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Abstract

We calculate the ground state current densities for (2 + 1)-dimensional
free fermion theories with local, translationally invariant boundary states.
Deformations of the bulk wave functions close to the edge and boundary
states both may cause edge current divergencies, which have to cancel in
realistic systems. This yields restrictions on the parameters of quantum
field theories which can arise as low-energy limits of solid-state systems.
Some degree of Lorentz invariance for boosts parallel to the boundary
can be recovered, when the cutoff is removed.

1 Introduction

The prediction of a relativistically invariant quantum field theory in 2 + 1
dimensions as low-energy limit of a solid-state system [1] was confirmed
by investigation of graphene [3]. Modification of the graphene structure
may allow to obtain more general quantum field theories [2]. Since solid
state systems typically have edges, the study of quantum field theories with
boundaries acquired additional interest. An important tool in this context is
the bulk-boundary operator product expansion (OPE). In particular, some
of its singularities yield divergent observables and constitute obstructions to
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any experimental realization. The coefficient function of the identity in such
an OPE is just the corresponding vacuum expectation value in the presence
of the boundary. Integrated expectation values of current operators can be
interpreted as measurable charge or spin currents and should remain finite in
realistic systems. Here, we study this obstruction in the simplest case of free
fermions, where vacuum expectation values can be interpreted as integrated
contributions of the particles in the Dirac sea.

It is of course well known that such effects can prevent the lifting of
a quantum mechanical system to a quantum field theory, even without the
presence of a boundary. In our case the Dirac sea of a single fermion yields a
half-integral value of the Hall conductivity [4–6]. Consequently one needs an
even number of fermions, although some of them may be shifted to infinite
mass, which results in a Chern–Simons term instead. For boundary states
we shall find more intricate obstructions, which depend on the numerical
parameters of the boundary state.

2 Boundary conditions from self-adjoint extensions

We consider spinor fields ψ acted upon by the Dirac operator

H := −iσ1
∂

∂x
− iσ2

∂

∂y
+mσ3, (2.1)

on the open half-plane {x = (x, y) ∈ R
2| x > 0}, as in [7]. This operator

is a closable symmetric operator on the domain D(H) = C∞
0 (R+ × R,C2)

of smooth functions with compact support vanishing in a neighbourhood
of x = 0. The possible boundary conditions are classified by its self-adjoint
extensions. The latter can be obtained by the standard von Neumann theory.
Here we give a modification, which is less general but better adapted to the
present problem. Since D(H) is dense in the Hilbert space H := L2(R+ ×
R) ⊗ C

2, the image of an arbitrary vector ψ ∈ H in the domain of a self-
adjoint extension is uniquely determined by the unextended operator, so the
problem is reduced to the determination of such domains. Let H̄ and H∗
be the closure and the adjoint, respectively, of H. By the von Neumann
theory, every self-adjoint extension of H corresponds 1–1 to an isometry
V : N+ → N− between the defect spaces

N± = {ψ ∈ D(H∗)|H∗ψ = ±iμψ},

where μ is a fixed but arbitrary positive number. Indeed, V gives rise to the
self-adjoint extension HV with domain

D(HV ) = D(H̄) + (I − V )N+. (2.2)
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The choice μ = 1 is standard, but we shall see that the limit of large μ allows
a more direct physical interpretation. Applied to (2.1), N± is given by k
integrals over elements of the one-dimensional spaces

N±(k) = C e−λx+iky

(
1
s±k

)
(1 +O(μ−1)),

where

s±k =
i(k + λ)
m± iμ

and λ =
√
μ2 + k2 +m2.

For μ→ ∞ the defect spaces consist of wave functions which become sup-
ported on an arbitrarily small neighbourhood of the boundary and factorize
in a universal term exp(−μx) and a spinor of the form

g(y)
(

1
±1

)
, with g ∈ L2(R).

Thus isometries N+ → N− become tensor products of a unitary map V :
L2(R) → L2(R) with the map between one dimensional subspaces of C

2

which takes (1,−1) to (1, 1). From (2.2) we read off that any ψ ∈ D(HV )
satisfies

ψ1|x=0 = (1 − V )g,

ψ2|x=0 = (1 + V )g.

If 1 is not an eigenvalue of V , then

ψ2|x=0 = iΓ ψ1|x=0, (2.3)

where Γ is the self-adjoint operator

Γ = −i(1 + V )(1 − V )−1.

The physical necessity of such a boundary condition can be understood as
follows. Consider the conserved current densities

jμ(x) = lim
x′→x

ψ(x′)† σμ ψ(x).

One needs a boundary condition which implies
∫
j1(0, y) dy = 0, and this

indeed follows from (2.3).

We only study local boundary conditions for which j1(0, y) vanishes iden-
tically and also impose translational invariance. Thus Γ has to commute
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with d/dy and with multiplication by functions of y. This implies that it is
a real constant γ, and we obtain the boundary condition

ψ2(0, y) = iγ ψ1(0, y),

which we shall use in the sequel. To include the case V = 1, we consider γ
as an element of the projective real line, including the value γ = ∞.

For any γ the Hamiltonian commutes with the PT transformation ψ(x, y)
�→ σ3ψ

∗(x,−y). The space reflection (x, y) �→ (x,−y) lifts by ψ(x, y) �→
σ1ψ(x,−y) to a map between systems with parameters (m, γ) and
(−m,−γ−1). Because of this duality we only need to consider positive m.
Arbitrary values of m will only be considered at the very end of the calcu-
lation. It turns out that the results allow a continuous extension to m = 0,
which is the case relevant for graphene.

The CPT map (simultaneous reflection in charge, space and time) ψ(x, y) �→
σ2ψ(x,−y) relates the positive energy states for (m, γ) to the negative
energy states for (m, γ−1). A different type of duality is given by ψ(x, y) �→
σ2ψ(−x, y), (m, γ) �→ (−m, γ−1), which relates boundary states of comple-
mentary half-planes.

3 Eigenfunctions

The Dirac operator commutes with −i∂/∂y and consequently with

(i∂/∂x)2 = H2 + (∂/∂y)2 −m2.

We denote the real eigenvalues of these Hermitean operators by k and l2,
respectively. We take l ∈ R

+ for positive l2 and l = iλ with λ ∈ R
+ for

negative l2. The corresponding eigenvalues E of H satisfy E2 = k2 + l2 +
m2.

According to the sign of l2 the spectrum of H has two parts, which will
be referred to as bulk and edge. Bulk eigenfunctions ulk with given k, l2

have the form

ulk(x, y) = exp(ilx+ iky)χ+ + exp(−ilx+ iky)χ−

with constant spinors χ±. The equationHulk = Eulk and the boundary con-
dition reduce to (m− E, ±l − ik)χ± = 0 and (χ+ + χ−)2 = iγ(χ+ + χ−)1.
For each l > 0 there is a unique solution up to normalization, such that for
the bulk part we just recover the spectrum of the Dirac operator on the
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whole plane, with a gap Δ = (−m,m). We normalize these eigenfunctions
with respect to the measure dk dl/(2π2) and choose phases such that

ulk(x, y) =
(

eiφ(l,k)

(
iρlk

1

)
eilx+iky −

(
iρ∗lk
1

)
e−ilx+iky

) √
E −m

4E
,

where

eiφ(l,k) =
1 + γρ∗lk
1 + γρlk

(3.1)

with

ρlk :=
k + il
m− E

. (3.2)

Edge eigenfunctions [7] have the form Uk = exp(−λx+ iky)χ. We nor-
malize them with respect to the measure dk/π and choose phases such that

Uk(x, y) =

√
λ

1 + γ2

(
i

−γ
)

e−λx+iky.

The equation HUk = EUk yields

E =
2γ

1 + γ2
k +

1 − γ2

1 + γ2
m

and

λ =
γ2 − 1
γ2 + 1

k +
2γ

γ2 + 1
m.

Thus E, λ are one-valued functions of k, and for any k one has a unique edge
state whenever λ > 0 and no edge state otherwise. The latter inequality
restricts the possible values of k and E. The limiting values for λ = 0 lie on
the mass shell. When we put

η = sgn
1 − γ

1 + γ
,

then the positive energy half of the mass shell is touched for mη = 1 and the
negative energy half for mη = −1. One finds energies within the spectral
gap Δ of the bulk iff mγ > 0.

The linear dispersion relation implies that edge states travel at the fixed
velocity

vedge =
2γ

1 + γ2
.
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Note that vedge determines γ up to the replacement of γ by γ−1, which is
the one induced by CPT. The latter transformation changes the signature
η. Altogether, the boundary condition can be characterized by vedge and η,
except for the fact that η is undefined in the limiting cases γ = ±1. One
observes that

1. for vanishing edge velocity, i.e., for γ = 0 and γ = ∞, edge states have
E = m and E = −m, respectively, independently of k. This case is
probably unphysical, since all edge states have the same energy and
the thermodynamic partition function diverges for a system of infinite
width. Since the width of the edge excitation increases linearly with
k, the thermodynamic properties of a finite system would depend on
the sample size.

2. The edge velocity is equal to the maximal bulk velocity for the CPT
invariant boundary conditions γ = ±1. These yield E = γk and λ =
γm independently of k. For γm < 0 there are no edge states, for
γm > 0 all edge states have the same dependence on x. This yields
particular divergences, so we will tacitly exclude γ = ±1 in most of
the subsequent calculations.

In (k,E)-space the half-line of edge states is tangent to the half-hyper-
boloid given by l ≥ 0 and E2 = k2 +m2 + l2 at l = λ = 0. For γ2 < 1, this
happens at positive energy and for γ2 > 1 at negative energy. The tangency
has consequences for the behaviour at large distance from the boundary, as
we shall see later.

The portion of edge energies within Δ gives rise to a current parallel to
the boundary, with conductivity equal to (in units of e2

h ) [7]

σedge =

{
sgn(m), if mγ > 0,
0, otherwise.

(3.3)

This applies whenever some subinterval of the gap is actually occupied,
independently of the size of this subinterval.

4 Current densities

When no boundary exists, Fermi energies within the gap Δ obviously yield
the same theory. This means that any pair (γ,EF) with EF ∈ Δ yields
a boundary state of the standard Lorentz invariant free fermion theory.
We want to calculate the corresponding expectation values of the current
densities. The bulk contribution does not depend on the choice of EF and
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edge contributions for energies within Δ are finite and were calculated in [7].
Thus it suffices to consider EF = −m.

The required vacuum expectation values are

〈jμ〉 = jμ
bulk + jμ

edge,

where

jμ
bulk =

∫
jμ
lk|bulk

dl dk

2π2
,

jμ
edge =

∫
Θ(−m− E) jμ

k |edge
dk

π
,

and

jμ
lk(x)|bulk = u†lk(x)σμ ulk(x),

jμ
k (x)|edge = U †

k(x)σμ Uk(x).

Here the variable E in ulk is the negative roots of k2 + l2 +m2.

Note that j1lk|bulk and j1k |edge vanish identically. On the other hand equa-
tions (3.1) and (3.2) yield

j2lk(x)|bulk =
k

E
− 1
E
�

(
f

g
e−2ilx

)
, (4.1)

where

g = m− E + γ(k − il),

f = (k − il)g∗.

The first term on the r.h.s. of equation (4.1) is an odd function of k, so
that its contribution to the vacuum expectation value of j2 vanishes for any
symmetric regularization. For the second term, we also will find a partial
cancellation.

We substitute k ∈ (−∞,∞) by v = earcsinh(k/a) ∈ (0,∞), which yields for
negative E

−dk
E

=
dv

v
. (4.2)

Moreover,

−f
g

dk

E
=

(
a2

4
(v − v−1)2 + l2

)
(D−1

1 +D−1
2 ) dv.
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Here

D1 =
a

2
(γ + 1)(v − v3)(v − v4),

D2 =
a

2
(γ−1 + 1)(v − v3)(v + v4),

where
a =

√
l2 +m2

and

v3 =
il +m√
l2 +m2

γ − 1
γ + 1

,

v4 =
−il +m√
l2 +m2

.

The two denominators D1 and D2 are formally related by a reflection across
the boundary, with (m, γ) �→ (−m, γ−1).

One obtains a partial fraction expansion

−f
g

dk

E
= {P1(v) + P2(v) + P3(v) + P4(v)} dv

with

P1(v) =
a

2
,

P2(v) = −a
2
v−2.

In order to regularize the momentum integrals we have to introduce a
cutoff. In a solid state context the underlying physics selects a stationary
Lorentz frame, in which a symmetric cutoff in k is natural. For this cutoff
the dv integrals of these two terms cancel against each other due to the
symmetry k �→ −k, v �→ 1/v. The remaining terms are

P3(v) = il
γ + 1
γ − 1

v−1,

P4(v) = −il
4γ

γ2 − 1
(v − v3)−1.

For a symmetric cutoff Λ of the v-integration one finds
∫

�(P3(v)e−2ilx)
dldv

2π2
= − 1

2π
γ + 1
γ − 1

δ′(x) ln Λ.
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In order to calculate the P4 integral we need

∫ (
v − il +m√

l2 +m2

γ − 1
γ + 1

)−1

dv = ln(Λ) − ln

(
1 + γ

1 − γ

√
m+ il
m− il

)
,

where the principal value of the logarithm has to be taken, so that

ln

(
1 + γ

1 − γ

√
m+ il
m− il

)
= ln

(√
m+ il
m− il

)
+ ln

∣∣∣∣1 + γ

1 − γ

∣∣∣∣ − πi Θ(γ2 − 1).

In order to calculate the dl integral over the logarithmic part, we use

2
∫ ∞

0
il ln

(√
m+ il
m− il

)
cos(2lx) dl =

∫ ∞

−∞
il ln

(√
m+ il
m− il

)
e2ilx dl.

The argument of ln has branching points at l = ±im. We may move the
integration path towards the cut with branching point l = im. Since the
discontinuity of the logarithm is iπ, this yields an elementary integral. Alto-
gether we obtain

j2(x)bulk = − 1
2π

γ2 + 1
γ2 − 1

δ′(x) ln Λ +
γ

π(γ2 − 1)
ln

∣∣∣∣1 + γ

1 − γ

∣∣∣∣ δ′(x)
+

γ

2π(γ2 − 1)

(
1

2x2
+
m

x

)
e−2mx

− γ

π(γ2 − 1)
1

2x2
Θ(γ2 − 1). (4.3)

For the contribution from the edge functions, we have

dk
γ2 − 1
γ2 + 1

= dλ.

We have to integrate over those λ for which λ > 0 and E < −m. This yields

j2(x)edge =
γ

π(γ2 − 1)

[
1

2x2
Θ(γ2 − 1) −

(
1

2x2
+
m

γx

)
e−2mx/γΘ(γ)

]
.

Note that j2edge vanishes for γ ∈ (−1, 0) and is non-singular for γ > 1.

For γ2 > 1 both the bulk and the edge current densities decay alge-
braically at large distance from the boundary. In their sum these terms
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cancel, an interesting effect which reflects the tangency of the edge state
and bulk state manifolds in (k,E) space, which was discussed in the previ-
ous section.

In all cases the singular part of the vacuum expectation value has
the form

〈j2(x)〉singular = − 1
2π

γ2 + 1
γ2 − 1

δ′(x) ln Λ − |γ|
4π(γ2 − 1)

1
x2
.

Remarkably, this equation is invariant under y reflection together with γ �→
−γ−1, such that it remains true for m < 0 and is in fact independent of m.
The regular part of the expectation value is continuous in m and vanishes for
m = 0. For infinite m the contribution becomes localized at the boundary
and is given by the δ′ terms in (4.3). It may be interesting to rederive this
result from a Chern-Simons Lagrangian.

5 Conclusion

A single free fermion yields a divergent edge current on a half plane. For
N fermions with boundary conditions γn the cut-off dependent edge current
vanishes for

N∑
n=1

γ2
n + 1
γ2

n − 1
= 0.

One still has a dipolar edge current

N∑
n=1

γn

π(γ2
n − 1)

ln
∣∣∣∣1 + γn

1 − γn

∣∣∣∣ δ′(x),

which in general does not vanish. In addition there is a 1/x2 singularity,
which yields an unphysical divergent particle transport in the neighbourhood
of the edge, unless

N∑
n=1

|γn|
γ2

n − 1
= 0.

Since the bulk system and the boundary at x = 0 are Lorentz invariant
under boosts in the y direction, one should be able to act with Lorentz
transformations on the boundary conditions. In the context of relativistic
quantum mechanics this is straightforward. The action on the parameters γn

can be determined from the dispersion relation, according to which boundary
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states are characterized by a Lorentz invariant signature ηn and their fixed
travel velocity

vn =
2γn

1 + γ2
n

.

This translates into a rapidity θn given by tanh θn = vn, or equivalently by

ηn exp θn =
1 + γn

1 − γn
,

to which the rapidity of the Lorentz boost is added. When one moves from
one-particle states to field theory, control of divergencies requires a cutoff
which breaks Lorentz invariance. It may or may not be restored, when this
cutoff is taken to infinity. One would expect that a restoration of Lorentz
invariance implies CPT invariance. Due to the unbroken PT invariance
this should yield invariance under charge conjugation and consequently an
absence of net boundary currents. In our case we will find an unexpected
subtlety, however. In terms of edge velocities and signatures the two diver-
gency cancellation conditions can be rewritten as

N∑
n=1

ηn exp(εnθn) = 0 =
N∑

n=1

ηn exp(−εnθn),

where

εn = sgnvn.

For N = 1, there is no solution, in agreement with the restriction to an even
N coming from the bulk physics. For N = 2 one needs γ2 = −γ−1

1 , thus
invariance under charge conjugation. More generally, pairs of edge states
related by charge conjugation do not contribute to the breaking of Lorentz
invariance or to net boundary currents, as expected. There is an unexpected
remainder of Lorentz invariance in more general situation, however. When
all vn of the remaining states have the same sign, the cancellation conditions
are invariant under sufficiently small boosts which do not change the sign
of edge velocities. When vn of different signs occurs, no aspect of Lorentz
invariance is recovered when the cutoff is removed. In any case, breaking of
Lorentz invariance by edge states does not seem to be an argument against
the realization of such systems in solid state physics, where this invariance
is only a low-energy phenomenon.

It will be interesting to see to what extent the γ values can be controlled
experimentally. Systems without time-reversal invariance would be partic-
ularly interesting, but are certainly very difficult to realize.
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