling
dimension of the metric, was recognized as a requisite for a perturbatively
renormalizable quantum gravity theory [26, 27]. The mathematical frame-
work of loop quantum gravity had been developed also with the hope of
realizing a fractal dimensional reduction, before UV finiteness was rather
ascribed to discreteness of the geometry.

In quantum mechanics and quantum field theory, a well-defined momen-
tum space constitutes a very powerful tool for the physical interpretation
and for calculational purposes. The same holds also for fields living in multi-
fractional geometry [8, 10]. Before initiating a systematic construction of a
fractional field theory, it is therefore important to show the existence of a
momentum transform expanded in a basis of functions K which either diag-
onalize the quadratic form DKDK, with D a differential operator, or are
eigenfunctions of the Laplacian operator K. If D is self-adjoint, K = D2 and
the two conditions are equivalent.

Since momentum transforms are specified by integral kernels K that
are bounded functions, it is natural to define the momentum transform F
for absolutely integrable functions, f ∈ L1(X, �), for some domain X ⊂ R

D

equipped with a given measure �, just as for the usual Fourier transform. In
this case, F is a continuous linear application from L1(X, �) to some subset of
C0(RD), the set of continuous functions in R

D. The more physically interest-
ing case of functions belonging to L2(X, �) cannot be done straightforwardly,
as there are many L2(X, �) functions that do not belong to L1(X, �) and for
which the local definition of the integral transform does not hold. It will be
possible to extend the momentum transform from L1(X, �) ∩ L2(X, �) onto
L2(X, �) only as a limiting procedure, just like for the Fourier transform. In
this case, the momentum transform F can be unambiguously defined with
the following properties:

(i) F is a unitary integral transform of L2(X, �) onto itself.
(ii) F can be expressed as an integral operator whose kernel is specified

by the eigenfunctions of a given Laplace operator K.
With the above conditions, we shall find integral representations of the Dirac
distribution in terms of the eigenfunctions of K. Our findings will clarify
the interrelation between momentum transforms and Laplacians in fractional
spaces. For a given space, the momentum transform is not unique and there
exist inequivalent F ’s satisfying (i). If a particular Laplacian K is chosen,
condition (ii) can fix the momentum transform on the space, but we will end
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up with an infinite class of transforms and Laplacians. If we further require
that

(iii) the Laplacian K can be written as the square of a self-adjoint differ-
ential operator D, K = D2,

then both the momentum transform and K are uniquely defined for a given
fractional space.

Section 2 briefly introduces multi-fractional spaces, both in their original
formulation (“unilateral”) and in a novel “bilateral” version. In the former
(Section 2.1), the measure has support over the first orthant of R

D. Both
coordinates x and momenta k will be non-negative. In the bilateral case
(Section 2.2), the measure weight is a function of the absolute value of the
coordinates, and the support of the measure is the whole space: coordinates
and momenta can take both signs. For each version, we define two inequiv-
alent second-order Laplacians which, respectively, have played and will play
a major role in the formulation of the theory.

An infinite class of momentum transforms in the unilateral and bilateral
versions is constructed in Section 3. The class is parametrized by a para-
meter l, which is continuous in the unilateral case but can take only discrete
values in the bilateral world. The requirement (iii) fixes l once and for all to
a special value. The multi-fractional and complex fractional cases are also
discussed. Section 4 is devoted to conclusions.

2 Multi-fractional Euclidean spaces

2.1 Unilateral world

Let R
D
+ be the first orthant of Euclidean space in D (integer) topological

dimensions. Define the fractional measure

d�α(x) = dDx vα(x), (2.1a)

where the “isotropic” measure weight is

vα(x) =
D∏

μ=1

vα(xμ) :=
D∏

μ=1

(xμ)α−1

Γ(α)
, (2.1b)

xμ ≥ 0 are D coordinates, Γ is the gamma function, and 1/2 ≤ α ≤ 1 is a
real parameter. The measure is isotropic in the fractional charge α, but
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anisotropic measures with different αμ are also possible. We do not consider
the anisotropic case for simplicity and also because isotropic fractional spaces
are sufficient to realize the physics outlined in [8, 10].

The volume of a D-ball of radius R scales as

V(D) =
∫

D−ball
d�α(x) ∝ RdH , dH = Dα, (2.2)

where dH is the Hausdorff dimension of the space ED
α endowed with the

measure (2.1). Summing or integrating over all possible values of α, weighted
by a factor gα, one obtains the multi-fractional measure

d�(x) =
∑
α

gαd�α(x), (2.3)

representing a space ED∗ whose dimension changes with the scale. In fact,
the sum or integral in α = α(�) can be regarded as over a scale � increasing
with α [10].

Given a Lagrangian density L, which may or may not depend on α, the
fractional action reads

S =
∑
α

gαSα, Sα =
∫ +∞

0
d�α(x)L. (2.4)

For a real scalar field, L = φKφ/2− V (φ), where K is a kinetic operator, V
is a potential and φ has scaling dimension [φ] = (dH − [K])/2. This vanishes
at the critical point α∗ = [K]/D, signalling power-counting renormalizability
[10,12,13]. If we identify α∗ with the lowest value α = 1/2 in a theory with
Lorentzian signature, at the lowest scale in the dimensional flow spacetime
has dimension dH∗ = [K] = D/2, and if D = 4 then dH∗ = 2.

In general, the Hausdorff and spectral dimension in the UV depend on the
choice of Laplacian. This choice determines uniquely the invertible unitary
transform (possibly parametrized as a class of transforms) linking fractional
position and momentum spaces. A two-dimensional UV limit for effective
spacetimes is typical in quantum gravity models, so we are mainly interested
in second-order differential operators K. In [9, 10], the following Laplacian
was used:

K1 :=
1
vα

δμν∂μ(vα∂ν · ) = δμν

(
∂μ∂ν − 1− α

xμ
∂ν

)
, (2.5)
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where Einstein’s summation convention is assumed and δμν is the Kronecker
delta. In spaces with Lorentzian signature, this is replaced by the Minkowski
metric ημν . The analogy between the measure weight vα and the determi-
nant of the metric

√
g in a Riemannian space makes equation (2.5) resemble

the covariant Laplacian. Another possibility, which we introduce here, is to
consider the operator

K2 :=
1√
vα

δμν∂μ∂ν(
√

vα · ) (2.6a)

= δμν

[
∂μ∂ν − 1− α

xμ
∂ν +

(1− α)(3− α)
4

1
xμxν

]
. (2.6b)

Note the extra centrifugal potential term. In the limit α → 1, K1 = K2 = ∂2.

2.2 Bilateral world

The action (2.4) is defined with a measure whose support is the positive
orthant of R

D [8–11]. The choice xμ ≥ 0 is made so that this measure is
real-valued and does not pick complex phases arising when one changes
orthant for some xμ → −xμ. Consider the integral

∫ +∞

0
dDx vα(x) f(x),

where f is any function such that the integral is well defined. Splitting the
integral artificially in two and changing variable x → −x in the second piece,
one finds that∫ +∞

0
dDx vα(x) f(x) =

∫ +∞

−∞
dDx vα(|x|) f(|x|)

2
, (2.7)

where

vα(|x|) =
D∏

μ=1

vα(|xμ|) :=
D∏

μ=1

|xμ|α−1

Γ(α)
. (2.8)

Equation (2.7) states that unilateral fractional integrals defined on a func-
tional space of arbitrary (but “good”) functions are equivalent to bilateral
fractional integrals defined on a functional space of even functions. Con-
versely, a bilateral world defined on a functional space with indefinite parity
is equivalent to an unilateral one with a functional space of even functions.
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At first sight, there seems to be little point in an exercise stating a simple
mathematical equivalence. Using one or the other formulation should be just
a matter of convention. Unilateral fractional measures might seem preferable
over those with the absolute value, considered in [28] and [9, Section 2.5],
since the latter have the small disadvantage that they hide the integrable
singularity at xμ = 0. However, a careful inspection of the physics one can do
in fractional spaces shows that unilateral worlds (including the α = 1 case)
may be problematic for a sensible formulation of quantum mechanics [29].
Therefore, the bilateral version of fractional spaces is equation (2.8) with
integration support R

D,

∫ +∞

0
dDx vα(x)→

∫ +∞

−∞
dDx vα(|x|) , (2.9)

which must be considered as a quite distinct implementation of fractional
geometry. For simplicity, we shall use the same symbol vα(x) for the mea-
sure weight (2.8), as the difference is explicit in the integration range. In
fact, xμ ≥ 0 in the unilateral world and one could have taken directly equa-
tion (2.8), the absolute value being pleonastic in this case. Then, the defi-
nitions (2.5) and (2.6) are unaltered.

3 Fractional momentum transforms

In this section, we show that:

(1) In the unilateral case, there exists an infinite number of invertible uni-
tary transforms F l

α parametrized by a parameter l such that Re(l) > −1.
Each transform is realized by an integral kernel formed by the eigenfunc-
tions cl

α of a second-order Laplacian operator Kα,l.
(2) Only the transform with l = 1/2 is such that the associated Laplacian

can be written as K = D2, where D is a first-order self-adjoint differential
operator.

(3) In the bilateral case, there exists an infinite number of invertible unitary
transforms such that l = n− 1/2 is half-integer.

3.1 General setting

Without loss of generality, in this subsection we shall consider the D = 1
dimensional case; the extension to D dimensions will be straightforward.
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Let F be a prototype of momentum (linear) transformation specified by a
bounded kernel K. Acting on a function f(x), the F transform is

f̃(k) =
∫

d�(x)K(k, x)f(x) =: F [f(x)]. (3.1)

If K is bounded, it does not present singularities along the integration path
and asymptotically tends to some constant.1 Then, equation (3.1) is well
defined for any function f(x) ∈ L1(R, �). The image of the transform (3.1)
is a not-so-easily characterizable subset of C0(R), the set of the continuous
functions on R. Thus, F is a linear operator from L1(R, �) into C0(R).

In the context of quantum mechanics, equation (3.1) meets with two prob-
lems: (a) it should be defined in L2(R, �), rather than in L1(R, �); (b) its
image should be L2(R, �), and not a subset of C0(R). To proceed, one should
first notice that, for any fκ(x) continuous and defined on a compact support
κ, F [fκ(x)] ∈ L2(R, �). Since L2(R, �) is closed, the idea is to define the
F transform for a generic function in L2(R, �) as the limit, in the L2(R, �)
topology, of a sequence of functions defined on a compact support. For
instance, to any continuous f(x) ∈ L2(R, �) we could associate the following
sequence fn → f :

fn(x) =

{
f(x) if |x| ≤ n,

0 if |x| > n,
(3.2)

and define the F transform of f as the limit of the F -transformed sequence

f̃(k) := lim
n→∞ f̃n(k) = lim

n→∞

∫ +n

−n
d�(x)K(k, x)f(x). (3.3)

Since the space of the continuous functions on R is dense in L2(R, �), the
limit procedure defined in equation (3.3) provides a map from L2(R, �) to
L2(R, �). The limit is understood in the L2 topology. Consequently, if
f(x) ∈ L1(R, �) ∩ L2(R, �), f̃(k) defined as in (3.1) could be different from
that obtained through (3.3). However, they belong to the same equivalence
class (i.e., they are equal almost everywhere). From now on, we shall inter-
pret all the equalities in the L2 sense, understanding the above limiting

1The case of power-like bounded kernels can be treated along the same lines, either
modifying the function space or modifying the measure �(x).
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procedure, if needed. Also, for any f and g in L2(R, �) we define the inner
product

(f, g) :=
∫

d�(x) f∗(x) g(x), f, g ∈ L2
α, (3.4)

where ∗ denotes complex conjugation. The norm of a functions is then
‖f‖2 := (f, f).

If the map is invertible, there should exist one K−1(k, x) such that

f(x) =
∫

dτ(k)K−1(k, x)f̃(k) =: F−1[f̃(k)], (3.5)

where the integration measure τ(k) in momentum space is allowed to be dif-
ferent from �(x). Imposing F [F−1[f̃(k)]] = f̃(k), one obtains the resolution
of the identity in terms of K:∫

d�(x)K(k, x)K−1(k′, x) = δτ (k, k′), (3.6)

where the distribution δτ is the delta distribution when the momentum
measure is τ , i.e., ∫

dτ(k′) f(k′)δτ (k, k′) = f(k). (3.7)

Since it must also be F−1[F [f(x)]] = f(x), one obtains, in position space, a
different representation of the delta distribution,∫

dτ(k)K(k, x)K−1(k, x′) = δ�(x, x′), (3.8)

such that ∫
d�(x′) f(x′)δ�(x, x′) = f(x). (3.9)

At this point, if we require that the momentum transform be an automor-
phism, then the partition of the unity is unique (the two representations of
the delta are equal), yielding τ = �. The general case will be commented
on in the conclusions. Then, both the kernels K and K−1 must depend
on the product kx; in particular, they are invariant under the exchange
(k, x)↔ (x, k) and the identities (3.6) and (3.8) are equivalent with k and
x switched.
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In ordinary quantum mechanics, coordinate and momentum representa-
tions are equivalent pictures for describing a physical system: the Fourier
transform not only maps any L2 element into another L2 element, but it
is also a surjective map, that is, any L2 element can be seen as a Fourier
transform of another L2 element. This is guaranteed by the fact that the
inverse Fourier transform is itself a Fourier transform. Precisely the same
will happen in our case and the momentum transforms F we shall define are
“onto” L2(R, �). Consequently, unitarity of the F transform solely depends
on the Parseval identity. If the latter holds,

‖f̃(k)‖ = ‖f(x)‖, (3.10)

then the transformation is unitary. In fact,

(f, f) = (f̃ , f̃) = (Ff, Ff) = (F †Ff, f)

implies

F † = F−1 or K∗(kx) = K−1(kx), (3.11)

and the momentum transform is unitary. The converse is also true: by
reading the above passages in the opposite direction, if F is unitary then
equation (3.10) is satisfied. Thus, unitarity in the transformations we are
going to present can be always verified by checking the validity of the Par-
seval identity.

3.2 Fourier transform

Consider Euclidean space R
D, where D is the topological (integer) dimen-

sion. The direct and inverse Fourier transforms of a function f(x) ∈ L2(R)
are

f̃(k) :=
1

(2π)
D
2

∫ +∞

−∞
dDx f(x) e−ik·x =: F1[f(x)], (3.12a)

f(x) =
1

(2π)
D
2

∫ +∞

−∞
dDk f̃(k) eik·x =: F−1

1 [f̃(k)], (3.12b)

where k · x = kμxμ = k1x1 + · · ·+ kDxD. F is invertible and unitary, and
the Dirac distribution admits an integral representation in terms of the
Fourier kernel K(kx) = eik·x:

1
(2π)D

∫ +∞

−∞
dDk e±ik·(x−x′) = δ(x− x′). (3.13)
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Note that the D-dimensional kernel K is just the product of D factor-
ized kernels K(μ) = eikμxμ (μ not summed), one for each dimension μ =
1, . . . , D. It is thanks to equation (3.13) that Parseval relation (3.10) holds,
and the Fourier transform is unitary. From equation (3.12), F−1

1 [f̃(k)] =
F1[f̃(−k)]. Consequently, any f(x) ∈ L2(R) is the Fourier transform of
g(x) = F1[f(−k)] ∈ L2(R).

The Fourier transform in R
D
+ is expanded in cosines or sines rather than

phases. From equations (3.12) and (3.13),

1 =
∫ +∞

−∞
dDx δ(x) e−ik·x

= (2π)
D
2

∫ +∞

0
dDx δ(x) c(k, x), (3.14)

where

c(k, x) :=
(
2
π

)D
2 ∏

μ

cos(kμxμ)

=
(
2
π

)D
2

cos(k1x1) . . . cos(kDxD). (3.15)

Similarly,

δ(x− x′) =
1

(2π)
D
2

∫ +∞

0
dDk c(k, x− x′). (3.16)

Also the inverse transform runs over positive values of the integration vari-
able. Equations (3.14)–(3.16) completely define the transformation prop-
erties of the delta distribution in unilateral representation. Then, for a
function f ,

f̃(k) =
∫ +∞

0
dDx f(x) c(k, x) =: Fc[f(x)], (3.17a)

f(x) =
∫ +∞

0
dDk f̃(k) c(k, x) = F−1

c [f̃(k)]. (3.17b)

Plugging the first equation into the second, one notices that (for each direc-
tion) 2 cos(kx) cos(kx′) = cos[k(x′ − x)] + cos[k(x′ + x)], and performs the
integration via equation (3.16). In D dimensions, this gives

f(x) =
∫ +∞

0
dDx′ [δ(x′ − x) + δ(x′ + x)]f(x′).
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The support of the second delta is outside the integration range for any
x′ > 0, and that contribution vanishes. Therefore, we have the following
resolutions of the identity:

δ(x− x′) =
∫ +∞

0
dDk c(k, x) c(k, x′), (3.18a)

δ(k − k′) =
∫ +∞

0
dDx c(k, x) c(k′, x), (3.18b)

where the second equation comes from the first under the exchange
k ↔ x. Equations (3.18) guarantee the validity of the Parseval identity
and then unitarity of the cosine Fourier transform follows. Note that the
inverse of the cosine Fourier transform is itself, F−1

c = Fc and surjectivity
follows.

The sine transform

f̃(k) =
∫ +∞

0
dDx f(x) s(k, x) =: Fs[f(x)], (3.19a)

f(x) =
∫ +∞

0
dDk f̃(k) s(k, x), (3.19b)

where

s(k, x) :=
(
2
π

)D
2 ∏

μ

sin(kμxμ)

=
(
2
π

)D
2

sin(k1x1) . . . sin(kDxD), (3.20)

can be developed along the same lines. Upon repeating the above inver-
sion argument with the cosine functions replaced by the sines, one ends
up with 2 sin(kx) sin(kx′) = cos[k(x′ − x)]− cos[k(x′ + x)] that, using again
equation (3.16), leads to the resolutions of the identities

δ(x− x′) =
∫ +∞

0
dDk s(k, x) s(k, x′), (3.21a)

δ(k − k′) =
∫ +∞

0
dDx s(k, x) s(k′, x), (3.21b)

and unitarity immediately follows.
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The choice between cosine and sine transform typically depends on the
behaviour of the functions f(x) at the origin. If f(0) = 0, the sine expansion
is chosen for the sole purpose of taking equation (3.19b) at face value, i.e., as
a pointwise equality (then, expanding around x ∼ 0 one does not meet with
contradictions). However, this is not strictly necessary, as the equalities in
(3.17) and (3.19) are intended globally, in the L2(RD

+) norm and, as such,
they correspond to pointwise equalities only almost everywhere.2

3.3 Unilateral world

3.3.1 Fractional Bessel transforms

To obtain a partition of the identity in the fractional case, we must be able
to express the (fractional analog of the) Dirac distribution as an integral rep-
resentation in terms of the kernel of the transform. The fact that fractional
coordinates are non-negative suggests the following strategy, which is not
the most natural but it will define the correct eigenfunctions of the operator
(2.5). In n-dimensional Euclidean space, the radial delta distribution δ(r)
carries a scaling dimension [δ(r)] = −1, where

r :=
√

x2
1 + · · ·+ x2

n.

For radial functions f(r), the n-dimensional Fourier transform in hyper-
spherical coordinates reduces to a one-dimensional, n-dependent invertible
transform in r. Analytic continuation of this transform to non-integer values
n → α leads to the transform in a fractional space with dH = α, where we
find a distribution δα such that [δα] = −α. Repeating the argument for all
the D directions yields the final result.

Taking the Fourier transform (3.12) in D → n dimensions, we move to
hyperspherical coordinates,

(x1, . . . , xn)→ (r, ϕ, θ1, · · · θn−2),

2Sometimes, the cosine and sine transforms are presented as the “natural” transform
for, respectively, even and odd functions. We have just seen that they work perfectly well
for general functions, not only those with definite parity. More precisely, in a unilateral
world there is no notion of parity, and the correct statement is that cosine/sine transforms
are well defined also for functions with definite parity when analytically continued to the
negative semi-axis.
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so that the coordinate transformation is

x1 = r sinϕ
n−2∏
j=1

sin θi, x2 = r cosϕ
n−2∏
j=1

sin θj ,

xj+2 = r cos θj

n−2∏
l=j+1

sin θl, xn = r cos θn−2,

and the measure reads

dnx = dr rn−1 dϕ
n−2∏
j=1

dθj (sin θj)i.

Choose the orientation of the x frame such that the (fixed) vector k has
components (0, . . . , 0, kn), so that k · x = kxn = kr cos θn−2, where k := |k|.
Suppose f is a function only of r. Then the Fourier transform f̃ is a function
only of k and

f̃(k) =
1

(2π)
n
2

∫ +∞

0
dr rn−1

∫ 2π

0
dϕ

n−3∏
j=1

∫ π

0
dθj (sin θj)j

×
∫ π

0
dθn−2 (sin θn−2)n−2f(r) e−ikr cos θn−2 . (3.22)

From formulæ 3.621.1, 8.335.1 and 8.384.1 of [30],

n−3∏
j=1

∫ π

0
dθj (sin θj)j =

n−3∏
j=1

√
π Γ

(
j+1
2

)
Γ
(

j+2
2

) =
π

n−3
2

Γ
(

n−1
2

) ,

while [30, formula 8.411.7]

∫ π

0
dθn−2 (sin θn−2)n−2 e−ikr cos θn−2 =

√
π 2

n
2
−1Γ

(
n−1

2

)
Γ(n)

cn(kr),

where

cn(kr) := Γ(n)(kr)1−
n
2 Jn

2
−1(kr). (3.23)

Here, Jν is the Bessel function of the first kind:

Jν(z) = zνJν(z) := zν
+∞∑
m=0

(−1)m
22m+νm!Γ(m+ ν + 1)

z2m, (3.24)
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from which it follows that cn is even. Then, equation (3.22) and its inverse
become

f̃(k) = k1−n
2

∫ +∞

0
dr r

n
2 f(r)Jn

2
−1(kr), (3.25a)

f(r) = r1−n
2

∫ +∞

0
dk k

n
2 f̃(k)Jn

2
−1(kr), (3.25b)

which can be rewritten as

f̃(k) =
∫ +∞

0
dr

rn−1

Γ(n)
f(r) cn(kr), (3.26a)

f(r) =
∫ +∞

0
dk

kn−1

Γ(n)
f̃(k) cn(kr). (3.26b)

A self-consistency check is to show that f(r) is the inverse of f̃(k). Plugging
equation (3.25a) into (3.25b),

r
n
2 f(r) = r

∫ +∞

0
dk k

n
2 Jn

2
−1(kr) f̃(k)

= r

∫ +∞

0
dk k Jn

2
−1(kr)

∫ +∞

0
dr′ r′

n
2 f(r′)Jn

2
−1(kr′)

=
∫ +∞

0
dr′ δ(r − r′) r′

n
2 f(r′), (3.27)

where in the last line we used the integral representation of the Dirac dis-
tribution in terms of Bessel functions [31, equation 1.17.13],

δ(r − r′) = r

∫ +∞

0
dk k Jn

2
−1(kr)Jn

2
−1(kr′), ∀ n > 0. (3.28)

The generalization of the pair (3.26) to a one-dimensional fractional space
is straightforward upon the substitutions r → x and n → α. The resulting
measure in position space is correct and, because equation (3.28) is valid
for any complex number l = n/2− 1 such that Re(l) > −1, f(x) is indeed
the inverse transform. For this very reason, in D topological dimensions
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there exists a whole class of fractional Bessel transforms F l
α of a function

f(x) = f(x1, . . . , xD):

f̃(k) :=
∫ +∞

0
d�α(x) f(x) cl

α(k, x) =: F l
α[f(x)], (3.29a)

f(x) =
∫ +∞

0
d�α(k) f̃(k) cl

α(k, x), (3.29b)

where the basis functions are

cl
α(k, x) :=

∏
μ

cl
α,μ(kx)

:=
∏
μ

√
kμxμ

vα(kμ)vα(xμ)
Jl(kμxμ). (3.30)

Equation (3.29b) corresponds to the case where momentum space has the
same geometry as position space. In particular, equation (1.2) holds. The
transform (3.29) is a generalization of the Bessel (also called Hankel) trans-
form (e.g., [32]).

From equation (3.28), the integral representation of the “fractional” Dirac
distribution is

δα(x, x′) :=
δ(x− x′)√
vα(x)vα(x′)

(3.31a)

=
∫ +∞

0
d�α(k) cl

α(k, x)cl
α(k, x′), (3.31b)

which has the expected scaling dimension and is not translation invariant.
That δα plays the role of the Dirac distribution in fractional geometry is
clear from a check identical to equation (3.27), leading to

f(x) =
∫ +∞

0
d�α(x′) δα(x, x′)f(x′). (3.32)

Equation (3.31) permits to prove the Parseval relation associated with the
integral transform (3.29), and therefore the unitarity of the whole family
of transforms F l

α. Note that the inverse transform is equal to the direct
transform, and F l

α is surjective for any l.

The definition δα(x, x′) := v−1
α (x)δ(x− x′) was already guessed in [13] for

a space with general Lebesgue–Stieltjes measure, but the integral represen-
tation found here is its rigorous expression in fractional spaces.



MOMENTUM TRANSFORMS IN FRACTIONAL SPACES 1331

3.3.2 Laplacians and quadratic form

The momentum transform previously discussed is not unique and we found
an infinite class F l

α. A specific choice of Laplacian operator selects a finite
number of transforms. In our case, the family of kinetic operators

Kα,l :=
∑

μ

x
l− 1

2
μ√

vα(xμ)
∂μ

{
x1−2l

μ ∂μ

[
x

l− 1
2

μ

√
vα(xμ) ·

]}
(3.33a)

=
∑

μ

x
l−α

2
μ ∂μ

[
x1−2l

μ ∂μ

(
x

l−1+ α
2

μ ·
)]

(3.33b)

=
∑

μ

[
∂2

μ −
1− α

xμ
∂μ +

(2− α)2 − 4l2

4x2
μ

]
, (3.33c)

is engineered so that the kernel of the transform F l
α yields the two solutions

of the eigenvalue equation

(Kα,l + k2
)
c±l
α (k, x) = 0, (3.34a)

k2 := kμkμ = (k1)2 + · · ·+ (kD)2. (3.34b)

In particular, the operators (2.5) and (2.6) are

K1 = Kα,1−α
2
, l = 1− α

2
, (3.35)

K2 = Kα, 1
2
, l =

1
2
. (3.36)

The transform F−l
α with l = 1− α/2 was employed in a companion paper [9]

to calculate the heat kernel and the spectral dimension of ED
α . Since the

order of Kα,l is the same for any l, all the results of [8–10] concerning the
spectral dimension are unaffected by the present discussion.

Here, however, we are interested in a more natural choice of the parameter
l which will allow us to write the Laplacian operator as the square of a self-
adjoint derivative operator. With the same value of l it is also possible
to extend the transform to bilateral fractional spaces. This transform is
associated with the kinetic operator (2.6). Notice that, when α = 1 = 2l,
c
−1/2
1 (k, x) = c(k, x) and c

1/2
1 (k, x) = s(k, x) (see [31, equation (10.16.1)] and

equation (3.15)) and equations (3.29) reduce to the ordinary cosine and sine
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Fourier transforms (3.17) and (3.19). For general α, the eigenfunctions of
K2 are

c
− 1

2
α (k, x) =

(
2
π

)D
2 ∏

μ

cos(kμxμ)√
vα(kμ)vα(xμ)

=: cα(k, x), (3.37a)

c
1
2
α(k, x) =

(
2
π

)D
2 ∏

μ

sin(kμxμ)√
vα(kμ)vα(xμ)

=: sα(k, x). (3.37b)

These functions are shown in figure 1. They vanish in x = 0 and their
amplitude increases as a mild power law.

The l = 1/2 case is special because it is the only one where Kα,l is the
square of a first-order differential operator. Consider the integral

−
∫ +∞

0
d�α(x) δμνDα,l

μ f(x)Dα,l
ν f(x), (3.38)

where (no sum over μ)

Dα,l
μ :=

x
1
2
−l

μ√
vα(xμ)

∂μ

[
x

l− 1
2

μ

√
vα(xμ) ·

]
(3.39a)

=
1

x
l−1+ α

2
μ

∂μ

(
x

l−1+ α
2

μ ·
)

. (3.39b)

We can take the case D = 1 for simplicity. Integrating by parts, one obtains

−
∫ +∞

0
d�α(x)Dα,lf(x)Dα,lf(x) =

∫ +∞

0
d�α(x) f(x)Kα,lf(x), (3.40)

provided the following boundary term vanishes:

lim
ε→0+

x
α
2
−lf(x)∂

[
xl−1+ α

2 f(x)
] ∣∣∣+∞

ε
= 0. (3.41)

At x = +∞, this expression vanishes because f is assumed to be L2(R+, �α),
whereas at the origin it vanishes provided f(x) vanishes at the origin with
a power bigger than 1− α/2.
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Figure 1: The functions cα (thick curve, top panel) and sα (thick curve, bot-
tom panel) for α = 1/2. The dashed curves are c1 = c and s1 = s, respec-
tively.

In the unique case l = 1/2, the Laplacian K2 becomes the square of a
differential operator:

Kα,l = (Dα,l)2 ⇔ l =
1
2
. (3.42)
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In other words, the functions (3.37) diagonalize the quadratic form (3.38)
with differential operator Dμ := Dα,1/2

μ . In D embedding dimensions,

Dμ =
1√

vα(x)
∂μ

[√
vα(x) ·

]
, K2 = DμDμ, (3.43)

Dμcα(k, x) = −kμ sα(k, x), (3.44a)

Dμsα(k, x) = kμ cα(k, x). (3.44b)

Among the derivatives introduced, l = 1/2 is the only case corresponding to
a self-adjoint operator (with a suitable domain).

3.3.3 Multi-fractional transforms?

To complete the discussion, we would like to generalize to the multi-fractal
space ED∗ . Before attempting that, we make a remark about the generality
of the results of Sections 3.3.1 and 3.3.2. In one dimension, they are actually
valid for any Lebesgue–Stieltjes measure weight vα(x)→ v(x) such that

|v(x)| = v(x), D = 1, (3.45)

as a direct inspection of the invertibility of equation (3.29), via (3.30), shows.
The requirement of positive definiteness is rather general and can include
very irregular measures and measure weights of the form

v(x) =
∑
α

gαvα(x), gα, vα ≥ 0. (3.46)

However, in many dimensions we also require a much more restrictive prop-
erty, namely, that the measure factorizes in the coordinates:

v(x) =
∏
μ

v(μ)(x
μ), (3.47)

where the weights v(μ) may differ from one another. This condition is fulfilled
by real-order fractional measures, which are simple power laws, but it is not
by weights of the type (3.46). Therefore, in D �= 1 we do not expect to find
an invertible transform on ED∗ unless in very special cases, if any.

We can see this also in the alternative case where the sum over α is per-
formed in front of the transform integral rather than in the measure and in
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the kernel functions cl
α separately. In fact, since the multi-fractional mea-

sure (2.3) is linear in �α we can assume the multi-fractional Bessel transform
to take the form

f̃(k) :=
∑
α

gα

∫ +∞

0
d�α(x) f(x) cl

α(k, x) =: F l
∗[f(x)], (3.48)

with inverse

f(x) =
∑
α

g̃α

∫ +∞

0
d�α(k) f̃(k) cl

α(k, x), (3.49)

where [g̃α] = −[gα] = −Dα. As before, one plugs equation (3.48) into (3.49):

f(x) =
∑
α,α′

gαg̃α′

∫ +∞

0
d�α(k) cl

α(k, x)
∫ +∞

0
d�α′(x′) f(x′) cl′

α′(k, x′)

=
∑
α,α′

gαg̃α′

∫ +∞

0
d�α′(x′) Iα,α′(x, x′) f(x′), (3.50)

where the multiple integral

Iα,α′(x, x′) :=
∫ +∞

0
d�α(k) cl

α(k, x) cl′
α′(k, x′) (3.51)

entails integrals of the form

x

∫ +∞

0
dk k

α−α′
2

+1Jl(kx)Jl′(kx′).

Note that l′ may differ from l since the order of the Bessel function can
depend on α. To get agreement with the left-hand side of equation (3.50),
Iα,α′(x, x′) should be proportional to δα(x, x′). For α = α′ (l = l′), indeed
Iα,α(x, x′) = δα(x, x′). However, for α �= α′ this integral exists (if Re[l + l′ +
(α− α′)/2 + 1] > 0, which we assume) and is not equal to a fractional delta.
This result would be in conflict with equation (3.50), unless Iα,α′(x, x′)
identically vanishes for α �= α′. This can happen only for the specific choice
of the parameters [30, formulæ 6.574.1–3]

l − l′ − α− α′

2
= −2n or l′ − l − α− α′

2
= −2n, (3.52)
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where n is a non-negative integer. If this is the case, we finally obtain

Iα,α′(x, x′) = δα,α′ δα(x, x′), (3.53)

where the first is a Kronecker delta and (3.50) is an identity provided the
following condition holds:

∑
α

gαg̃α = 1. (3.54)

Given some energy cut-off E, the natural interpretation of the dimensionless
coupling constants

γα = gαE−Dα, γ̃α = g̃αEDα, (3.55)

is that of probability weights, such that

∑
α

γα = 1,
∑
α

γ̃α = 1. (3.56)

If, moreover, γα = γ̃α, equations (3.54) and (3.56) become

∑
α

γ2
α = 1,

∑
α

γα = 1. (3.57)

If α takes continuum values, these expressions hold only if γα = 1. If α takes
discrete values, equation (3.57) becomes the set of Kasner conditions, which
implies (taking the square of the second and using the first)

∑
α<α′

γαγα′ = 0. (3.58)

Therefore, at least one γα must have opposite sign with respect to the others.

Checking the condition (3.52), one sees that it is true only if n = 0 and
l = ±α/2 + q, where q ∈ C. In particular, the case corresponding to the
Laplacian (3.35) admits a multi-fractional transform, while the special case
l = ±1/2 (and any other where l does not depend on α) does not. As
a consequence, there does not exist a multi-fractional Bessel transform in
spaces equipped with the Laplacian K2, which is the only one of the family
(3.33) that can be written as the square of a first-order differential operator.
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Before moving on, we stress that the Ansatz

v(x) =
∏
μ

[∑
α

g(μ)
α vα(xμ)

]
(3.59)

would lead to an invertible transform but it is not clear whether this cor-
responds to a natural multi-fractal model. The reason is that, in this case,
the dimensionality along each direction flows independently from the others,
while we would expect that a given D-dimensional configuration be evolved
as a whole throughout the probed scales. In other words, a multi-fractal in
a given D-dimensional embedding should be realized by taking “snapshots”
of the whole object at different scales rather than taking the product of D
multi-fractals in one-dimensional embeddings. In one-dimensional systems
the two procedures collapse one into the other, and there exist invertible
momentum transforms for any weight vα and a suitable function space.

3.3.4 Complex fractional transforms?

Another important extension is to complex fractional models. Fractional
calculus can be extended to complex orders, by replacing the real-valued
order α in integro-differential operators with a complex power [33–38]. In
our case, the only change is the replacement of the measure weight (2.1b)
(or (2.8), with x replaced by its absolute value |x|) by [8, 10]

ṽα(x) =
+∞∑

ω=−∞
Cωvα+iω(x) :=

+∞∑
ω=−∞

Cω
xα+iω−1

Γ(α+ iω)
, (3.60)

where α, ω ∈ R and Cω are complex coefficients. There are two major rea-
sons why to be interested in such a generalization. The first is mathe-
matical: genuine fractals have complex geometry and harmonic structures,
reflected in the oscillatory behaviour of their spectral function [39–45]. These
structures are reproduced or approximated by complex fractional measures
[35,37]. The second reason is physical. Consider a model with just one pair
of conjugate frequencies ±ω∗ and C0 = 1:

ṽα(x) = vα,ω∗(x) :=
xα−1

Γ(α)
+ C

xα+iω∗−1

Γ(α+ iω∗)
+ C

xα−iω∗−1

Γ(α− iω∗)
,

where C is real. This measure is real, since it can be recast as [10]

ṽα,ω∗(x) = xα−1

[
1

Γ(α)
+ aα,ω∗ cos (ω∗ lnx) + bα,ω∗ sin (ω∗ lnx)

]
, (3.61)
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where aα,ω∗ = 2CRe [1/Γ(α+ iω∗)] and bα,ω∗ = 2CIm [1/Γ(α+ iω∗)] are real
coefficients. In order to make the arguments of the logarithms dimensionless,
one should introduce a length scale x→ x/�∞, [8,10] which we do not need
to consider here. Fractional spacetimes with measure (3.61) display the
phenomenon of logarithmic oscillations, appearing in many chaotic systems
[46]. The log-period, in turn, is tightly associated with a discrete scale
invariance (DSI) of the measure under the coordinate rescaling

x → λn
ω∗x, λω∗ := exp

(
2π
ω∗

)
, n ∈ Z. (3.62)

As a matter of fact, any fractional complex measure (3.60) where the fre-
quencies are multiples of a given one,

ω = mω∗, m ∈ Z, (3.63)

possess a DSI up to a global rescaling. These types of fractional measures
have a rich hierarchy of scales [8,10]. Near the fundamental scale �∞, which
can be identified with the Planck length [11], the texture of spacetime is
discrete, while at scales larger than the log-period one can take the average of
the measure and the system acquires a set of continuous effective symmetries.
This may open up the possibility to construct models of quantum gravity
with a natural discrete-to-continuum transition.

After this brief introduction, we want to see if spaces endowed with the
measure (3.60) admit a unitary momentum transform. The considerations
of the previous section show that, in all special cases where |ṽα| = ṽα, a
transform exists. For instance, taking m = 0,±1, C0 = Γ(α)/2 and C±ω∗ =
−Γ(α± iω∗)/4, one gets

ṽα(x) =
1
4

xα−1(2− xiω∗ − x−iω∗) = xα−1 sin2
(
ω∗ ln

√
x
)
, (3.64)

which is positive definite and has log-period π/ω∗. However, the same argu-
ments suggest that the general answer is No, at least in the continuum,
since equation (3.60) is not even real-valued. More specifically, as in the
multi-fractional case integral cross terms do not give a delta distribution
and prevent a continuous transform to be unitary. This does not mean that
there exists no momentum transform in complex spaces; rather, if it exists
it is not a naive generalization of the fractional Bessel transform. We can
see this in a calculation in the continuum, which also hints at the intriguing
possibility that both position and momentum spaces are, in fact, lattices.
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Define

f̃(k) :=
∑
ω

Cω

∫ +∞

0
d�α+iω(x) f(x) cl

α+iω(k, x), (3.65)

which is the naive extension of the unilateral fractional Bessel transform.
As candidate inverse, we choose not to take the complex conjugate of this
expression (obtained by replacing ω → −ω), since the sum over ω is bilateral
and the final conditions on the parameters will be unaffected. Also, one soon
realizes that the real part of the complex exponent must be the same as in
the position-space measure, otherwise one meets with the same obstructions
as for the multi-fractional case (even diagonal integration terms would not
give the delta):

f(x) =
∑
ω

C̃ω

∫ +∞

0
d�α+iω(k) f̃(k) cl

α+iω(k, x), (3.66)

where the coefficients C̃ω may differ from the Cω. As kernel functions, we
use (consider D = 1)

cl
α+iω(k, x) := Γ(α+ iω)(kx)1−

α+iω
2 Jl(kx). (3.67)

As before, we plug (3.65) into equation (3.66):

f(x) =
∑
ω,ω′

C̃ωCω′

∫ +∞

0
d�α+iω′(x′) f(x′) Iω,ω′(x, x′), (3.68)

Iω,ω′(x, x′) = Γ(α+ iω′)x−
iω
2 x′−

iω′
2 (xx′)

1−α
2

(
x′

x

) 1
2

Iω,ω′(x, x′), (3.69)

Iω,ω′(x, x′) =
∫ +∞

0
dk k

i(ω−ω′)
2 (kx)Jl(kx)Jl′(kx′), (3.70)

where we allowed l′ to be different from l in case l depends on ω. To get
a decomposition of the unit (i.e., to get an invertible unitary transform)
we can use the integral representation of the Dirac distribution in terms of
Bessel functions when ω = ω′ (l = l′), but we should be able to make all non-
diagonal terms vanish. This operation can be done provided the complex
power of k in equation (3.70),

k
i(ω−ω′)

2 = e
i(ω−ω′)

2
Logk, (3.71)
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is reduced to a trivial phase. However, this is not possible and the anti-
transform (3.66) is not the inverse of (3.65).

Incidentally, note that if k were discrete the phase (3.71) could be rendered
trivial. Suppose the frequencies are of the form ω = mω∗; the simplest non-
trivial example is m = 0,±1, such as in the measure (3.61). Then, if k were
discrete the term (3.71) would be identically equal to 1 if

k = exp
(
4πn

ω∗

)
, n ∈ Z. (3.72)

Setting l = l′ would remove any cross term, so one could conclude that
Iω,ω′(x, x′) = δ(x− x′) for any pair of ω, ω′. Proceeding further, one would
find exactly the same lattice condition for x and an algebraic condition on the
coefficients Cω and C̃ω. For non-real or non-positive-definite measures with
ω = mω∗, the sites of the lattices would always lie on the crests or nodes of
the logarithmic oscillations, so that the actual measure would be ṽα ∝ xα−1,
up to some constant. This would not trivialize the theory to the real case
because the newly found measure has discrete support. These results are
only heuristic since they are based on the integral representation of the
Dirac distribution, while the discrete nature of position and momentum
space indicate that a sum representation is needed for self-consistency. We
do not pursue this subject further here.

3.4 Bilateral world

Upon the replacement (2.9), the notion of parity becomes meaningful. The
basis functions (3.30) do not have, in general, definite parity, but the power
of |kx| in equation (3.30) compensates the measure weight |x|α−1 and cross
terms of the form cl

α(k, x)c−l
α (k, x′) cancel out for suitable values of l, as it

happens in the ordinary Fourier transform where integrals of cos(kx) sin(kx′)
vanish by parity. Explicitly, the kernel functions are

cl
α(k, x) :=

∏
μ

cl
α,μ(kx)

:=
∏
μ

Γ(α)|kμxμ| 1−α
2 (kμxμ)

1
2 Jl(kμxμ). (3.73)

Selecting the allowed values of l will yield the desired representation of the
Dirac distribution. Define

el
α(k, x) :=

1
2D

[
c−l
α (k, x) +Acl

α(k, x)
]
, A ∈ C, (3.74)
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and the bilateral fractional transform as

f̃(k) :=
∫ +∞

−∞
d�α(x) f(x) el

α
∗
(k, x) =: F l

α[f(x)], (3.75a)

f(x) =
∫ +∞

−∞
d�α(k) f̃(k) el

α(k, x). (3.75b)

The goal is to find some A and l such that equation (3.75b) is indeed the
inverse of equation (3.75a). Plugging the former into the latter,

f(x) =
∫ +∞

−∞
d�α(k) f̃(k) el

α(k, x)

=
∫ +∞

−∞
d�α(x′) f(x′)

∫ +∞

−∞
d�α(k) el

α
∗
(k, x′) el

α(k, x)

=
∫ +∞

−∞
d�α(x′) f(x′)I(x, x′).

To get an identity, the integral in k must yield a bilateral fractional delta.
Using equation (3.74),

I(x, x′) =
∫ +∞

−∞
d�α(k) el

α
∗
(k, x′) el

α(k, x)

=
1
4D

∫ +∞

−∞
d�α(k) [c−l

α (k, x)c−l
α (k, x′) + |A|2cl

α(k, x)cl
α(k, x′)]

+
1
4D

∫ +∞

−∞
d�α(k) [A∗c−l

α (k, x)cl
α(k, x′) +Acl

α(k, x)c−l
α (k, x′)].

(3.76)

Writing Jl(z) = zlJl(z) as in equation (3.24), the function Jl is even under
a reflection z → −z. The last line features integrals of the form

∫ +∞

−∞
dk kJl(kx)J−l(kx′) = 0,

where we omitted a factor dependent on x and x′; all these contributions
vanish because the integrands are odd. The remainder of equation (3.76) is
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split into four terms. In D = 1,

I(x, x′) =
1
4

∫ +∞

−∞
d�α(k) [c−l

α (k, x)c−l
α (k, x′) + |A|2cl

α(k, x)cl
α(k, x′)]

=
1
4

Γ(α)

|xx′|α−1
2

∫ +∞

−∞
dk

[
(xx′)

1
2
−lk1−2lJ−l(kx)J−l(kx′)

+ |A|2(xx′)
1
2
+lk1+2lJl(kx)Jl(kx′)

]

=
1
4

Γ(α)

|xx′|α−1
2

∫ +∞

0
dk

{
(xx′)

1
2
−l[1 + eiπ(1−2l)]k1−2lJ−l(kx)J−l(kx′)

+ |A|2(xx′)
1
2
+l[1 + eiπ(1+2l)]k1+2lJl(kx)Jl(kx′)

}

=
1
4

Γ(α)

|xx′|α−1
2

(
x′

x

) 1
2
∫ +∞

0
dk (kx)

{
[1 + eiπ(1−2l)]J−l(kx)J−l(kx′)

+ |A|2[1 + eiπ(1+2l)]Jl(kx)Jl(kx′)
}

= A
(

x′

x

) 1
2 Γ(α)

|xx′|α−1
2

δ(x− x′)

= A 1
vα(x)

δ(x− x′),

where

A :=
1 + eiπ(1+2l) + |A|2[1 + eiπ(1−2l)]

4
. (3.77)

Setting |A| = 1, one has A = [sin(πl)]2, which is equal to 1 if, and only
if, l = n− 1/2, where n is a natural number (remember that l > −1). If
A = ±1, for these values of l equation (3.74) would be real-valued and one
would recover the unilateral case. We set instead A = i. Therefore, the
fractional bilateral transform (3.75a) is invertible with inverse (3.75b) if

el
α(k, x) :=

1
2D

[
c−l
α (k, x) + i cl

α(k, x)
]
, (3.78a)

l = n− 1
2
, n ∈ N. (3.78b)
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These functions are orthonormal with respect to the fractional measure (2.8)
and yield the bilateral representation of the fractional delta distribution:

∫ +∞

−∞
d�α(k) el

α(k, x) el
α
∗
(k, x′) = δα(x, x′). (3.79)

In turn, equation (3.79) implies the validity of the Parseval identity:

‖f̃‖2 =
∫

d�α(k)f̃∗(k)f̃(k)

=
∫

d�α(x)
∫

d�α(x′)f∗(x)f(x′)
∫

d�α(k) el
α(k, x) el

α
∗
(k, x′)

=
∫

d�α(x)f∗(x)f(x)

= ‖f‖2, (3.80)

and the transformations are unitary.

When n = 1, we are in the special case l = 1/2, which we write without
index l:

f̃(k) :=
∫ +∞

−∞
d�α(x) f(x) e∗α(k, x) =: Fα[f(x)], (3.81a)

f(x) =
∫ +∞

−∞
d�α(k) f̃(k) eα(k, x), (3.81b)

eα(k, x) :=
1
2
[cα(k, x) + isα(k, x)]

=
1√

vα(k)vα(x)
eik·x

(2π)
D
2

. (3.81c)

When α = 1, the fractional transform reduces to the Fourier transform
(3.12), e1(k, x) = eik·x/

√
2π. The discussion on the family of Laplacian

operators remains unaltered provided one adopts the definitions (3.33a) and
(3.39a), where vα is given by equation (2.8). In this way, factors with abso-
lute value cancel appropriately.

All the results of [8–11] can be extended straightforwardly to a bilateral
world; in particular, the spectral dimension is the same, as already stressed
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on the grounds that dS is determined by the order of the Laplacian, not by
the type of momentum transform employed.

Finally, the generalization to a multi-fractional measure follows exactly
the same steps of the unilateral case, and fails for the same reason: integrals
of the form ∫ +∞

−∞
dk |k|α−α′

2
+1Jl(kx)Jl(kx′)

do not yield a delta for α �= α′. Note that l is α-independent, so there are
no exceptions to this conclusion. The same obstruction occurs with complex
measures.

4 Conclusions

In this paper, we have defined the momentum space dual to fractional spaces
(a realization of fractal geometry being developed for applications to quan-
tum gravity [8, 12]) via an infinite family of unitary bijections generalizing
the Fourier transform. The kernel functions of these transforms are eigen-
functions of a family of Laplacian operators, only one of which is the square
of a self-adjoint operator. This opens up the possibility to apply the tools
of spectral analysis both to quantum mechanics and to quantum field the-
ories living on fractional spacetimes [10]. As a first direct application, in a
companion paper we show the existence of well-defined quantum mechanics
on such spaces, proving Heisenberg’s principle and considering the standard
example of the harmonic oscillator [29]. The case of complex fractional
measures, which typically display a discrete scale invariance, with require
further study.

We now return to an assumption made in Section 3.1, namely, the unique-
ness of the resolution of the identity. In other words, we required that the
fractional Dirac distribution be the same in position and momentum space.
In turn, this is tantamount to allowing the momentum transform to be
an automorphism. If, however, the momentum measure τ(k) �= �(k), the
momentum transform maps different spaces one onto the other. The result-
ing fractional transform is still unitary and invertible, and all the above
formulæ hold upon replacing everywhere

vα(k)→ vᾱ(k), (4.1)

where ᾱ can differ from α. Then, the kernel functions are no longer symmetric
in x and k. Even more generally, the key condition to hold is equation (1.1)
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both in position and momentum space, so that one can work with arbitrary
Lebesgue–Stieltjes measure weights v(x) and w(k) such that they are posi-
tive definite and the coordinate/momentum dependence factorizes along the
D directions. For instance, the transform (3.81a), (3.81b) and the weighted
plane waves (3.81c) of the bilateral world become

f̃(k) :=
∫ +∞

−∞
dDx v(x) f(x)K∗(k, x), (4.2a)

f(x) =
∫ +∞

−∞
dDk w(k) f̃(k)K(k, x), (4.2b)

K(k, x) =
1√

w(k)v(k)
eik·x

(2π)
D
2

, (4.2c)

while the fractal Dirac distributions in position and momentum space are

δv(x, x′) =
δ(x− x′)√
v(x)v(x′)

, δw(k, k′) =
δ(k − k′)√
w(k)w(k′)

. (4.3)

The Parseval relation follows through.

In the fractional case, the Hausdorff dimension of a momentum space
with weight vᾱ(k) is dH(ED

k ) = Dᾱ = (ᾱ/α)dH(ED). On the other hand,
the spectral dimension heavily depends on the details of the diffusion equa-
tion. The construction of a family of momentum spaces and transforms will
be an important tool to solve the diffusion equation and, hence, to verify
equation (1.1) via an explicit construction.
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