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these we construct automorphic forms, whose explicit expressions depend
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which contains as a special case a new realization of W+(E8) in terms of
unit octavians and their automorphism group.
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6.2 Poincaré series 133



MODULAR REALIZATIONS OF HYPERBOLIC WEYL GROUPS 99

Acknowledgments 137

Appendix A Automorphisms of octonions 138

Appendix B 2n-dimensional representation of W +
hyp 140

Appendix C Green functions on H(A) 142

Appendix D Geodesics in H(H) and periodic orbits 144

References 146

1 Introduction

Following the work of Feingold and Frenkel [1] it was realized in [2] that
very generally there are isomorphisms between the Weyl groups of hyper-
bolic Kac–Moody algebras and (finite extensions or quotients of) modular
groups over integer domains in the division algebras A of real, complex,
quaternionic or octonionic numbers; A = R, C, H, O. The simplest case is
associated with the rational integers Z ⊂ R: the modular group PSL(2, Z)
is isomorphic to the even part of the Weyl group of the canonical hyperbolic
extension of the Lie algebra sl(2, R) [1]. This is but the first example of a
rich and interesting family of novel isomorphisms that rely on the existence
of integers within the division algebras of higher dimensions [2], culminating
in the relation W+(E10) ∼= PSL(2, O) between the even Weyl group of E10

(the hyperbolic extension of the exceptional Lie algebra E8) and the integer
octonions O ⊂ O.

These isomorphisms are interesting for several reasons. The underlying
arithmetic structure of the various integer domains could help in under-
standing the structure of the still elusive hyperbolic Kac–Moody algebras,
especially for the “maximally extended” hyperbolic algebra E10 which is
expected to possess very special properties.1 This is certainly a tantalizing
possibility but we will not pursue it further in this work. Instead, we focus on
the modular theory associated with the novel modular groups that appear
in the isomorphisms, and the associated “generalized upper half planes”.
More specifically, we will discuss the quaternionic and the octonionic cases,

1For instance, the arithmetic structure of the modular group PSL(2, O) may impose
more stringent constraints on the characters and root multiplicities of E10 than the corre-
sponding modular groups do for the lower rank hyperbolic algebras. E8 and its hyperbolic
extension E10 are also special because they are the only eligible algebras with (Euclidean
or Lorentzian) even self-dual root lattices.
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corresponding to the hyperbolic extensions of the split real D4 ≡ so(4, 4) and
E8 Lie algebras. In the quaternionic case in particular, we give a detailed
description of the “generalized upper half plane” of dimension five on which
the modular group acts naturally.

Our main motivation derives from potential applications of this modular
theory in quantum gravity and M-theory. As shown recently, the generalized
upper half planes are the configuration spaces for certain models of (anisotro-
pic) mini-superspace quantum gravity, and a subclass of the automorphic
forms associated with the modular groups studied here appear as solutions
to the Wheeler–DeWitt equation in the cosmological billiards limit [3–5],
a version of mini-superspace quantum gravity which we refer to as “arith-
metic quantum gravity”. Automorphic functions (particularly Eisenstein
series) also feature prominently in recent studies of non-perturbative effects
in string and M-theory, see [6,7] for early work and [8–10] for recent progress
concerning the split exceptional groups G = E7 and E8, with corresponding
arithmetic groups E7(Z) and E8(Z).2 There exist far reaching conjectures
concerning the infinite-dimensional extensions E9, E10 and E11, but it is
less clear how to make sense of (or even define) their discrete subgroups
(see, however, [11]). Nevertheless, our results can be viewed as a first step
towards extending these ideas to the infinite-dimensional duality group E10,
since PSL(2, O), being the even Weyl group, is expected to be contained in
any hypothetical arithmetic subgroup of E10. A possible link with the work
of [3–5] is provided by a conjecture of [13] according to which the solution
of the Wheeler–DeWitt equation in M-theory is a vastly generalized auto-
morphic form with respect to E10(Z). Our results on D4 ≡ so(4, 4) can also
be viewed from a string theory perspective, since SO(4, 4) can be realized as
the symmetry of type I supergravity in ten dimensions without any vector
multiplets on a four-torus. It is also the continuous version of T-duality of
type II strings.

Within the general theory of automorphic forms for groups of real rank
one, the main new feature that distinguishes our construction is the link
with the division algebras A and the integer domains O ⊂ A (which always
contain Z as a “real” subset). Moreover, the arithmetic modular groups
considered here are all identified with the even subgroups of certain hyper-
bolic Weyl groups. That is, each of the modular groups considered here is
isomorphic to the even Weyl group of a canonical hyperbolic extension g++

of an associated simple finite-dimensional split Lie algebra g,

Γ ≡ W+
hyp ≡ W+(g++). (1.1)

2In some cases, the relevant “automorphic forms” are not eigenfunctions of the
Laplacian but have source terms [12].
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More specifically, the groups Γ are discrete subgroups of the groups
SO(1, n + 1) acting on the (Lorentzian) root space of g++, but with addi-
tional restrictions implying special (and as yet mostly unexplored) arith-
metic properties. The standard Poincaré series construction then implies
a simple general expression for an automorphic function on the generalized
upper half plane as a sum over images of the group action as

f(u, v) =
∑

γ∈Γ∞\Γ
(γ · v)s, (1.2)

where u ∈ A and v ∈ R>0 parametrize the upper half plane. (This expression
is convergent for Re(s) sufficiently large and can be analytically continued
to most complex values of s by means of a suitable functional relation.)
The subgroup Γ∞ appearing in this sum is conventionally defined as the
subgroup of the modular group Γ leaving invariant the cusp at infinity;
here this group becomes identified with the even Weyl group of the affine
subalgebra g+ ⊂ g++,

Γ∞ ≡ W+
aff ≡ W+(g+) ⊂ Γ. (1.3)

As we will explain, the cusp at infinity in the generalized upper half plane
here corresponds to the affine null root of the affine algebra g+, in accord
with the fact that Waff can be defined as the subgroup of Whyp stabilizing
the affine null root [14]. At the same time W+

aff is a maximal parabolic
subgroup of Γ = W+

hyp. Because Waff = Wfin � T , where Wfin ≡ W (g) and T
is the abelian group of affine translations, the minimal parabolic subgroup
is T ⊂ Γ∞.

We briefly position our work relative to the existing mathematical litera-
ture that we are aware of. Generalized upper half planes have appeared for
example in [15] where they are defined as cosets GL(n, R)/O(n) × GL(1, R),
on which the discrete groups GL(n, Z) act as generalized modular groups.
This definition fits with our definition only for n = 2 (corresponding to
A = R). More generally, one can define generalized upper half planes as quo-
tient spaces G/K(G) where G is a non-compact group and K(G) its compact
subgroup, and then consider the action of some arithmetic subgroup GZ ⊂ G
on this space. Our discrete groups Γ are subgroups of SO(1, n + 1; R) and
live on the well-known symmetric space SO(1, n + 1)/SO(n + 1) [16]. There-
fore our analysis is in principle part of the general theory of reductive groups
of real rank one (see for example [17–22]). What makes it stand out and
interesting for us — apart from the fascinating potential applications in
fundamental physics — is the precise nature of the discrete subgroups Γ,
which are different from the arithmetic groups GZ usually considered in this
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context,3 and the link to integers in normed division algebras and to hyper-
bolic Weyl groups, which has not been exposed in the existing literature to
the best of our knowledge. For example, it would obscure the underlying
arithmetic structure, if one tried to describe our final expression (6.11) in
terms of a complicated lattice sum in R

2n. It is not even clear to us how to
derive such a sum without the knowledge of the integral structure.

We emphasize that it is not our intention here to give a complete account
of the theory of automorphic forms for the modular groups we study (after
all, even for Γ = SL(2, Z) this is a subject which easily fills a whole book
[20, 21]). Rather, we regard the present work merely as a first step towards
a theory that remains to be fully developed in future work. In particular,
since we are using a direct and specific construction in terms of Poincaré
series, we have not explored the adelic approach to modular forms (see for
example [23]) although we anticipate that this could yield interesting results
in this context.

This paper is structured as follows. In Section 2, we review the construc-
tion of normed division algebras and introduce the generalized upper half
planes that we will utilize in the remainder of the text. Section 3 is devoted
to the isomorphism between modular groups and hyperbolic Weyl groups
in general; Section 4 then deals in detail with the case of quaternions and
D4 ≡ so(4, 4), whereas in Section 5, we present the modular group PSL(2, O)
over the non-associative integer octonions O that appears for E10, the hyper-
bolic extension of E8. In particular, it gives a novel realization of the even
(and finite) Weyl group W+(E8) in terms of the 240 octavian units and
the finite automorphism group G2(2) of the octavians. Automorphic forms
for all these groups are defined and analysed in detail in Section 6, with
special emphasis on the most interesting case A = O. These sections form
the heart of this paper and contain the bulk of our new results. Several
appendices contain some additional results and technical details that we use
in the main text.

2 Division algebras and upper half planes

2.1 Cayley–Dickson doubling

The division algebras of complex numbers, quaternions and octonions can be
defined recursively from the real numbers by a procedure called
Cayley–Dickson doubling [24,25]. Let A be a real finite-dimensional algebra

3These are obtained by choosing a metric to define the matrix group SO(1, n + 1) and
then restricting the matrix entries to (rational) integers.
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with a conjugation, i.e., a vector space involution x �→ x̄ such that ab = b̄ ā
for any a, b ∈ A. In the Cayley–Dickson doubling, one introduces a vector
space iA, isomorphic to A, where i is a new imaginary unit, and consid-
ers the direct sum A ⊕ iA of these two vector spaces. The product of two
elements in A ⊕ iA is defined as [25]

(a + ib)(c + id) := (ac − db̄) + i(cb + ād), (2.1)

and conjugation as

a + ib := ā − ib (with ai = iā). (2.2)

Starting from A = R (with the identity map as conjugation) and succes-
sively applying the Cayley–Dickson doubling one thus obtains an infinite
sequence of so-called Cayley–Dickson algebras. The first doubled algebra
is of course the familiar algebra C of complex numbers. The following two
algebras in the sequence are H and O, consisting of quaternions and octo-
nions, respectively. Studying these algebras one finds that H is associative
but not commutative, whereas O is neither associative nor commutative.
Nevertheless, O is an alternative algebra, which means that any subalgebra
generated by two elements is associative.

Any Cayley–Dickson algebra admits a positive-definite inner product

(a, b) := 1
2(ab̄ + bā), (2.3)

with the associated norm |a|2 ≡ (a, a) = aā. As a consequence of (2.1) and
(2.2) the norm of the “doubled” expression a + ib ∈ A ⊕ iA is

|a + ib|2 = |a|2 + |b|2. (2.4)

From the doubling formulas (2.1) and (2.2), it follows:

|(a + ib)(c + id)|2 = |ac − db̄|2 + |cb + ād|2

= (|a|2 + |b|2)(|c|2 + |d|2) + 2 Re
(
(d̄a)(cb) − (bd̄)(ac)

)
,

(2.5)

where Re a := 1
2(a + ā). Because for a, b, c ∈ A (for all A)

Re a(bc) = Re (ab)c, Re ab = Re ba, (2.6)

we obtain

|(a + ib)(c + id)|2 = |a + ib|2|c + id|2 + 2 Re
(
d̄ {a, c, b}

)
, (2.7)
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where the associator {a, b, c} := a(bc) − (ab)c vanishes for associative
algebras. The fact that R, C and H are associative thus implies that the
composition property

|ab| = |a||b| (2.8)

holds for their doubled algebras C, H and O. Algebras with this property
are called normed division algebras. It follows from (2.8) that if ab = 0
then a or b must be zero, so these algebras have no zero divisors. Hurwitz’
theorem (see [24,25]) states that R, C, H and O are the only (real and finite-
dimensional) normed division algebras with unity. For instance, since the
octonions are non-associative, their Cayley–Dickson double does not satisfy
the norm composition property (2.8). This is a real 16-dimensional algebra,
often called the sedenions. It is of course non-associative (since it contains
the octonions) but also non-alternative, and does possess zero divisors.

2.2 Generalized upper half planes

For every normed division algebra A we define the generalized upper
half plane

H ≡ H(A) := {z = u + iv with u ∈ A and real v > 0} . (2.9)

By i we will always denote the new imaginary unit not contained in A,
while u ≡ u0 +

∑
uiei with the imaginary units ei in A. Hence H(A) is

contained in a hyperplane in the Cayley–Dickson double A ⊕ iA, and of
(real) dimension dimR H(A) = (dimR A) + 1. By complex conjugation (2.2)
we get z̄ = ū − iv, and thus z̄ parametrizes the corresponding “lower half
plane” H. From (2.7), we see that the composition property

|zz′| = |z||z′| z, z′ ∈ H(A) (2.10)

continues to hold for all normed division algebras A = R, C, H, O. In partic-
ular, it still holds for A = O, even though in this case z is a sedenion, because
the associator in (2.7) still vanishes as long as v remains real. Likewise, the
alternative laws

(aa)z = a(az), (az)a = a(za), (za)a = z(aa) (2.11)

remain valid for a ∈ O and z ∈ H(O) by Cayley–Dickson doubling (2.1).
This will be important below when we define modular transformations.
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The line element in H(A) is

ds2 =
|du|2 + dv2

v2
(2.12)

for u ∈ A (= R, C, H or O) and v > 0, with |du|2 ≡ dū du. Using v to param-
etrize the geodesic, the geodesic equation is (with u′ ≡ du/dv)

d

dv

(
1

v
√

1 + |u′|2
du

dv

)
= 0. (2.13)

It is then straightforward to see that geodesics are given by straight lines
parallel to the “imaginary” (= v) axis, or by half circles starting at u1 ∈ A

and ending at u2 ∈ A on the boundary v = 0 of H(A). The equation of this
geodesic half circle for z = u + iv ∈ H(A) reads

(u − u1)(ū − ū2) + v2 = 0. (2.14)

The length of any geodesic segment connecting two points z1, z2 ∈ H(A) is

d(z1, z2) = log
|z1 − z∗2 | + |z1 − z2|
|z1 − z∗2 | − |z1 − z2|

(2.15)

or, equivalently,

d(z1, z2) = 2 artanh
|z1 − z2|
|z1 − z∗2 |

= arcosh
(

1 +
|z1 − z2|2

v1v2

)
, (2.16)

where we defined

z = u + iv ⇒ z∗ := u − iv ∈ H(A). (2.17)

Formula (2.16) generalizes the familiar formula from complex analysis to all
division algebras. Likewise, the volume element on H(A) is given by

dvol(z) :=
dnu dv

vn+1
(2.18)

and the Laplace–Beltrami operator reads4

�LB = vn+1 ∂

∂v

(
v1−n ∂

∂v

)
+ v2 ∂

∂u

∂

∂ū
, (2.19)

with n = 1, 2, 4 and 8 for A = R, C, H and O, respectively.

4Note that ∂
∂u

∂
∂ū

|u|2 ≡
∑n−1

i=0
∂2

∂u2
i
|u|2 = 2n in our conventions.
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As far as the geometry is concerned, the “generalized upper half planes”
H(A) are special examples of the general coset spaces

Hn =
SO(1, n + 1)
SO(n + 1)

(2.20)

for n = 1, 2, 4, 8. These are all hyperbolic spaces of constant negative cur-
vature, which can be embedded as unit hyperboloids

Hn =
{
xμ ∈ R

1,n+1
∣∣ xμxμ = −x+x− + x·x = −1 ; x± > 0

}
(2.21)

into the forward lightcone of (n + 2)-dimensional Minkowski space R
1,n+1,

with x ∈ R
n. These hyperboloids are isometric to the upper half planes

introduced above by means of the mapping

x− =
1
v
, x+ = v +

|u|2
v

, x =
u

v
. (2.22)

where the last equation identifies the components xj = uj/v in the Euclidean
subspace R

n. The line element (2.12) is the pull-back of the Minkowskian
line element ds2 = −dx+dx− + dx·dx. Similarly, it is straightforward to
check that

∫
dvol(z)

(
· · ·

)
=

∫
dnx dx+ dx− δ

(
x+x− − x̄x − 1

)(
· · ·

)
(2.23)

and to derive the Laplace–Beltrami operator (2.19) from the Klein–Gordon
operator in R

1,n+1. Consequently, the geodesic length (2.16), the volume
element (2.18) and the Laplace–Beltrami operator (2.19) are left invariant
under the isometry group SO(1, n + 1) of the embedding space (and the
unit hyperboloid). Because the even Weyl groups (or modular groups) to be
considered below are all discrete subgroups of SO(1, n + 1), these geometric
objects are a fortiori invariant under these discrete groups as well. The main
new feature here distinguishing the cases n = 1, 2, 4, 8 from the general case
(2.21) is the link with the division algebras and their algebraic structure,
which is evident in particular in the form of the modular transformations
(3.17) below.

For completeness, we discuss the Green function on H(A) in Appendix C
and (periodic) geodesics in Appendix D for the quaternionic case.
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3 Weyl groups as modular groups

As vector spaces with a positive-definite inner product, the normed divi-
sion algebras R, C, H, O can be identified with the root spaces of finite-
dimensional Kac–Moody algebras of rank 1, 2, 4, 8, respectively. The root
lattices are then identified with lattices in these algebras. In several cases
of interest, the lattices close under multiplication and thus endow the root
lattice with the structure of a (possibly non-associative) ring [2].

The fundamental Weyl reflection with respect to a simple root a is defined
as a reflection in the hyperplane orthogonal to a,

x �→ x − 2
(a, x)
(a, a)

a. (3.1)

When we identify the roots with elements in the division algebra A this can
be written

x �→ x − |a|−2(ax̄ + xā)a = x − |a|−2(ax̄a + x|a|2) = −ax̄a

|a|2 , (3.2)

where we have used the definition of the inner product, and the alternativity
of A. For simply-laced algebras (the only case we will consider in this paper),
we normalize the simple roots to unit norm. In particular, if εi denote the
so normalized simple roots of the finite algebra, then the associated finite
Weyl group Wfin is generated by the fundamental Weyl reflections

x �→ wi(x) = −εix̄εi, (3.3)

for x ∈ A with i ranging over the rank of the algebra. We will always choose
the orientation of the simple roots such that the highest root θ of the algebra
is equal to the real unit, i.e., θ = 1.

3.1 Hyperbolic overextensions

To any simple finite-dimensional Lie algebra (finite Kac–Moody algebra)
of rank r one can associate an infinite-dimensional (indefinite) Kac–Moody
algebra of rank r + 2 as follows. One first constructs the non-twisted affine
extension, thereby increasing the rank by one. Then one adds an additional
node with a single line to the affine node in the Dynkin diagram. The
resulting algebras are often called “over-extended” [26,27] and in many cases
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turn out to be hyperbolic Kac–Moody algebras.5 The Cartan–Killing metric
on the Cartan subalgebra is always Lorentzian. We will number the affine
and over-extended nodes by 0 and −1, respectively. Denoting the finite-
dimensional split real algebra by g, the associated over-extension will be
denoted by g++ and we use the index I = −1, 0, 1, . . . , r to denote the
simple roots of g++. The affine extension will be denoted by g+.

The infinite Weyl groups associated with these overextended algebras were
studied in [2]. The Weyl group acts on the Lorentzian vector space A ⊕ R

1,1,
alias the Minkowski space R

1,n+1, consisting of real linear combinations of
the simple roots. We can identify this vector space with the Jordan algebra6

H2(A) of Hermitian matrices

X :=
(

x+ x
x̄ x−

)
= X† (3.4)

where x± ∈ R and x ∈ A. This vector space is Lorentzian with respect to
the norm

||X||2 := −det X = −x+x− + x̄x (3.5)

and the associated bilinear form

(X, Y ) = 1
2

(
||X + Y ||2 − ||X||2 − ||Y ||2

)
. (3.6)

This definition of the norm differs from the one in [2] by a factor of 1/2.
We also define the simple roots by

α−1 =
(

1 0
0 −1

)
, α0 =

(
−1 −1
−1 0

)
, αi =

(
0 εi

ε̄i 0

)
, (3.7)

where |εi| = 1, so that they have unit length, ||αI ||2 = 1, instead of length 2,
which is the standard normalization for a simply laced algebra. The reason
for this is that we want the norm to coincide with the standard norm in
the division algebra A, as soon as we restrict the root space to the finite
subalgebra.

5But not always: For instance, the finite algebra A8 extends to A++
8 ≡ AE10 which is

indefinite, but not hyperbolic.
6A Jordan algebra is a commutative (but possibly non-associative) algebra where any

two elements X and Y satisfy X2 ◦ (Y ◦ X) = (X2 ◦ Y ) ◦ X. This identity holds for H2(A)
with ◦ being the symmetrized matrix product. However, we will here only consider the
Jordan algebras H2(A) as vector spaces, without using the Jordan algebra property.
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The fundamental Weyl reflections with respect to the simple roots (3.7)
are given by [2]

wI : X �→ MIX̄M †
I , (3.8)

where

M−1 =
(

0 1
1 0

)
, M0 =

(
−1 1
0 1

)
, Mi =

(
εi 0
0 −ε̄i

)
, (3.9)

and we denote the thus generated hyperbolic Weyl group by W ≡ Whyp.

Since Weyl transformations preserve the norm, we can consider their
action on elements of fixed norm, and in particular on those elements that
lie on the unit hyperboloid ||X||2 = −1 inside the forward light-cone of the
Lorentzian space. As we showed in the previous section, this unit hyper-
boloid is isometric to the generalized upper half plane H(A) via the isometric
embedding (2.22). The lightcone ||X||2 = 0 in H2(A) then corresponds to
(a double cover of) the boundary ∂H(A), consisting of the subspace A (that
is, v = 0) and the single point z = i∞. The latter point is called “cusp at
infinity”, and plays a special role because it is associated with the affine
null root

δ =
(
−1 0
0 0

)
. (3.10)

To see this more explicitly we note that the lines with constant u parallel
to the imaginary axis in H(A) are obtained via (2.22) by projection of the
null line

x− = 1, x+ = t + |u|2, x = u (3.11)

onto the unit hyperboloid inside the forward lightcone of R
1,n+1. The tan-

gent vector of this null line is then identified with (3.10) again via (2.22),
and the boundary point on the unit hyperboloid corresponding to the cusp
z = i∞ is reached for t → ∞. Choosing any other null direction inside the
forward lightcone one can reach all other points in the boundary, that is A

with v = 0.

Because the Weyl transformations generated by the repeated action (3.8)
preserve the norm ||X||2, they leave invariant the unit hyperboloid. As
shown in [3, 4] the projection of the fundamental reflections of the infinite
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Weyl group W onto the unit hyperboloid, and hence the generalized upper
half plane, induce the following modular action on z ∈ H(A)

w−1(z) =
1
z̄
, w0(z) = −z̄ + 1, wi(z) = −εiz̄εi, (3.12)

where εi are the (unit) simple roots of the underlying finite algebra as above.
Furthermore, 1/z̄ = z/|z|2.

3.2 Even Weyl group

We are here mainly interested in the even part of the Weyl group, which
is realized by “holomorphic” transformations (see (3.17) below) and which
we wish to interpret as a generalized modular group. The even Weyl group
W+ ⊂ W consists of the words of even length in W . As the generators of
the even Weyl group we take the transformations

sI := wIwθ (3.13)

with I = −1, 0 or I = i, where wθ is the reflection on the highest root θ = 1.
These generators act as

sI : X �→ SIXS†
I , (3.14)

where

S−1 =
(

0 −1
1 0

)
, S0 =

(
−1 −1
0 −1

)
, Si =

(
εi 0
0 ε̄i

)
. (3.15)

On the upper half plane it follows from (3.3) (with ε = θ = 1) that

wθ(z) = −z̄, (3.16)

and the generators (3.13) act as

s−1(z) = −1
z
, s0(z) = z + 1, si(z) = εizεi. (3.17)

These transformations are “holomorphic” on the upper half plane and gen-
eralize the well-known expression for modular transformations of the two-
dimensional upper half plane H(R) under PSL(2, Z).

In [2] s̃0 = w−1w0 and s̃i = w−1wi were used as generating elements. Our
choice here is more convenient since it refers to the universal element θ = 1,
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but unlike the one in [2], the generating set (3.13) is not minimal. For
A = R, C, H this redundancy is expressed in the extra relations

s1 = 1 for A = R, s1s2 = 1 for A = C,

s1s3s4 = 1 for A = H (3.18)

with appropriate numbering of the roots, and always in the basis, where
θ = 1. For the octonions the relevant relation is more tricky because of
non-associativity.

Quite generally, the even Weyl groups of the over-extended algebras con-
sidered in [2] are of the form

W+ ≡ W+
hyp

∼= PSL(2,O), (3.19)

where O ⊂ A is a suitable set of algebraic integers in A. The roots of the
associated finite Kac–Moody algebra then correspond to the units of O
(a unit being an invertible element of the ring). In some cases, one has
to consider finite extensions of this group or finite quotients (depending on
whether the algebra is not simply laced or has diagram automorphisms);
a detailed analysis of all cases can be found in [2]. The even Weyl group
W+ is a normal subgroup of index two in the full Weyl group and for many
purposes it is sufficient to study it. In the following sections, we will focus on
two distinguished cases, one related to D4 and the quaternions (where O =
H, the ring of “Hurwitz numbers”) and one related to E8 and the octonions
(where O = O, the “octavians”).

The Weyl transformations (3.12) define a fundamental domain F0 ⊂H(A),
which is the image of the fundamental Weyl chamber in H2(A) under the
projection (2.22). Likewise, the even Weyl transformations (3.17) define a
fundamental domain F , which contains two copies of F0, and a “projec-
tion” K of F onto A; see figure 1 below for an illustration. As we already
explained, the cusp z = i∞ is the image of the boundary point of the unit
hyperboloid which is reached by following and projecting any null ray inside
the forward lightcone along the affine null root δ.

From (2.18) it follows that
∫

F
dvol(z) < ∞, (3.20)

if K does not extend beyond the unit sphere in the A-plane. It may touch
the unit sphere at isolated points since the improper integral will still be
convergent and finite. This happens among the over-extended algebras in
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Figure 1: Sketch of the fundamental domains F0 (in grey) and F (within
heavy dashed lines). The shape of F is always that of a “skyscraper” over
a compact domain K contained in the unit ball of A. This “skyscraper”,
whose bottom has been cut off, extends to infinite height in v.

particular for the algebras A++
7 , B++

8 and D++
8 .7 The finite volume of the

fundamental domain is in one-to-one correspondence with the hyperbolicity
of the underlying Kac–Moody algebra [27].

For all H(A), the geodesic length (2.16) is invariant under the contin-
uous isometry group SO(1, n + 1) and therefore also under the generating
elements of the Weyl group (3.12), that is under the full Weyl group, as
can also be verified explicitly for the generating Weyl reflections (3.12). For
instance, for the inversion we get

w−1 : |z1 − z2| → |z̄−1
2 − z̄−1

1 | = (|z1||z2|)−1|z1 − z2| (3.21)

using alternativity. By iteration it then follows that

d(z1, z2) = d(w(z1), w(z2)) (3.22)

for all elements w of the Weyl group w ∈ Whyp. Similarly, for all w ∈ Whyp

the hyperbolic volume element is left invariant:

dvol(z) = dvol(w(z)). (3.23)

7See [28] for further discussions of the fundamental domain of hyperbolic Kac–Moody
algebras and explicit volume computations.
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Finally, the Laplace–Beltrami operator is also invariant in the following
sense. Setting z′ := w(z) and denoting by �′

LB the Laplace–Beltrami oper-
ator with respect to the primed coordinates z′, we have for any function
f(z) and for all w ∈ Whyp

�′
LBf(z′) = �LBf(w(z)). (3.24)

3.3 Affine Weyl group

The hyperbolic Weyl group has a natural subgroup associated with the affine
subalgebra, corresponding to the embedding g+ ⊂ g++. We denote this
subgroup by Waff ≡ W (g+). It is known [29] that it has the structure

Waff = Wfin � O, (3.25)

where O is the integer domain corresponding to the root lattice of the finite-
dimensional algebra g. In (3.25), O is to be thought of as a free abelian group
T of translations on the finite root lattice on which the finite Weyl group
Wfin acts. Written in matrix form the translations take the form

Ty =
(

1 y
0 1

)
, (3.26)

and obey TxTy = Tx+y for all x, y ∈ O. In the associative cases, one can
write the finite Weyl transformations as matrices as

Ma,b =
(

a 0
0 b

)
(3.27)

for units a, b ∈ O, possibly with restrictions depending on g.8 It is easy
to see that the transformations leaving invariant the null root (3.10) are
exactly the Tx and the Ma,b. This is to be expected as the affine Weyl group
can be defined as the stabilizer of the affine null root [14].

4 D4 and its hyperbolic extension

Now we specialize to A = H in which case the relevant ring of algebraic
integers is O = H, the “Hurwitz numbers”, to be defined below. The results
of this section generalize many well-known results for the usual upper half

8We will encounter an explicit example of such restrictions in the case g = D4 below.
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plane (A = R). Since they contain similar results for A = C we will not spe-
cially consider this case (which has been dealt with in the literature [30]).
Our main task will be to find closed formulas for arbitrary elements of
the group PSL(2, H) and its modular realization on H(H). In comparison to
the commutative cases A = R, C, this case presents new features because of
the non-commutativity of the matrix entries. However, a direct generaliza-
tion to A = O is not possible because of the non-associativity of the matrix
entries; this case will be treated separately in Section 5.

4.1 D4 and the integer quaternions

The quaternions are obtained by applying the Cayley–Dickson doubling pro-
cedure described in Section 2.1 to A = C. An arbitrary quaternion x ∈ H is
written as

x = x0 + x1e1 + x2e5 + x3e6, (4.1)

where x0, x1, x2, x3 ∈ R, and we have the usual rules of quaternionic multi-
plication e1e5 = −e5e1 = e6, etc. for the imaginary quaternionic units e1, e5

and e6.9 The norm is |x|2 ≡ xx̄ = x2
0 + x2

1 + x2
2 + x2

3.

We are here interested in quaternionic integers. The Hurwitz integers
(or just Hurwitz numbers) H are those quaternions (4.1) for which the coef-
ficients x0, x1, x2, x3 are either all integers or all half-integers. They consti-
tute a lattice H ⊂ H and form a non-commutative ring of integers (actually,
a “maximal order”) inside H. The key feature is that H at the same time
can be identified with the root lattice of the algebra D4 ≡ so(4, 4). Indeed,
the simple roots of D4, labeled according to the Dynkin diagram

1 2 3

4

� � �

�

9The imaginary units are conventionally designated as i, j, k but here we prefer to use
e1 ≡ i, e5 ≡ j and e6 ≡ k because we want to reserve the letter i for the new imaginary
unit used in the Cayley–Dickson doubling. For the doubling H = C ⊕ iC we thus identify
i ≡ e5 and x = (x0 + x1e1) + i(x2 − x3e1). Our notation conforms with the one used in
Section 5 for the octonions, such that the obvious D4 roots inside E8 are simply obtained
from (4.2) by multiplication with e7.
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can be identified with the following set of Hurwitz units:

ε1 = e1, ε2 =
1
2
(1 − e1 − e5 − e6), ε3 = e5, ε4 = e6. (4.2)

The D4 root lattice is spanned by integer linear combinations of these simple
roots, and with the above choice of basis, the highest root θ = ε1 + 2ε2 +
ε3 + ε4 is indeed equal to 1. The new feature is that such combinations also
close under multiplication, thereby endowing the D4 root lattice with the
structure of a non-commutative ring. The 24 roots of D4 are then identified
with the 24 units in H. Comparison with (3.17) shows that we now have the
extra relation s1s3s4 = 1 for the generating set (3.13), see (3.18).

The elements in W+(D4) are the words of even length where the letters
are the fundamental Weyl reflections. For example, those of length two
act as

x �→ εi(εj x̄εj)εi = εi(ε̄jxε̄j)εi = (εiε̄j)x(ε̄jεi). (4.3)

It follows [2, 25] that any element in W+(D4) has the form of a combined
left and right multiplication,

x �→ axb, (4.4)

where a and b are (in general different) Hurwitz units, subject to the con-
straint that the product ab is an element of the quaternionic group

ab ∈ Q ≡ {±1, ±e1, ±e5, ±e6}. (4.5)

The restriction to the quaternionic group arises from triality of the D4 root
system as the outer triality automorphisms are not elements of the Weyl
group. In [2] this result was generalized to the hyperbolic extension W (D++

4 )
in a way that we will describe next.

4.2 The even hyperbolic Weyl group W +(D++
4 )

Consider transformations acting on X ∈ H2(H) by

X → s(X) = SXS† (4.6)

with

S =
(

a b
c d

)
a, b, c, d ∈ H. (4.7)
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(Of course, these formulas trivially specialize to A = R, C.) Such trans-
formations preserve the norm of X if and only if

det(SS†) = 1. (4.8)

This is true for all the normed division algebras up to and including the
quaternions.10 The associated continuous group of matrices will be
denoted by

SL(2, H) =
{

S =
(

a b
c d

)
: a, b, c, d ∈ H, det(SS†) = 1

}
. (4.9)

Its projective version

PSL(2, H) := SL(2, H)/{1,−1
}

(4.10)

is isomorphic to SO0(1, 5), see [24, 31]. Let us note the explicit expressions

det(SS†) = |a|2|d|2 + |b|2|c|2 − 2 Re
(
ac̄db̄

)

= |ad − bc|2 − 2 Re
(
a[c̄, d]b̄

)
(4.11)

and the explicit form of the (left and right) inverse matrix for S ∈ SL(2, H)

S−1 =
(
|d|2ā − c̄db̄ |b|2c̄ − ābd̄
|c|2b̄ − d̄cā |a|2d̄ − b̄ac̄

)
. (4.12)

The discrete groups SL(2, H) ⊂ SL(2, H) and PSL(2, H) ⊂ PSL(2, H) are
obtained from the above groups by restricting the entries a, b, c, d to be
Hurwitz integers. From (4.11) it then follows that in order for S to be
an element of SL(2, H) or PSL(2, H), the pairs (a, b) and (c, d) must each
be left coprime, and the pairs (a, c) and (b, d) must each be right coprime
(i.e., share no common left or right factor g ∈ H with |g| > 1). In fact, these
conditions are not only necessary, but also sufficient (for some choice of the
remaining two entries), as we show in Section 5.5.

10For real and complex numbers the determinant can be factorized to give | det(S)| = 1.
Making use of commutativity then allows the reduction to det(S) = 1 in the projective
version.
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Straightforward computation using (3.4) and (4.6) gives the transforma-
tions of the various components of X

s(x+) = āa x+ + b̄b x− + axb̄ + bx̄ā,

s(x) = ac̄ x+ + bd̄ x− + axd̄ + bx̄c̄,

s(x−) = c̄c x+ + d̄d x− + cxd̄ + dx̄c̄. (4.13)

This formula is, of course, also valid for A = R, C. Likewise, it holds for
general quaternionic matrices S as long as these are invertible.

The Weyl groups of the hyperbolic over-extensions of rank four algebras
are discrete subgroups of PSL(2, H) (see [2] for details). For the hyperbolic
over-extension D++

4 of D4 one finds

W+(D++
4 ) ∼= PSL(0)(2, H) :=

{
S ∈ PSL(2, H) | ad − bc ≡ 1 mod C

}
, (4.14)

where C is the (two-sided) commutator ideal C = H[H, H]H introduced in [2].
In other words, the Weyl group of D++

4 is not simply PSL(2, H): the elements
S in PSL(0)(2, H) must satisfy the additional constraint ad − bc ≡ 1 modulo
C, which is an index 4 sublattice in H. As shown in [2], PSL(0)(2, H) is an
index 3 subgroup of PSL(2, H): if one extends the Weyl group by outer auto-
morphisms related to the diagram automorphisms (“triality”) one obtains all
of PSL(2, H), corresponding to all even symmetries of the D++

4 root lattice
written in quaternionic coordinates.

Below, we will encounter two important subgroups of PSL(0)(2, H). One
is the (even) affine subgroup W+

aff ⊂ W+(D++
4 ), which is the semi-direct

product Wfin � T of the finite Weyl group Wfin = W+(D4) and the abelian
group T of affine translations. This is a maximal parabolic subgroup of
W+(D++

4 ) whose elements in the quaternionic matrix representation are
given by

S =
(

a u
0 b

)
, (4.15)

where a, b are unit quaternions with ab ∈ Q and u ∈ H is an arbitrary Hur-
witz integer. The other important subgroup is the translation subgroup T
itself, consisting of the matrices

Tu =
(

1 u
0 1

)
, (4.16)

where again u ∈ H is an arbitrary Hurwitz number. The following little
lemma will be useful in Section 6.2.
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Lemma 4.1. The left coprime pairs (c, d) ∈ H2 parametrize the coset spaces
W+(D+

4 )\W+(D++
4 ) ≡ W+

aff\W
+
hyp. The equivalence classes (c, d) ∼ (ec, ed)

for a unit e ∈ H uniquely parametrize the cosets.

Proof. Suppose that the left coprime lower entries (c, d) are given and that
a, b and ã, b̃ are two different pairs of Hurwitz numbers completing c, d to
two different matrices S and S̃ in PSL(0)(2, H). Then an easy computation
using (4.12) shows that

S̃S−1 =
(

q ∗
0 1

)
, (4.17)

where q ∈ Q is in the quaternionic group (4.5). Hence all such matrices are
related by an upper triangular element of PSL(0)(2, H) of type (4.15), that
is, an element of W+

aff . Since (4.15) also allows for left multiplication of the
pair (c, d) by a Hurwitz unit we arrive at the claim. �

4.3 Action of PSL(0)(2, H) on H(H)

We now wish to interpret the even Weyl group W+(D++
4 ) ≡ PSL(0)(2, H)

as a modular group Γ acting on the quaternionic upper half plane H(H).
To exhibit the nonlinear “modular” action of Γ we map the forward unit
hyperboloid ||X||2 = −1 in R

1,5 to the upper half plane H(H) by means of
the projection (2.22). Accordingly, we consider (2.9), but now specialize to
u ∈ H. Using the formulas of the previous section, in particular (2.22) and
(4.13), we obtain

v′ =
v

D
, u′ =

1
D

[
(au + b)(ūc̄ + d̄) + ac̄ v2

]
(4.18)

with z′ = u′ + iv′ ≡ s(z) ≡ s(u + iv), where

D ≡ D(S, u, v) := |cu + d|2 + |c|2v2 = |cz + d|2 (4.19)

and (2.4) has been used. Observe that now cz + d ∈ O. The transformations
(4.18) can be combined into a single formula

z′ =
(au + b)(ūc̄ + d̄) + ac̄ v2 + iv

|cz + d|2 ,

(
a b
c d

)
∈ PSL(0)(2, H), (4.20)

which is our expression for the most general quaternionic modular trans-
formation. Here z′ is manifestly in the upper half plane H(H), and also
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reduces to the standard formula z′ = (az + b)(cz + d)−1 for the commutative
cases u ∈ R (or C) and a, b, c, d ∈ R (or C). However, (4.20) fails for A = O

because of non-associativity. One can check explicitly that the transforma-
tions (4.18) and the identifications (2.22) are consistent with (4.13).

As a special case we have the modular transformations (4.15) correspond-
ing to the even affine Weyl group. The induced modular action of the most
general element γ ∈ Γ∞ ≡ W+

aff ≡ W+
fin � H is

γ : z → γ(z) = aub + yb̄ + iv (4.21)

with units a, b such that ab ∈ Q (cf. (4.5)) and y ∈ H an arbitrary Hurwitz
integer. This transformation corresponds to a finite (even) Weyl transfor-
mation followed by a constant shift along the root lattice H. In particular,
it follows that such transformations leave invariant the “cusp” z = i∞ in
H(H) — in analogy with the action of the usual shift matrix T for the real
modular group PSL(2, Z) (in that case, W+

fin is trivial). As we explained,
this is in accord with the fact that the affine Weyl group Waff is the subgroup
of Whyp leaving invariant the affine null root δ [14].

5 E8 and its hyperbolic extension

We now turn to the largest exceptional algebra E8 and its affine and hyper-
bolic extensions E9 ≡ E+

8 and E10 ≡ E++
8 . When extending the results of

the previous section to A = O a main obstacle is the non-associativity of the
octonions. We have the abstract isomorphism [2]

W+(E10) ∼= PSL(2, O) (5.1)

and we will exhibit a presentation of this group in terms of cosets with
respect to the cusp stabilizing affine Weyl group W+(E9); a presentation
that will prove particularly useful when constructing non-holomorphic auto-
morphic forms in Section 6. We emphasize that realizing part of this group
in terms of 2 × 2 matrices with integer octonionic (“octavian”) entries is
certainly not sufficient, because such matrices violate associativity and thus
cannot by themselves define any group. Nevertheless, the generating trans-
formations (3.17) for Γ ≡ PSL(2, O) are still valid in the form given there:
by the alternativity of the octonions no parentheses need to be specified
for nested products involving only two different octonions. On our way to
describing W+(E10) we will also obtain formula (5.23) below that gives a
rather explicit expression for the action of an E8 Weyl group element in
terms of unit octavians and the G2(2) automorphisms of the octavians.
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5.1 E8 and the integer octonions

As a basis for the octonion algebra one usually takes the real number 1 and
seven “imaginary” units e1, e2, . . . , e7 that anticommute and square to −1.
One then chooses three of them to be in a quaternionic subalgebra. For
instance, taking (e1, e5, e6) as a basic quaternionic triplet as in Section 4,
the octonion multiplication has the following properties:

eiej = ek ⇒ ei+1ej+1 = ek+1, e2ie2j = e2k, (5.2)

where the indices are counted mod 7. Using these rules, the whole multipli-
cation table can be derived from only one equation, for example e1e5 = e6.

The root lattice of E8 can be identified with the non-commutative and
non-associative ring of octavian integers, or simply octavians O (for their
construction, see [25]). Within this ring, the 240 roots of E8 are then iden-
tified with the set of unit octavians, which are the 240 invertible elements
in O. More specifically, the octavian units can be divided into

2 real numbers: ± 1,

112 Brandt numbers: 1
2(±1 ± ei ± ej ± ek),

126 imaginary numbers: 1
2(±em ± en ± ep ± eq), ±er, (5.3)

where

ijk = 124, 137, 156, 236, 257, 345, 467,

mnpq = 3567, 2456, 2347, 1457, 1346, 1267, 1235, (5.4)

and r = 1, 2, . . . , 7.11 The lattice O of octavians is the set of all integral
linear combinations of these unit octavians.

Recall that the automorphism group Aut O of the octonionic multiplica-
tion table (5.2) is the exceptional group G2 [24]. For the ring O we have the
analogous discrete result [25]

Aut O = G2(2), |G2(2)| = 12 096, (5.5)

where G2(2) is the finite (but not simple) group G2 over the field F2 (a
Chevalley group).

11Imaginary units and Brandt numbers are called “eyes” and “arms” in [25].
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We choose the simple roots of E8, according to the Dynkin diagram

1 2 3 4 5 6 7

8

� � � � � � �

�

as the following unit octavians,

ε1 = 1
2(1 − e1 − e5 − e6), ε2 = e1,

ε3 = 1
2(−e1 − e2 + e6 + e7), ε4 = e2,

ε5 = 1
2(−e2 − e3 − e4 − e7), ε6 = e3,

ε7 = 1
2(−e3 + e5 − e6 + e7), ε8 = e4. (5.6)

The identification (5.6) of the simple roots of E8 as unit octavians is not
unique. The main advantage of the choice of basis here (similar to [33] but
different from the one in [2]) is that the 126 roots of the E7 subalgebra are
given by imaginary octavians (defined to obey e2 = −1), while the 112 roots
corresponding to the two 56 representations of E7 in the decomposition of
the adjoint 248 of E8 are given by Brandt numbers, and the highest root
is θ = 1 in accord with our general conventions. By definition, a Brandt
number a obeys a3 = ±1. As explained in [25, 34], for such numbers (and
only for them) the map x → axa−1 is an automorphism of the octonions,
see also Appendix A.

Note that only the leftmost node of the Dynkin diagram corresponds
to a Brandt number, while all others correspond to imaginary unit octa-
vians. Also, the root basis for the obvious D4 subalgebra inside E8 is simply
obtained from the one of Section 4 by multiplying ε4, ε5, ε6 and ε8 with e7.

Using the scalar product (2.3) it is straightforward to reproduce from
(5.6) the E8 Cartan matrix via

Aij = 2(εi, εj). (5.7)

We saw in Section 4 that any element in the finite Weyl group W+(D4)
can be written as a bi-multiplication

x �→ axb, (5.8)
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where a and b are Hurwitz units. But the number of different such
transformations (= 12 × 24) exceeds the order of W+(D4) (which is = 96).
This is why, in order to obtain only elements in W+(D4), we needed to
impose the extra condition ab ∈ Q. For W+(E8) we would like to gener-
alize the expression (5.8) to unit octavians a and b. Because of the non-
associativity, we have to place parentheses, for instance by taking

x �→ (ax)b. (5.9)

Since the Dynkin diagram of E8 does not have any symmetries (unlike the
one of D4) all such transformations do belong to W+(E8). But counting
these expressions, we find that their number (modulo sign changes (a, b) ↔
(−a, −b)) now is smaller than the order of the even Weyl group, which is

|W+(E8)| = 120 × 240 × 12 096. (5.10)

The extra factor 12 096 is exactly the order of the automorphism group of
the octavians. This observation, made in [2] (see also [35]), suggests that
the expression (5.9) should be generalized to

x �→ (aϕ(x))b, (5.11)

where ϕ is an arbitrary automorphism of the octavians. However, it was
noted in [2] that the number of independent such expressions is in fact
smaller than 120 × 240 × 12 096, since the transformation (5.9) is already an
automorphism if a is a Brandt number (that is, a3 = ±1) and b = ±ā (see
above and Appendix A). In Section 5.3, we will explain how the formula
(5.11) can be modified in these cases, so that it indeed expresses all even
Weyl transformations of E8. As a first step we consider the E7 subalgebra
obtained by deleting the leftmost node in the Dynkin diagram and thus
corresponding to imaginary octavians.

5.2 The even Weyl group of E7

In this subsection we use aB to denote bimultiplication from left and right
with the same octavian a:

aB : O → O, x �→ axa. (5.12)

We will show that W+(E7) is the set of all transformations

gBhBϕ : O → O, x �→ g(h ϕ(x)h)g, (5.13)
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where g and h are imaginary unit octavians and ϕ is an automorphism of
the octavians. It follows from (3.3), and the identification (5.6) of the simple
E7 roots as imaginary unit octavians, that the generators of W+(E7) have
this form. To show that this holds for all elements in W+(E7) we thus have
to show that the composition of two such transformations g1Bh1Bϕ1 and
g2Bh2Bϕ2 again can be written in the form (5.13). From the definition of an
automorphism we have

(g1Bh1Bϕ1)(g2Bh2Bϕ2) = g1Bh1B ϕ1(g2)B ϕ1(h2)B ϕ1ϕ2

= (eBfBfBeB)g1Bh1B ϕ1(g2)B ϕ1(h2)Bϕ1ϕ2, (5.14)

where we in the last step have inserted the identity map in form of eBfBfBeB

for two arbitrary imaginary unit octavians e and f . Any unit octavian can
be written as a product of two imaginary unit octavians, so we can choose
e and f in (5.14) such that

fe = ±((ϕ1(h2) ϕ1(g2))h1)g1, (5.15)

or equivalently,

((((fe)g1)h1) ϕ1(g2)) ϕ1(h2) = ±1. (5.16)

Then, according to Corollary A.4, the map

ϕ3 ≡ fBeBg1Bh1B ϕ1(g2)B ϕ1(h2)B (5.17)

is an automorphism. Inserting this into (5.14) we obtain

(g1Bh2Bϕ1)(g2Bh2Bϕ2) = (eBfBfBeB)g1Bh1B ϕ1(g2)B ϕ1(h2)Bϕ1ϕ2

= eBfB(fBeBg1Bh1B ϕ1(g2)B ϕ1(h2)B)ϕ1ϕ2

= eBfB(ϕ3ϕ2ϕ1). (5.18)

Since ϕ3, ϕ1 and ϕ2 all are automorphisms, their product ϕ3ϕ2ϕ1 is an
automorphism as well.

Conversely, any transformation (5.13) is an isometry of the root system.
Since the group of isometries of the root system of a finite algebra is the
semidirect product of the Weyl group and the symmetry group of the Dynkin
diagram (which is trivial for E7), it follows that any transformation (5.13)
belongs to the Weyl group. Furthermore, it belongs to the even Weyl group
since it does not involve the conjugate x̄.
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We have thus proven that W+(E7) is the set of all expressions (5.13). But
there is some redundancy in this set. If g1h1 = g2h2, then the transformation

ϕ3 = h2g2g1h1 (5.19)

is an automorphism according to Corollary A.4, and we have

g1h1ϕ1 = g2h2ϕ2, (5.20)

where ϕ2 = ϕ3ϕ1. Thus only the product ±gh matters modulo automor-
phisms ϕ, and this product can be any unit octavian. Put differently, any
element of W+(E7) is characterized by an automorphism in G2(2) and a
unit octavian a which must then be factorized as gh with imaginary units
g and h, unless a is itself imaginary. Accordingly, the order of W+(E7) is
120 × 12 096.

5.3 From W (E7) to W (E8)

Having understood the Weyl group of E7 the step to E8 is more conceptual
than technical — it is an application of the orbit-stabilizer theorem, which is
valid for any group G acting on a set X . If H ⊂ G is the subgroup stabilizing
an element x ∈ X , the theorem says that, for any g ∈ G, the coset gH is the
set of all elements in G that take x to gx.

The Weyl group of E7 is the subgroup of W (E8) that stabilizes the high-
est root of E8. Applying the orbit-stabilizer theorem, it is enough to find
one transformation w in W (E8) for each element x in the orbit W (E8) θ,
such that w(θ) = x. Then the set of all such transformations is the coset
w W (E7). The root system of E8 is one single orbit under W (E8) and the
highest root θ is 1 in our identification with the octavians. Thus we need a
transformation in W (E8) for each unit octavian b, such that θ = 1 is mapped
to b. But this is easy to find, we just take the transformation to be right
(or left) multiplication by b. It follows if we linearize the composition prop-
erty (2.8), or alternatively by (2.3) together with the first of the Moufang
identities (A.1), that

(xb, yb) = |b|2(x, y), (5.21)

so right multiplication by b is an isometry if b has unit length. Like for E7

any isometry of the root system is an element of the Weyl group, and right
multiplications of unit octavians belong to the even Weyl group W+(E8)
since they do not involve conjugation.
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Thus any element of W+(E8) can be written as

x �→ (f(e ϕ(x) e)f)b, (5.22)

where e and f are imaginary unit octavians, b an arbitrary unit octavian,
and ϕ an automorphism of the octavians. Using the third of the Moufang
identities (A.1), we can write this as

x �→ (f(e ϕ(x) e)f)b

= f((e ϕ(x) e)(fb))

= f(e (ϕ(x) (e(fb))))

= f(e (ϕ(x) d)), (5.23)

where d = e(fb). This differs from the formula (5.11) suggested in [2], only
by the factorization of a into two imaginary unit octavians e and f . In fact,
the factors e and f do not need to be imaginary but can also be real, that
is ±1. Then if a in (5.11) is imaginary, the factorization is trivial; we can
just take e = a and f = 1, and (5.23) reduces to (5.11). Only when a is a
Brandt number we need to replace (5.11) by (5.23), where we can choose
any factorization of a into two imaginary unit octavians e and f .

When we consider E8 as a subalgebra of E10 = E++
8 , the Weyl group

W (E8) acts in a non-trivial way on the simple root α0 (and trivially on
α−1). We can thus extend the action of W (E8) to the whole root space of
E10. The Weyl transformation (5.23) can then be written as12

(
x+ x
x̄ x−

)
�→

(
x+ f(e (ϕ(x) d))

((d̄ ϕ(x̄))ē)f̄ x−

)
(5.24)

or, in more compact form,

X �→ F (E(D†ϕ(X)D)E†)F †, (5.25)

where

D =
(

1 0
0 d

)
, E =

(
e 0
0 1

)
, F =

(
f 0
0 1

)
. (5.26)

12The fact that the formula “X �→ SXS†” requires refinement by placing parentheses
inside the matrix elements was anticipated in [2].
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5.4 From W (E8) to W (E9)

As mentioned in Section 3.3 (see also [29]), to any point x on the root lattice
of the finite Kac–Moody algebra E8 we can associate a translation tx that
acts on the root space of E10 as

ty : X �→ X + 2(X, δ)y + 2(X, y)δ − 2|y|2(X, δ)δ. (5.27)

where δ is the null root (3.10). Then txty = tx+y for any x and y, and all
translations form a free group of translations T ≡ O of rank eight. This
group is a normal subgroup of the Weyl group of E9, which can then be
written as a semidirect product

W (E9) = W (E8) � T ≡ W (E8) � O. (5.28)

Furthermore, the translations belong to the even Weyl group, so we have

W+(E9) = W+(E8) � T . (5.29)

When we identify the root space of E10 with the Jordan algebra H2(O), we
can write the action of ty as

ty : X �→ Ty X T †
y , (5.30)

where

Ty =
(

1 y
0 1

)
. (5.31)

For such matrices we indeed need not worry about non-associativity because

(TyX)Ty
† = Ty(XTy

†) =
(

x+ + yx̄ + xȳ + yx−ȳ x + yx−
x̄ + x−ȳ x−

)

=
(

x+ + 2(x, y) + x−|y|2 x + x−y
x̄ + x−ȳ x−

)
= ty(X),

(5.32)

where δ is as in (3.10). It follows that any element in W+(E9) can be written
in the form (5.25), but now with

D =
(

1 0
c d

)
, (5.33)
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where c is an arbitrary octavian, so that D† is an upper triangular matrix.
Since at least one of the diagonal entries in D is equal to 1 the expression
(5.25) is still well defined.

5.5 From W (E9) to W (E10)

The tool for describing W (E10) in terms of W (E9) is the orbit-stabilizer
theorem, just like in going from W (E7) to W (E8). We use the fact that
W+(E9) stabilizes the null root −δ of (3.10). Therefore the left cosets
W+(E10)/W+(E9) are in bijection with the orbit of −δ under W+(E10).
In this section we will see that the orbit of −δ under W+(E10) in turn can
be parametrized by pairs of right coprime octavians, if we define coprimal-
ity for octavians in an appropriate way based on the Euclidean algorithm.
(This is not the only possible generalization of the notion of coprimality
when going from the Hurwitz numbers to the non-associative octavians —
see below). We first recall the validity of the (right) Euclidean algorithm for
octavians (see e.g., [25] for a proof).

Theorem 5.1. Let a and c be two octavians. Then, for some integer n ≥ 0,
there exist octavians q1, q2, . . ., qn, qn+1 and r0, r1, . . ., rn, such that

a = q1c − r1,

c = q2r1 − r2,

r1 = q3r2 − r3,

· · ·
rn−2 = qnrn−1 − rn,

rn−1 = qn+1rn (5.34)

and |r1| > · · · > |rn| > 0.13

We now define a and c to be right coprime if (for some choice of possible
n and q1, q2 . . . , qn+1), the last non-vanishing remainder is a unit, |rn| = 1.
For Hurwitz numbers this definition is equivalent to the one that we gave in
Section 4.2: two Hurwitz numbers are left (right) coprime if and only if they
share no common left (right) factor g ∈ H with |g| > 1. For octavians the
two definitions are no longer equivalent, due to non-associativity. One can
construct counterexamples of a and c such that they are right coprime but

13In this way of writing the Euclidean algorithm, we have changed the sign of the
remainders ri compared to other authors. This choice of sign proves to be more convenient
in the analysis to follow.
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still have a non-trivial common right divisor.14 We have not been able to
decide on the converse statement, i.e., if having only trivial common right
divisor implies being right coprime in the sense of the Euclidean algorithm.
Left coprimality is defined analogously as we will spell out below.

With the above definition of coprimality of octavians we have the following
lemma.

Lemma 5.2. Let O−δ be the orbit of −δ under the action of W+(E10).
Then

O−δ =
{(

|a|2 ac̄
cā |c|2

)
: a and c are right coprime octavians

}
. (5.35)

Proof. Let S be the right hand side of (5.35). By examining the action of
the generators (3.15) of W+(E10) one finds that S is preserved under the
action of W+(E10). Since −δ itself is contained in S we conclude that O−δ

is contained in S.

To prove the other inclusion, we need to find a W+(E10) element wa,c

associated to any pair of right coprime octavians a and c such that wa,c(−δ)
equals the matrix on the right hand side of (5.35). Since a and c are
right coprime, there exist octavians q1, q2, . . . , qn+1 such that the remainders
r1, r2, . . . , rn, defined by (5.34), satisfy |r1| > · · · > |rn| > 0 and |rn| = 1. We
now consider the W+(E10) element

wa,c = tq1 ◦ s−1 ◦ · · · ◦ tqn+1 ◦ s−1 ◦ urn , (5.36)

where tq has been defined in (5.30), s−1 is as in (3.15) and urn is given by

urn(X) = UrnXU †
rn

with Urn =
(

rn 0
0 r̄n

)
. (5.37)

Thus urn is an element of W+(E8) ⊂ W+(E10) if and only if |rn| = 1. The
notation wa,c is not completely accurate as the element also depends on the
choice of Euclidean algorithm decomposition, but all (presently) important

14Consider for example a = e1 + e2, c = e1 + e3. Then one can write a = q1c − r1 with

q1 = 1
2

(2 + e1 + e4 − e5 − e7) , r1 = 1
2

(−1 + e1 + e3 + e7) ,

so they are right co-prime in the sense of (5.34). At the same time, they have the common
right divisor g = 1 + e1.
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features of wa,c depend only on a and c. We calculate wa,c(−δ) by induction.
One first verifies that

(tqi+1 ◦ s−1)
(

|ri|2 rir̄i+1

ri+1r̄i |ri+1|2
)

=
(
|ri−1|2 ri−1r̄i

rir̄i−1 |ri|2
)

, (5.38)

for all i = 0, . . . , n, if we let r−1, r0 and rn+1 be equal to a, c and 0, respec-
tively. Since trivially

urn(−δ) =
(

1 0
0 0

)
=

(
|rn|2 rnr̄n+1

rn+1r̄n |rn+1|2
)

, (5.39)

we conclude that

wa,c(−δ) =
(
|r−1|2 r−1r̄0

r0r̄−1 |r0|2
)

=
(
|a|2 ac̄
cā |c|2

)
. (5.40)

This shows that all elements of S are contained in O−δ, completing the proof
of the lemma. �

By the orbit-stabilizer theorem this lemma implies that W+(E10) can be
written as

W+(E10) =
⋃

a,c∈O right coprime

wa,cW
+(E9). (5.41)

By repeating the same arguments leading to (5.41) but using a right action
with the inverse elements we find that W+(E10) is not only the union of left
cosets (5.41) but also the union of the right cosets

W+(E10) =
⋃

c,d∈O left coprime

W+(E9)w̃c,d, (5.42)

where we sum now over left coprime octavians and

w̃c,d = ur̄n ◦ s−1 ◦ tqn+1 ◦ · · · ◦ s−1 ◦ tq1 . (5.43)
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These octavians q1, . . . qn+1 and rn appearing here are the elements in the
left Euclidean algorithm

d = cq1 − r1,

c = r1q2 − r2,

r1 = r2q3 − r3,

. . .

rn−2 = rn−1qn − rn,

rn−1 = rnqn+1. (5.44)

Neither of the unions in (5.41) or (5.42) is disjoint, as is evident from
the proof of the lemma, where the precise value of rn did not enter in the
calculation. Therefore, all d and c that are related by only changing the
unit rn give rise to the same image and therefore to the same coset. In
Appendix B, we show that conversely, if two pairs (c, d) and (c′, d′) give
rise to the same coset, then they must be related in this way. Hence, the
union can be made disjoint by identifying those pairs of octavians that differ
only by changing rn. In the associative case this is precisely the content of
Lemma 4.1.

The reason why have included urn in the definition of wa,c, although it
is an element of W+(E8) ⊂ W+(E9) and thus acts trivially on −δ, comes
from restricting to the associative case. For D4 and the associated Hurwitz
numbers, one can write wa,c in matrix form as

wa,c : X �→ Sa,cXS†
a,c, (5.45)

where Sa,c is the PSL(2, H) element

Sa,c = Tq1S−1 · · ·Tqn+1S−1Urn . (5.46)

This matrix will then have the form

Sa,c =
(

a b
c d

)
, (5.47)

where b and d depend on the precise choice of Euclidean decomposition.
The construction of Sa,c shows that the left coprimality condition on (a, c)
is not only necessary for the existence of such a matrix in PSL(2, H), but
also sufficient, as we claimed in Section 4.2. The same is true for the left
coprimality condition on (b, d), and for the right coprimality conditions on
(a, b) and (c, d).
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6 Automorphic functions on H(A)

In this section, we construct Maass wave forms and Poincaré series on H(A)
invariant under the Weyl groups studied in the preceding sections. We will
mostly concentrate on the case A = O because it is the most interesting,
and because the extension (or rather, specialization) to the other division
algebras is straightforward. The resulting expressions are simple, reminis-
cent of known expressions for PSL(2, Z) (see for example [15]) and reflect
the arithmetic structure of the integer domains associated with the under-
lying Kac–Moody algebra. Our analysis can be seen as a first step towards
developing a more general theory of automorphic functions and Maass wave
forms of these Weyl groups.

6.1 Maass wave forms

The definitions of this subsection apply to all the normed division algebras
(including A = O). Following [15, 21] we define the scalar product between
two functions f, g : H(A) → C by means of the invariant measure (2.18)

(f, g) :=
∫

F
f(z) g(z) dvol(z). (6.1)

A Maass wave form of type s with respect to the modular group Γ acting
on H(A) is then defined to be a non-zero complex function f ∈ L2(F , C) on
F ⊂ H(A) obeying

• f(z) = f(γ(z)) for γ ∈ Γ,
• �LBf(z) = −s(n − s)f(z),

where n = dimR A as always, and s ∈ C. If we also demand

•
∫
K f(u + iv) dnu = 0 for all v > 0,

where K is the “projection” of F onto A, cf. figure 1, we would obtain
so-called “cusp forms”, i.e., automorphic functions that vanish at the cusp
at infinity. However, it will be sufficient for our purposes here to require the
functions to be Fourier expandable around v = ∞.

Among the Maass wave forms one can introduce a further distinction
according to whether they are even or odd. Because Γ ≡ W+

hyp is an index 2
subgroup in the full hyperbolic Weyl group Whyp we have two possibilities
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for extending the group action, namely

f(w(z)) =

{
f(z)
det(w) f(z)

, w ∈ Whyp. (6.2)

Taking the special reflection wθ ∈ Whyp as a reference (see (3.16)), we see
that these definitions respectively are equivalent to

f(−z̄) =

{
+f(z),
−f(z).

(6.3)

Maass wave forms obeying the first (second) condition are referred to as
even (odd) Maass wave forms. Employing the generating Weyl reflections
(3.12) it is straightforward to see that odd Maass wave forms vanish on ∂F0,
hence obey Dirichlet boundary conditions on F0 (that is, on all faces of the
fundamental Weyl chamber), while even Maass wave forms have vanishing
normal derivatives on ∂F0, hence obey Neumann boundary conditions. If
one interprets f as a quantum mechanical wave function, both possibilities
are compatible with the rules of quantum mechanics because only scalar
products of wave functions (for which the sign factors cancel) are observ-
able [3–5].

A main goal of the theory is to analyse the spectral decomposition of
the Laplace–Beltrami operator on L2(F , C) [15, 21]. As it turns out, for
the discrete eigenvalues the associated eigenfunctions must be determined
numerically (see e.g., [30] for results on A = C). For odd Maass wave forms,
the spectrum is purely discrete, and one can establish the bound [3, 4]15

−�LB ≥ n2

4
(6.4)

generalizing an argument of [21]. For even f(z) one has in addition to
the discrete spectrum a continuous spectrum that can be constructed by
means of Eisenstein series and extends from n2/4 over the positive real axis
(see below).

15In fact, for SL(2, Z) Maass wave forms a better bound is E ≥ 3π2/2 (see [15], p. 71),
and we expect such improved lower bounds also to exist for the other normed division
algebras A.
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6.2 Poincaré series

We recall that the Laplacian on hyperbolic space H(A) of dimension n + 1
is given by (2.19), again with n = dimR A. For Is(z) = vs or In−s(z) = vn−s

with s ∈ C, we compute

−�LB Is(z) = Es Is(z) = s(n − s) Is(z). (6.5)

Note that for real values of s we have Es > 0 if and only if 0 < s < n.

We are here interested in functions that are both eigenfunctions of the
Laplacian �LB and automorphic (but not necessarily square integrable).
To turn the function Is into an automorphic form, we have to make it
symmetric under modular transformation by “averaging” over the modular
group Γ ≡ W+

hyp. Abstractly, this is achieved by defining the Poincaré series
(or restricted Eisenstein series)

Ps(z) :=
∑

γ ∈Γ∞\Γ
Is(γ(z)). (6.6)

Whenever this sum converges it is an eigenfunction of the Laplace–Beltrami
operator by virtue of the invariance property (3.24), which implies that every
term in the sum is separately an eigenfunction with the same eigenvalue.
The restriction to summing over cosets of the stabilizer of Is(z) ensures that
the sum is well-defined. Furthermore Is(wθ(z)) = Is(−z̄) = +Is(z), so we
conclude that Ps(z) satisfies Neumann boundary conditions on F0.

We emphasize again that the above definition, though standard [15, 21],
is special inasmuch all our “modular groups” Γ are hyperbolic Weyl groups,
with the corresponding affine Weyl subgroups Γ∞ as the stabilizer groups
of the cusp at infinity. The relation of the hyperbolic Weyl group to integer
domains in A will bring the arithmetic structure to the fore in the final
expressions for Ps. We will perform the analysis for Γ = W+(E10) since for
example the quaternionic case W+(D++

4 ) is contained in it by specialization.

In order to evaluate the sum in (6.6) we employ the description (5.42) of
the right cosets Γ∞\Γ. Consider therefore two left coprime octavians c and
d with corresponding left Euclidean decomposition (5.44) and associated left
coset representative

w̃c,d = ur̄n ◦ s−1 ◦ tqn+1 ◦ · · · ◦ s−1 ◦ tq1 . (6.7)

as in (5.43).
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Lemma 6.1. Let (zi) be a sequence of elements in H(A) defined recur-
sively by z0 = u0 + iv0 := z and zk+1 = uk+1 + ivk+1 := (s−1 ◦ tqk+1

)(zk) =
−(zk + qk+1)−1. Then

vn+1 =
vi

|rizi + ri−1|2
(6.8)

for all i = n + 1 down to i = 0. (Here, we let rn+1 = 0, r0 = c and r−1 = d
as before.)

Proof. For i = n + 1 the claim is true since rn+1 = 0 and |rn| = 1. The
induction step consists of

vn+1 =
vi

|rizi + ri−1|2
=

vi−1

|rizi + ri−1|2|zi−1 + qi|2

=
vi

| − ri(zi−1 + qi)−1 + ri−1|2|zi−1 + qi|2

=
vi−1

|ri−1zi−1 + ri−1qi − ri|2

=
vi−1

|ri−1zi−1 + ri−2|2
. (6.9)

In one step one requires that ri−1 = [ri−1(zi−1 + qi)](zi−1 + qi)−1. Remark-
ably, this step remains valid even for H(O): though such a relation is not
true generally over the sedenions due to lack of alternativity, it holds in the
present case since the imaginary part of zi−1 + qi is i multiplied with a real
number only. For the same reason one can also use multiplicativity of the
norm. �

Since the imaginary part of zn+1 is not changed by the final urn we obtain

Is (w̃c,d(z)) = vs
n+1 =

vs
0

|r0z0 + r−1|2s
=

vs

|cz + d|2s
. (6.10)

The fact that rn does not change the result of this computation indicates
that one can choose the unit rn freely. As we stated in Section 5.5, if
and only if c′ and d′ are defined by the same qi as c and d but with r′n
instead of rn the corresponding w̃c′,d′ will be in the same coset as w̃c,d and
hence Is(w̃c′,d′(z)) = Is(w̃c,d(z)). Therefore we can undo the overcounting
associated with the non-disjointness of (5.42) by dividing by the number
of choices for rn, that is, the number of units of the integer domain in A.
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Finally, we obtain the following explicit expression for the Poincaré series

Ps(z) =
1
N

∑

c,d∈O left coprime

vs

|cz + d|2s
, (6.11)

where N is the number of units, which is 240 for the octavians and 24 for
the Hurwitz numbers. This expression crucially uses the number theoretic
properties of the integer domain O ⊂ A underlying the hyperbolic Weyl
group.

One can also define the unrestricted Eisenstein series

Es(z) :=
∑

(c,d)∈O2\{(0,0)}

vs

|cz + d|2s
. (6.12)

This Eisenstein series is related to (6.11) by

Es(z) = ζO(s)Ps(z), (6.13)

where

ζO(s) =
∑

0�=a∈O
|a|−s =

∑

n∈N

σO(n)
ns

(6.14)

is the (Dedekind) zeta function associated with the appropriate integers and
σO(n) counts the number of roots of (squared) length 2n on the root lattice
(which is always a multiple of the number of units). This zeta function is
also the correct factor of proportionality in the non-associative case as can
be seen by considering any pair (c, d). The last vanishing remainder rn is not
necessarily a unit but has well-defined norm |rn|2. Then one can again con-
struct all pairs (c′, d′) which yield the same summand in (6.12) by letting rn

range over all octavians of given norm |rn|2. This produces exactly the zeta
function (encoding the same information as the E8 lattice theta function).

We expect that with an appropriately defined completed zeta function
ξO(s) the following functional relation holds:16

ξO(s)Ps(z) = ξO(n − s)Pn−s(z), (6.15)

16For example, the completed Riemann zeta function is

ξ(s) = π−s/2Γ(s/2)ζ(s)

and satisfies the functional relation ξ(s) = ξ(1 − s) which can be used to define the Rie-
mann zeta function by analytic continuation outside its domain of convergence Re(s) > 1.
There exist appropriate generalizations for other algebraic integers.
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where n is the dimension of the division algebra and this functional relation
should be related to the ones studied in the real rank one case in [19].

We now turn to the Fourier expansion of the Poincaré series. Because
the sum (6.6) is periodic under integer shifts u → u + o for o ∈ O, it can be
expanded into a Fourier series. Since it is an eigenfunction of the Laplacian,
the Fourier coefficients have to also satisfy differential equations and we
obtain

Ps(z) = vs + a(s)vn−s + vn/2
∑

μ∈O∗\{0}
aμKs−n/2(2π|μ|v)e2πiμ(u), (6.16)

where O∗ ⊂ A is the lattice dual to the lattice of integers O ⊂ A relevant to
the hyperbolic Weyl group and Kν(v) is the solution to the Bessel equation

v2 d2Kν

dv2
+ v

dKν

dv
+ (v2 − ν2) Kν = 0, (6.17)

which vanishes exponentially for large v. The coefficients aμ in (6.16) are
further constrained by the even part of the finite Weyl group which acts
as a set of (generalized) rotations on O, so that aμ = as(μ) for all s ∈ W+

fin.
Further constraints come from a Hecke algebra (if it can be suitably defined)
and will render the coefficients aμ multiplicative over A = R, C. The first
two terms in (6.16) correspond to the so-called constant terms. For (6.15)
to hold one needs a(s) = ξO(n − s)/ξO(s). The remaining terms fall off
exponentially as v → ∞. In string theory applications, v is associated with
the string dilaton and hence the first two terms correspond to perturbative
effects whereas the exponentially suppressed terms are non-perturbative in
the string coupling.

By standard arguments one can show that (6.11) and (6.12) are convergent
for Re(s) > n/2. However, these functions are never square integrable with
respect to (6.1). For both Re s > n/2 and Re s < n/2, the functions Es(z)
are not normalizable with respect to the invariant measure (2.18) when
integrated over the fundamental domain as in (6.1). This is due to the
divergence of the v-integral for v → ∞ because of the “constant terms” vs

and vn−s, both of which appear with non-vanishing coefficients in (6.16),
whereas the “tail” involving Bessel functions decays exponentially for large v.
However, for the special values on the “critical line” (r ∈ R)

s =
n

2
+ ir (6.18)
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we obtain “almost” normalizable states with eigenvalues

E =
n2

4
+ r2 ≥ n2

4
. (6.19)

Notwithstanding a rigorous proof, this can be roughly seen as follows.
Exploiting the expansion (6.16) the leading terms behave like vs or vn−s,
with the subleading terms being integrable in v. Substituting these “dan-
gerous” terms into (6.1) and neglecting finite contributions, we get (with
Re s = n/2)

∫

F
dvol(z) Es(z)Es′(z) ∼

∫

K
dnu

∫ ∞
√

1−|u|2
dv

v
exp

[
i(±r′ ± r) ln v

]
. (6.20)

The integral over u is finite because K is compact. Changing variables to
ξ = ln v and extending the range of integration to v = 0, we get

∫ ∞

−∞
dξ exp

[
i(±r′ ± r)ξ

]
= 2πδ(r′ ± r). (6.21)

Hence, for these values of s, the Eisenstein functions are δ-function normal-
izable up to finite corrections. As a result, there is a continuous part of the
spectrum

specc(−�LB) =
[
n2

4
, ∞

)
(6.22)

for even Maass wave forms. In addition there are discrete eigenvalues for
even Maass wave forms, which are embedded in the continuum (but which
must be determined numerically). The spectrum of odd Maass wave forms
is purely discrete.
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Appendix A Automorphisms of octonions

In this appendix, we will prove a theorem about the automorphisms of the
octonions that we use in Section 5.2. First we list the Moufang identities
that we also use

(ax)(ya) = a(xy)a, ((xa)y)a) = x(aya), a(x(ay)) = (axa)y. (A.1)

These identities follow from the alternative laws (2.11). (For a proof, see [36].)
Another useful identity that follows from the alternative laws and the
Moufang identities is

(a2xa)(a−1ya) = a2(xy)a. (A.2)

Indeed, we have

(a2xa)(a−1ya) = (a(ax)a)(a−1ya)

= a((axa)(a−1y))a

= a(a(xy))a = a2(xy)a. (A.3)

Now we can prove the following lemma.

Lemma A.1. For any integer n ≤ 1 and any z, a1, a2, . . . , an ∈ O we have

a1(a2(· · · (anza−1
n ) · · · )a−1

2 )a−1
1

= a−2
1 (a−2

2 · · · (a−2
n (bnz)a−1

n ) · · · a−1
2 )a−1

1 , (A.4)

where

bn = a2
n(a2

n−1 · · · (a2
2a

3
1a2) · · · an−1)an. (A.5)

Proof. We prove this by induction over n. The case n = 1 follows easily by
alternativity. Suppose now that the identity (A.4) holds for some integer
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n ≥ 1. Then we have

a1(a2 · · · (an(an+1za−1
n+1)a

−1
n ) · · · a−1

2 )a−1
1

= a−2
1 (a−2

2 · · · (a−2
n (bn(an+1za−1

n+1))a
−1
n ) · · · a−1

2 )a−1
1 , (A.6)

so we only have to show that

bn(an+1za−1
n+1) = a−2

n+1(bn+1z)a−1
n+1. (A.7)

To do this we use that

bn = a−2
n+1bn+1a

−1
n+1, (A.8)

so that the left-hand side of (A.7) becomes

bn(an+1za−1
n+1) = (a−2

n+1bn+1a
−1
n+1)(an+1za−1

n+1). (A.9)

and then (A.7) follows from (A.3). �

Lemma A.2. For any integer n ≤ 1 and any x, y, a1, a2, . . . , an ∈ O

we have

(a1(· · · (anxa−1
n ) · · · )a−1

1 )(a1(· · · (anya−1
n ) · · · )a−1

1 )

= a−2
1 (a−2

2 · · · (a−2
n ((bnx)y)a−1

n ) · · · a−1
2 )a−1

1 , (A.10)

where

bn = a2
n(a2

n−1 · · · (a2
2a

3
1a2) · · · an−1)an. (A.11)

Proof. By Lemma A.1 we have

(a1(· · · (anxa−1
n ) · · · )a−1

1 )(a1(· · · (anya−1
n ) · · · )a−1

1 )

= (a−2
1 · · · (a−2

n (bnx)a−1
n ) · · · a−1

1 )(a1(· · · (anya−1
n ) · · · )a−1

1 ) (A.12)

and then (A.10) follows by using (A.3) successively. �

No we can prove the main result of this appendix.

Theorem A.3. A transformation

ϕ : x �→ a1(a2(· · · (anxa−1
n ) · · · )a−1

2 )a−1
1 (A.13)

of the octonions, where a1, . . . , an �= 0, is an automorphism if and only if

bn = a2
n(a2

n−1(· · · (a2
2a

3
1a2) · · · an−1)an ∈ R. (A.14)
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Proof. Setting xy = z, we have in Lemma A.1 and Lemma A.2 obtained
expressions for ϕ(xy) and ϕ(x)ϕ(y), respectively. The difference between
these two expressions is

ϕ(xy) − ϕ(x)ϕ(y) = a−2
1 (a−2

2 · · · (a−2
n {bn, x, y}a−1

n ) · · · a−1
2 )a−1

1 . (A.15)

Since there are no zero divisors, this difference is zero if and only if the
associator {bn, x, y} = bn(xy) − (bnx)y vanishes. Since this must happen
for all x and y, the necessary and sufficient condition is bn ∈ R. �

The theorem simplifies considerably if we take a1, . . . , an to be unit octo-
nions, and furthermore imaginary.

Corollary A.4. A transformation

ϕ : x �→ a1(a2(· · · (anxan) · · · )a2)a1 (A.16)

of the octonions, where a1, . . . , an are imaginary unit octonions or real unit
octonions, is an automorphism if and only if

(((a1a2)a3) · · · an) = ±1. (A.17)

Proof. This follows directly from Theorem A.3 if we use that a−1 = ±a and
a2 = a−2 = ±1 for any imaginary unit octonion or real unit octonion a. �

We use this corollary in Section 5.2 when we identify the imaginary unit
octavians with the simple roots of E7, and the corresponding bimultiplica-
tions with generators of W+(E7).

Appendix B 2n-dimensional representation of W +
hyp

The representation (3.15) of the even hyperbolic Weyl group as conjugation
on Hermitian (2 × 2)-matrices over A is an (n + 2)-dimensional representa-
tion, corresponding to the action on the Cartan subalgebra. Alternatively,
it is the action in the vector (fundamental) representation of SO(1, n + 1)
in which W+

hyp is embedded as a discrete subgroup. The isomorphism
W+

hyp
∼= PSL(2,O) for integers O ⊂ A suggests also a natural action on

2-component vectors of elements in A. Such a representation corresponds
to the spinor representation of SO(1, n + 1).
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Concretely, we consider the right action of PSL(2,O) on the 2n-
dimensional space of two components rows

{(a1, a2) : a1, a2 ∈ A} / ∼, (B.1)

where ∼ denotes the equivalence relation associated with the “P”
in PSL(2,O). Except for the complex case it corresponds to (a1, a2) ∼
(−a1,−a2). The action of PSL(2,O) is by right multiplication of the gener-
ators (3.15).

In order to check that this defines a representation of W+
hyp one has to

verify the defining relations. We do this in a non-associative example for the
product SiSj of two generators such that (εiεj)2 = ±1. From the definition
one gets

(a1, a2) · (SiSj)2 =
(
(((a1εi)εj)εi)εj , (((a2ε̄i)ε̄j)ε̄i)ε̄j

)
. (B.2)

Now, using the Moufang identities one calculates

(((a1εi)εj)εi)εj = (a1εi)(εjεiεj) = (a1(ε̄j ε̄iε̄j))(εjεiεjεiεjεiεj)

= ±(a1(ε̄j ε̄iε̄j)(εjεiεj) = ±a1, (B.3)

where alternativity has been used in a number of places. Hence, we arrive
at (SiSj)2 = id ∈ PSL(2,O) as required. The calculations in the other cases
are similar.

One advantage of this representation is that one can easily exhibit the
invariant content of elements like w̃c,d in (5.43). A calculation shows that

(0, 1) · w̃c,d = (c, d). (B.4)

In the associative case this is clear since w̃c,d is then given by a matrix with
bottom row (c, d). In the non-associative case one cannot write a single
matrix for w̃c,d but the above computation shows that it still behaves as a
matrix with bottom row (c, d) when it acts on (0, 1).17 This insight allows
us to derive the overcounting factor N appearing in (6.11). Suppose that
(c′, d′) is a pair of left coprime octavians that gives rise to the same coset as

17In this representation, the stabilizer of (0, 1) is only the translation group T and not
the full (even) affine Weyl group Γ∞ ≡ W+

aff = W+
fin � T . Therefore, we can “resolve” the

presence of urn in (5.43).



142 AXEL KLEINSCHMIDT ET AL.

(c, d), that is,

W+(E9)w̃c,d = W+(E9)w̃c′,d′ . (B.5)

Since Γ∞ = W+
aff is generated (non-minimally) by the translations ty of

(5.31) and the rotations uε of (5.37) this means that w̃c′,d′ = ww̃c,d, where
w is a product of such translations and rotations. Acting on (0, 1) we get

(c′, d′) = (0, 1) · (ww̃c,d). (B.6)

The rotations in w will change (0, 1) to (0, ε) where ε is a unit, and the
translations act trivially on such rows.

We conclude that c′ and d′ are determined by the left Euclidean algorithm
with the same qi as for (c, d) but with r′n = εrn instead of rn. Therefore all
pairs that represent the same coset must be related in such a way. One can
show that for all choices of ε one obtains distinct pairs, and therefore the
overcounting in (6.11) is equal to the number of units in O.

Appendix C Green functions on H(A)

For z1, z2 ∈ H(A) define (cf. (2.16))

λ(z1, z2) :=
|u1 − u2|2 + (v1 − v2)2

4v1v2
≡ 1

2
sinh2 d(z1, z2)

2
. (C.1)

Acting with the Laplace–Beltrami operator (2.19) on the first argument of
λ(z1, z2) we get

�LB λ(z1, z2) = (n + 1)
(

1
2

+ λ(z1, z2)
)

(C.2)

and thus for ξ ∈ R and λ ≡ λ(z1, z2)

�LB

[
ξ + λ

]−s = s
[
ξ + λ

]−s−2

×
[
(s + 1)(λ + λ2) − (n + 1)

(
1
2

+ λ

)
(ξ + λ)

]
. (C.3)

Following [21], we define the Green function (or the “propagator”) as

Gs(λ(z, w)) =
∫ 1

0
[ξ(1 − ξ)]s−

n+1
2

[
ξ + λ(z, w)

]−s
dξ, (C.4)
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for z, w ∈ H(A). This integral converges for s > n−1
2 and λ(z, w) > 0. We

will assume n > 1 from now on, as the case n = 1 is treated in much detail
in [21].

For non-coincident points z �= w, application of the operator �LB +
s(n − s) gives an integrand proportional to

s
d

dξ

[(
ξ(1 − ξ)

)s+ 1−n
2 (

ξ + λ(z, w)
)−s−1

]
. (C.5)

Therefore, the boundary terms, and hence the integral vanish for s > n−1
2 .

This shows that, for z �= w, we have

[
�LB + s(n − s)

]
Gs

(
λ(z, w)

)
= 0. (C.6)

For coincident arguments the integrand is singular, and we must reason more
carefully. To determine the behavior for small λ we split the integral as

∫ 1

0
=

∫ A

0
+

∫ B

A
+

∫ 1

B
(C.7)

with suitable 0 < A < B < 1. Since for λ ≥ 0 and 0 < ξ < 1
∣∣∣∣
ξ(1 − ξ)
ξ + λ

∣∣∣∣ < 1 (C.8)

the first integral is bounded above by

∫ A

0

dξ

(ξ + λ)
n+1

2

= Aλ−n+1
2 + O

(
A2λ−n+3

2
)

(C.9)

Choosing A = λ
n+1

2 , we see that this part of the integral is O(1) for small λ.
For the middle integral we have

∫ B

A

dξ

(ξ + λ)
n+1

2

=
2

n − 1

[
1

(λ + A)
n−1

2

− 1

(λ + B)
n−1

2

]
. (C.10)

so that with (say) B = 1
2 we get

∫ 1/2

λ(n+1)/2

dξ

(ξ + λ)
n+1

2

=
2

n − 1
λ−n−1

2 + O(1) for λ → 0. (C.11)
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The remaining integral is again bounded as
∫ 1

1/2
(1 − ξ)s−n+1

2 dξ = O(1) (C.12)

for s > n−1
2 . From (C.11) we see that the Green function behaves as

∼ λ−(n−1)/2 for small λ, and therefore (C.6) must be amended to

[
�LB + s(n − s)

]
Gs

(
λ(z, w)

)
=

4π
n+1

2

(n − 1)Γ
(

n+1
2

) δ(n+1)(z, w) (C.13)

where we have used the standard formula for the volume of the (n + 1)-
dimensional unit sphere. The automorphic Green function is then defined as

Gs(z/w) :=
∑

γ∈Γ

Gs(z, γ(w)) (C.14)

in analogy with the case n = 1 [21].

Appendix D Geodesics in H(H) and periodic orbits

Geodesics in H(H) are given by half-circles and straight lines. For the usual
complex upper half plane it is known (see e.g., [32]) that we can associate
to each hyperbolic element18 M ∈ PSL(2, R) a geodesic that is mapped
onto itself by the action of M (the same is true for all matrices conjugate
to M). Let us consider the “imaginary axis” in H(H), parametrized by
z(t) = it with 0 < t < ∞. For this geodesic, the hyperbolic motion leaving it
invariant is obviously given by γt = diag (t1/2, t−1/2), whereby i is mapped to
γt(i) = γt(z(1)) = it. It is straightforward to see that all geodesics in H(H)
are PSL(2, H) images of one another. First, straight line geodesics centered
at u �= 0 are trivially obtained by acting on z(t) = it with the shift matrix

Tu =
(

1 u
0 1

)
. (D.1)

For arbitrary u1 �= u2 ∈ H the circular geodesic with endpoints u1 and u2

can (for example) be obtained by acting on z(t) with the matrix

Cu1,u2 =
1√

|u1 − u2|

(
u2 u1

1 1

)
. (D.2)

18Recall that a hyperbolic element M ∈ SL(2, R) has reciprocal real eigenvalues or,
equivalently, satisfies |TrM| > 2.
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Use of (4.20) results in the explicit parametrization of the geodesic half-circle

z′(t) =
u1 + u2 t2 + it |u1 − u2|

1 + t2
(0 < t < ∞) . (D.3)

The hyperbolic motions leaving invariant this geodesic half-circle are now
simply given by (for all t)

Mt = S

(
t1/2 0
0 t−1/2

)
S−1, (D.4)

where S is either Tu or Cu1,u2 . The formula expressing Mt explicitly in terms
of t, u1, u2 follows directly from (D.2) and (4.12) but is not very illuminating.
However, it implies the inequality

Re
(
Tr Mt

)
= t1/2 + t−1/2 ≥ 2. (D.5)

Note that the real part of the trace is cyclic even over quaternionic matrices
and hence furnishes an invariant for matrices up to conjugation. In other
words, we may adopt (D.5) as the quaternionic generalization of the usual
condition of hyperbolicity for an SL(2, R) matrix.

Consider now the case when M ≡ Mt0 happens to be integral for some
value t0 > 1, i.e., Mt0 ∈ PSL(0)(2, H). Then the associated geodesic gives
rise to a periodic orbit in the fundamental domain F of the modular group
PSL(0)(2, H). This is most easily seen by following the geodesic circle succes-
sively through the images of the fundamental domain F until we reach the
image of F under the special transformation M , where we connect up again
to the original geodesic curve intersecting F . (The integrality condition
M ∈ PSL(0)(2, H) may be viewed as the analog of the rationality condition
for periodic orbits on tori.) The length �p of this periodic orbit is easily
calculated by mapping it back to the imaginary axis, whence

�p =
∫ t0

1

dv

v
= log t0 (D.6)

by the invariance of the geodesic length under the modular group. With
(D.5) we recover the quaternionic analog of the well-known formula for
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PSL(2, Z) [32]

2 cosh
�p

2
=

∣∣Re (Tr M)
∣∣. (D.7)

The limiting case �p → ∞ corresponds to the infinite geodesic along the
imaginary axis. Consequently, the number of periodic orbits in the funda-
mental domain F increases exponentially with the geodesic length of the
orbit, as it does for PSL(2, Z) (see, e.g., [32]).
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