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I-38050 Povo (TN), Italy I.N.F.N. sez. Trento, Italy

brunetti@science.unitn.it
2Courant Research Center “Higher Order Structures in Mathematics”,
University Göttingen, Mathematisches Institut, Bunsenstrarsce 3-5,

D-37073 Göttingen, Germany
duetsch@physik.unizh.ch

3II Inst. f. Theoretische Physik, Universität Hamburg, Luruper Chaussee
149, D-22761 Hamburg, Germany
klaus.fredenhagen@desy.de

Abstract

A new formalism for the perturbative construction of algebraic
quantum field theory is developed. The formalism allows the treatment
of low-dimensional theories and of non-polynomial interactions. We dis-
cuss the connection between the Stückelberg–Petermann renormalization
group which describes the freedom in the perturbative construction with
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the Wilsonian idea of theories at different scales. In particular, we relate
the approach to renormalization in terms of Polchinski’s Flow Equation to
the Epstein–Glaser method. We also show that the renormalization group
in the sense of Gell–Mann–Low (which characterizes the behaviour of the
theory under the change of all scales) is a one-parametric subfamily of the
Stückelberg–Petermann group and that this subfamily is in general only
a cocycle. Since the algebraic structure of the Stückelberg–Petermann
group does not depend on global quantities, this group can be formulated
in the (algebraic) adiabatic limit without meeting any infrared divergen-
cies. In particular we derive an algebraic version of the Callan–Symanzik
equation and define the β-function in a state independent way.
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1 Motivations and plan

The locally covariant formulation of quantum field theory [7, 25] is based on
the principle that the theory has to be built in terms of quantities that are
uniquely determined by local properties of spacetime. This means in par-
ticular that concepts like vacuum states and particles should not enter the
formulation of the theory. Instead these concepts are relevant in the inter-
pretation of the theory under suitable circumstances.

Historically, the main obstacle in performing a purely local construction
was the important rôle the spectrum condition plays for finer properties of
the theory, and it needed the insight of Radzikowski [36] that the local infor-
mation of the spectrum condition can be formulated in terms of a condition
on the wave front sets (microlocal spectrum condition, see also [6]). After
this breakthrough, a thorough construction of renormalized perturbative
quantum field theory on generic curved spacetimes could successfully be per-
formed [5, 25, 26, 28] in the framework of Algebraic Quantum Field Theory.
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Nevertheless, the theory obtained looks still somewhat remote from more
standard formulations of quantum field theory as one may find them in
typical text books, and one may ask how ideas like the renormalization
group show up in the locally covariant framework. A first answer to this
latter question was already given in [27] (for a more explicit formulation in
Minkowski space see [16, 17]), and an elaboration on this approach was the
starting point of the present work.

It turned out to be appropriate to revise the formulation in such a way
that the dependence on nonlocal features is eliminated completely. In older
formulations a dependence on the choice of a Hadamard two-point func-
tion (replacing the nongeneric vacuum) was used, and it had to be shown
that the theory is actually independent of this choice. The present point
of view is that the Hadamard functions are only used in order to charac-
terize a topology. The topology is then shown to be independent of the
Hadamard function used. All algebraic structures, however, are defined
without recourse to a Hadamard function.

The plan of the paper is the following: The next section gives definitions
and constructions of the main technical elements of our procedures, namely
all kind of algebraic structures, as time-ordered products, for instance. It
contains a simplification of the rigorous treatment of our framework which
is postponed to the next section. A particularly pressed reader may skip all
technicalities of the 3d section and concentrate only on the main definitions
of the Hadamard families of functions and local observables. The fourth
section deals with the Stückelberg–Bogoliubov–Epstein–Glaser approach to
renormalization, but done in a novel manner. The next section is the core
of our paper. It contains the definitions and comparison of three different
versions of the renormalization group. The discussion is continued in the
sixth section where the algebraic adiabatic limit is discussed, via the intro-
duction of a novel tool in algebraic quantum field theory termed generalized
Lagrangians, and an algebraic form of the Callan–Symanzik equation is
found. The last section deals with a couple of typical examples as ϕ4 in four
dimensions, and ϕ3 in six dimensions. Here we compare with the textbook
treatments (beta function) and find perfect agreement. Some technicalities
are deferred to Appendices A–C.

2 Definitions, initial constructions and outlook

We look at the theory of a scalar field ϕ. For each spacetime M of dimension
d ≥ 2 we consider the space of infinitely differentiable functions as the con-
figuration space E(M) ≡ C∞(M) (a Fréchet space). The observables of the
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theory are functionals on E(M) which are infinitely often differentiable, such
that the functional derivatives are test functions with compact support. A
simple example is the functional E(M) → C, ϕ �→

∫
dxϕ(x)f(x) with some

test function f ∈ D(M) ≡ C∞
0 (M). The space of observables will be denoted

by F0(M). We recall that the notion of differentiability on Fréchet spaces
is well developed, a particularly nice introduction of which can be found
in [24]. In practice, in our treatment only the validity of the chain rule is
important. Notationally, we shall use indifferently the following possibilities
as equivalent writings of generic nth order derivatives

DnF (ϕ)(v⊗n) ≡ δnF

δϕn
(ϕ)(v⊗n) ≡ dn

dλn
F (ϕ + λv)

∣
∣
∣
∣
λ=0

≡ 〈F (n)(ϕ), v⊗n〉 ,

where v ∈ E(M), with the brackets denoting, from now on, either integration
in the appropriate spaces, or sometimes the duality pairing of locally convex
topological spaces, and the context should hopefully make precise as to which
is which. Similar equivalent formulations can be adopted for the “kernels”

F (n)(ϕ)(x1, . . . , xn) ≡ δnF

δϕn
(ϕ)(x1, . . . , xn) ≡ δnF

δϕ(x1) · · · δϕ(xn)
.

We define the support of a functional F ∈ F0(M) as the set of points x ∈ M
such that F depends on the behaviour of ϕ in every neighbourhood U ∈ U(x)
of x,

supp(F ) .= {x ∈ M | ∀U ∈ U(x)∃ϕ, ψ ∈ E(M), suppψ ⊂ U (2.1)

such that F (ϕ + ψ) 
= F (ϕ)},

and we require it to be a compact set in M .

A virtue of the new approach is that we do not restrict ourselves to poly-
nomial functionals. This is motivated, for example, by quantum gravity and
by the existence of renormalizable models with non-polynomial interactions
in d = 2 dimensions.

We consider a linear hyperbolic differential operator for the scalar field
with respect to the spacetime metric g with signature (+,−, · · · ,−),

P = �g + m2 + ξR, (2.2)

with the scalar curvature R and real parameters m2 and ξ. On a glob-
ally hyperbolic time oriented spacetime P possesses unique retarded and
advanced Green’s functions ΔR and ΔA, respectively. In terms of these
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Green’s functions we can introduce two important structures on the space
of formal power series in � with coefficients in the vector space F0(M).

First we introduce a �-product by a twist induced by the commutator
function Δ = ΔR − ΔA (cf., e.g., [15]),

F � G
.= M ◦ exp(i�ΓΔ)(F ⊗ G), (2.3)

where M denotes pointwise multiplication,

M(F ⊗ G)(ϕ) .= F (ϕ)G(ϕ) ≡ (F · G)(ϕ), (2.4)

and ΓΔ is the functional differential operator

ΓΔ
.=

1
2

∫
dx dyΔ(x, y)

δ

δϕ(x)
⊗ δ

δϕ(y)
. (2.5)

In this way we obtain an associative algebra where the fields satisfy the
commutation relation

[ϕ(f), ϕ(g)]� = i�〈f,Δg〉, f, g ∈ D(M) . (2.6)

Complex conjugation endows the algebra with an involution,

F � G = G � F (2.7)

since Δ is antisymmetric and real.

The algebra contains an ideal generated by elements of the form ϕ(Pf),
f ∈ D(M). The quotient algebra is just the standard algebra of the free
scalar field. It will turn out, however, that it is convenient to work with the
original algebra (F0(M), �) (off shell formalism).

The second structure we need is the time ordering operator T associated
with the �-product. It is defined in terms of the Dirac propagator ΔD =
1
2 (ΔR + ΔA) which was introduced by Dirac in his treatment of the classical
interaction between a point charge and the electromagnetic field [13]. We set

TF
.= exp(i�ΓΔD

)F (2.8)

with

ΓΔD

.=
1
2

∫
dx dyΔD(x, y)

δ2

δϕ(x)δϕ(y)
. (2.9)
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Formally, T may be understood as the operator of convolution with the
oscillating Gaussian measure with covariance i�ΔD,

TF (ϕ) =
∫

dμi�ΔD
(φ)F (ϕ − φ). (2.10)

Its inverse T−1 (the anti-time ordering operator T ) is obtained by replacing
ΔD by −ΔD. It coincides, due to the reality of ΔD, with the complex
conjugate operator

TF = TF . (2.11)

We then define the time ordered product MT as the pointwise product
M transformed by T ,

MT
.= T ◦ M ◦ (T−1 ⊗ T−1) (2.12)

or, in a more standard notation as a binary composition (where · denotes
the pointwise product and ·T the time ordered product)

F ·T G
.= T (T−1F · T−1G). (2.13)

By comparing

ϕ(x) ·T ϕ(y) = ϕ(x) · ϕ(y) +
i�

2
(ΔR + ΔA)(x, y) (2.14)

with

ϕ(x) � ϕ(y) = ϕ(x) · ϕ(y) +
i�
2

(ΔR − ΔA)(x, y), (2.15)

and using the support properties of the Green’s functions, we see that ·T is
indeed the time ordered product with respect to the �-product (2.3).

We emphasize that the time ordered product is a well defined, associative
and commutative product. For this it is important, as stressed before, not
to pass to the quotient algebra, where the validity of the free field equation
would be in conflict with the fact that the Dirac propagator does not solve
the homogeneous Klein–Gordon equation. Indeed, the ideal generated by
the field equation with respect to the �-product (or, equivalently, with the
pointwise product) is not an ideal with respect to the time ordered product,
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as may be seen from the Dyson–Schwinger type equation

F ·T ϕ(Pf) = Fϕ(Pf) + i�〈F (1), f〉. (2.16)

Note that the appearance of the Dirac propagator in the time ordered
product is due to the choice of the commutator function Δ in the �-product.
If we had chosen the Wightman two-point function Δ+ = i

2 Δ + Δ1 in for-
mula (2.3) for the �-product we would have obtained the Feynman propa-
gator ΔF = iΔD + Δ1 in the time ordered product. But these conventions
use a notion of positive frequency which is absent on generic Lorentzian
spacetimes. Moreover, the logarithmic singularities at m2 = 0 obscure the
scaling behaviour.

We now have the means to introduce interactions in our framework.
Namely, let V be an arbitrary element of F0(M). Then we define the formal
S-matrix as the time ordered exponential

S(V ) .= T ◦ exp ◦ T−1(V ) ≡ exp·T (V ). (2.17)

One may exhibit a factor ig/� in V . The S-matrix would then be a for-
mal power series in the coupling constant g and a Laurent series in � (see,
e.g., [14]). We found it more convenient to incorporate such a factor into
V , such that all expressions are formal power series in �. The coefficients
in every order in � are analytic functionals in V which may be described in
terms of their (convergent) power series expressions.

The non-linear interactions V ∈ F0(M) are, in general, non-local. As
a consequence the S-matrix defined above fails, in general, to be unitary
for imaginary interactions V . Once extended to more singular functionals,
unitarity of the S-matrix can be restored for local interactions where it takes
the form of a renormalization condition. Inspite of the non-unitarity, the
S-matrix for non-local interactions is quite frequently used in quantum field
theory, in particular when dealing with effective interactions as they appear
e.g., in the renormalization method of the flow equation (Section 5.2).

Notice also that the presence of the inverse of time ordering in the formula
(2.13), which would be absent in a path integral formulation on the basis of
(2.10), remove the so-called tadpole terms.

We now want to extend the operations to more singular functionals,
including in particular local functionals, characterized by the condition that
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their functional derivatives have compact support on the diagonal,

δnF

δϕn
(x1, . . . , xn) = 0 , if xi 
= xj for some pair (i, j), (2.18)

and that their wavefront set is transversal to the tangent space of the diag-
onal (this may be understood as a microlocal version of translation invari-
ance).

For the �-product this can be done in the following way. Namely, we
choose a so-called Hadamard solution H of the Klein–Gordon equation
(actually, a symmetric one, see the next section) and transform the �-product
by the operation

αH
.= exp(�ΓH), ΓH

.=
1
2

∫
dx dyH(x, y)

δ2

δϕ(x)δϕ(y)
, (2.19)

to an equivalent �-product �H , defined by

F �H G
.= αH(α−1

H (F ) � α−1
H (G)). (2.20)

The new �-product �H is obtained from the original one by replacing i
2Δ by

i
2Δ + H.

By the microlocal spectrum condition [6, 36] the wave front set of i
2Δ + H

is such that the transformed product can now be uniquely extended by
sequential continuity to a space F(M) of functionals whose derivatives are
distributions with appropriate wave front sets. The relevant topology is the
Hörmander topology for all derivatives (see Section 3). One then defines
the topology on F0(M) as the initial topology with respect to αH and
proves that this topology does not depend on the choice of the Hadamard
solution H. The sequential completion A(M) of F0(M) can be equipped
with a unique sequentially continuous �-product. In other words, α−1

H :
F(M) → A(M) is a linear bijection and the �-product in A(M) is defined
by α−1

H (F ) � α−1
H (G) .= α−1

H (F �H G). Roughly speaking, the used topology
is characterized by the property that the point splitting approximations to
nonlinear local fields, e.g.,

ϕ(x)ϕ(y) − �H(x, y) ≡ α−1
H (ϕ(x)ϕ(y)), (2.21)

converge in the coincidence limit y → x for all Hadamard functions H. In
the next section this procedure will be described in more detail.
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The time ordered product, however, is not continuous in the topology
described above, as may be seen, e.g., from the fact that the powers of
the Feynman like propagators HF

.= iΔD + H cannot be defined by using
Hörmander’s criterion for the existence of products of distributions. Its (par-
tial) extension amounts to the process of renormalization. Quite different
recipes have been developed. These are

• BPHZ renormalization: It relies on an expansion of the S-matrix in
terms of Feynman graphs, where the vertices with n adjacent lines cor-
respond to the nth functional derivatives of the potential and the lines
to the Feynman propagator. On Minkowski space, the corresponding
expression can be written as an integral on momentum space. By a
clever, somewhat involved procedure (the famous Forest Formula of
Zimmermann [44]) the integrand is modified by subtraction of poly-
nomials in the momenta. Recently, it was observed by Kreimer [33]
that this procedure may be understood as an antipode of a suitable
Hopf algebra. A rigorous discussion can most easily be performed
on an euclidean space (with the Feynman propagator replaced by the
Green’s function of the corresponding elliptic operator). A rigorous
discussion on Minkowski space [43] is somewhat involved due to the
fact that the modified Feynman integrals do not converge absolutely.
An extension to generic spacetimes has been tried but, to the best of
our knowledge, did not yet lead to a complete construction.

• Flow equation: The idea here is to interpolate between the pointwise
and the time ordered product by introducing a cutoff Λ and to study
the flow of the effective potential (as a function of Λ) in the sense of
Wilson. Namely let TΛ = αhΛ−H , with a differentiable family of sym-
metric smooth functions (hΛ)Λ∈R+ with h0 = 0 (hence αHT0 = id) and
hΛ → HF in the appropriate sense (see sections 3 and 5.2) as Λ → ∞,
hence αHTΛ → αHF

. By means of this family we define the regular-
ized S-matrix as SΛ = exp·TΛ

, which is invertible on the functionals

we consider: S−1
Λ = TΛ ◦ log ◦ T−1

Λ . The interpolating family VΛ of
effective potentials at scales Λ is defined by the requirement that the
cutoff theory with interaction VΛ is equal to the exact theory with the
original local interaction V , SΛ(VΛ) = S(V ), or explicitly

VΛ = S−1
Λ ◦ S(V ). (2.22)

The effective potential VΛ is generically non local and satisfies the flow
equation

d

dΛ
VΛ = −1

2

(
d

dΛ
MTΛ

)

(VΛ ⊗ VΛ) , (2.23)
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with the interpolating time ordered products

MTΛ

.= TΛ ◦ M ◦ (T−1
Λ ⊗ T−1

Λ ). (2.24)

This is Polchinski’s flow equation [35] in the Wick ordered form [37]
(For a proof in our formalism see Section 5.2.) Up to now it was almost
exclusively used for euclidean field theory on euclidean space, where
the approximate time ordering operation can be built by a momentum
cutoff (see, e.g., [38]; for Minkowski space see [32]). In principle, there
is no obstacle to perform the same construction on generic spacetimes,
the only obstruction being that there seems to be no locally covariant
choice of the cutoff which leads to the removal of all singularities. A
partial removal can be obtained by Pauli–Villars regularization.

• Causal perturbation theory : This approach was developed by Epstein
and Glaser [18] on the basis of ideas of Stückelberg [41] and Bogoli-
ubov [2]. It applies to local functionals V . It fully exploits the locality
properties of the interactions and is ideally suited for an extension to
generic spacetimes [5, 25]. Its basic idea is that the time ordered prod-
uct of n local functionals is, without any renormalization, up to (finite)
local counter terms already determined by the time ordered product
of less than n local functionals. The freedom in the choice of local
counter terms is exactly the freedom in the choice of renormalization
conditions. No cutoff is needed in this approach. The renormaliza-
tion group in the sense of Stückelberg–Petermann characterizes the
freedom in the choice of time ordering prescriptions [16].

It is the aim of the present paper to clarify the relation between the causal
approach and the flow equation and in particular to analyse the different
concepts which are denoted as renormalization group. It will turn out that
one has to distinguish at least three different versions of the renormalization
group:

• The renormalization group in the sense of Stückelberg–Petermann.
• The renormalization group in the sense of Gell–Mann–Low.
• The renormalization group in the sense of Wilson.

The renormalization group in the sense of Stückelberg–Petermann is formed
by the family of all finite renormalizations. It is really a group. The renor-
malization group in the sense of Gell–Mann–Low characterizes the behaviour
of the theory under the change of all scales. It is a group only in the massless
case; in the massive case it is rather a cocycle. The renormalization group
in the sense of Wilson refers to the dependence of the theory on a cutoff.
It has no simple algebraic properties, but can be characterized in terms of
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Polchinski’s flow equation. The relation to the Connes–Kreimer approach
[11, 12] will be postponed to a future paper.

Since only the causal approach has been extended to generic spacetimes
we restrict our treatment in the following to Minkowski space M. Even there,
the proper treatment of the dependence on the mass term is not trivial. As
the locally covariant approach suggests, all real values of the parameter m2

should be allowed, in spite of the fact that a vacuum state can exist only for
nonnegative values of m2. Since the Green’s functions of the Klein Gordon
operator for m2 < 0 are no longer tempered distributions (see, e.g., [39]), a
discussion in terms of support properties in momentum space is, in general,
not possible. Here, the methods of Microlocal Analysis [30] are particularly
fruitful.

3 Enlargement of the space of observables

In order to include non-trivial local interactions we have to enlarge the space
F0(M). We do this by transforming the �-product (2.3) into an equivalent
one corresponding to normal ordering. The standard way of doing this is to
use the transformation

αΔ1
.= exp(�ΓΔ1) : F0(M) → F0(M)

with

ΓΔ1
.=

1
2

∫
dxdy Δ1(x, y)

δ2

δϕ(x)δϕ(y)
, (3.1)

where Δ1 is the symmetric part of the two-point function, and to set

F �Δ1 G
.= αΔ1(α

−1
Δ1

(F ) � α−1
Δ1

(G)). (3.2)

This just produces the standard Wick ordering. It has the nice feature that
the product can now be extended to more general functionals, in particular
to composite fields, smeared with test functions.

The disadvantage of this prescription is that, as a function of m2, it is
not smooth at m2 = 0 (and is not defined at m2 < 0 (≤ 0 in 2 dimensions)).
In the light of a generally covariant framework this is problematic. In par-
ticular, the smooth behaviour under scaling of all dimensionful parameters
at zero was crucial for the renormalization method of [26, 27].

We therefore replace (Δ1 m)m2>0 by a family of symmetric distributions
(Hadamard functions) H = (Hm)m2∈R, Hm ∈ D′(M2), such that
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• Hm is a distributional solution of the Klein–Gordon equation in both
arguments;

• Hm is invariant under Poincaré transformations;
• Hm + iΔm/2 satisfies the microlocal spectrum condition [6, 36];
• For each test function f ∈ D(M2), 〈Hm, f〉 is a smooth function of m2;
• Hm scales almost homogeneously, i.e., �d−2Hm/�(�x, �y) is a polyno-

mial in log �.

For m2 > 0, Hm differs from Δ1 m by a smooth Poincaré invariant biso-
lution of the Klein Gordon equation. There is a crucial difference in the
scaling behaviour of H ≡ H(d) for even and odd dimensions d of Minkowski
space [16].

• For d odd H is uniquely determined (and thus scales even homoge-
neously).

• In even dimensions homogeneous scaling is not compatible with
smoothness in m2. H is not uniquely determined by the conditions
above, but depends on an additional mass parameter μ > 0. One
defines

v(x, y) .=
1
2

μ
∂

∂μ
Hμ

m(x, y) (3.3)

which can be proved to be a smooth function.
In the standard literature smoothness in m2 is not required; but

even with that the Wightman two-point function cannot be used in the
massless two-dimensional theory, since Δ+ (2)

m is logarithmic divergent
for m → 0.

Derivations of the explicit expressions for H and v proving these statements
are given in Appendix A.

3.1 Algebras of observables and smooth dependence on m2

The linear maps αHμ deform for every value of m2 the �-products �m into
equivalent products �m,μ which are smooth in m2, in the sense that

R � m2 −→ (F �m,μ G)(ϕ) (3.4)

is smooth for all F, G ∈ F0(M) and all ϕ ∈ E(M).

We now enlarge the space of functionals F0(M) to the space F(M) of
functionals which are infinitely differentiable, such that the nth functional
derivatives are distributions with compact support and wavefront sets in the
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following subset of the cotangent bundle of M
n,

Ξn = {(x1, . . . , xn, k1, . . . , kn) | (k1, . . . kn) 
∈ (V n
+ ∪ V

n
−)}. (3.5)

We equip this space with the following topology. First, we endow the space
of distributions with wave front sets contained in Ξn with the Hörmander
topology. We then define the topology on F(M) as the initial topology for
the maps

F −→ δnF

δϕn
(ϕ), n ∈ N0. (3.6)

The Hörmander topology for the space E ′
C(M) of compactly supported dis-

tributions t with wave front sets in a closed cone C in the cotangent space
is defined in the following way. By the definition of the wave front set (see,
e.g., [30]) every properly supported pseudodifferential operator A containing
the set C in its characteristic set will map the distribution t into a smooth
function. The topology on E ′

C(M) is now the initial topology for the maps

t −→ 〈t, f〉 , f ∈ E(M) , (3.7)

t −→ At ∈ E(M) , (3.8)

for all properly supported pseudodifferential operators A with characteristics
containing C. The Hörmander topology for an open cone as Ξn is defined
as the inductive limit for all closed cones contained in it.

With respect to this topology, F(M) is the sequential completion of
F0(M). The product �m,μ is sequentially continuous and can therefore
be uniquely extended to the completion. The extended product depends
smoothly on m2 in the sense of (3.4). The change of μ amounts to the
transition to an equivalent product. Namely, the function

wμ1,μ2
m = Hμ1

m − Hμ2
m (3.9)

is smooth. Therefore, the linear isomorphism

αw
μ1,μ2
m

.= exp(�Γw
μ1,μ2
m

) (3.10)

of F0(M) which interpolates between the products �m,μ1 and �m,μ2 is a home-
omorphism. It therefore extends to an isomorphism of F(M) and interpo-
lates also the extensions of the products to this space.

In order to eliminate the dependence of the products on μ we now, as
indicated in Section 2, use the maps αHμ

m
to define an m-dependent, but
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μ-independent topology on F0(M) as the initial topology of these maps. The
sequential completion we denote by F (m)(M). Elements F ∈ F (m)(M) may
be identified (by setting Fμ

.= αHμ(F )) with families (Fμ)μ>0, Fμ ∈ F(M),
with the property

Fμ1 = αw
μ1,μ2
m

(Fμ2). (3.11)

The advantage of this somewhat abstract construction is that m2 is the
only scale in the algebra A(m)(M) = (F (m)(M), �m). The other possibility,
namely to set μ2 = m2, would lead to singularities at m2 = 0.

We now define the following bundle of algebras:

B =
⊔

m2∈R

A(m)(M).

Smooth sections A = (Am)m2∈R of this bundle are, by definition, sections
with the property that αHμ(A), with

αHμ(A)m = αHμ
m

(Am), m2 ∈ R

is a smooth function of m2. Again, the property of being smooth is inde-
pendent of the choice of μ. The algebra of smooth sections is denoted by
A(M). A0(M) is the subalgebra of sections taking values in F0(M).

3.2 Local functionals and interactions

Local functionals were briefly discussed before, see equation (2.18), and we
want now to make the appropriate definitions and present results used later
on.

A map F : E(M) → C is said to be a local functional if it satisfies the
following requirements:

(1) F satisfies the following additivity property:

F (ϕ + χ + ψ) = F (ϕ + χ) − F (χ) + F (χ + ψ),

if supp(ϕ) ∩ supp(ψ) = ∅,
(2) F is infinitely differentiable;
(3) WF(F (n)(ϕ)) ⊥ TΔn where Δn

.= {(x1, ..., xn) ∈ M
n |x1 = ... = xn}.

The space of local functionals is termed Floc(M).
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Now, the first consideration is whether additivity implies the support
property stated in (2.18). Indeed,

Lemma 3.1. Local functionals have the property that their nth order func-
tional derivatives F (n)(ϕ) are supported on thin diagonals Δn, n ∈ N.

Proof. By definition of functional derivative of nth order we have

〈F (n)(ϕ), ψ1 ⊗ · · · ⊗ ψn〉 =
dn

dλ1 · · · dλn

⏐
⏐
⏐
⏐

λ1=···=λn=0
F

(

ϕ +
n∑

i=1

λiψi

)

.

(3.12)

The support of F (n)(ϕ) is composed by ntuple of points (x1, . . . , xn) ∈ M
n.

Let us assume that in the ntuple one can find two points xj , xk with xj 
= xk.
Now, there exist two smooth functions ψj , ψk such that xj ∈ supp(ψj), xk ∈
supp(ψk) and supp(ψj) ∩ supp(ψk) = ∅. By use of the additivity condition
in (3.12), one sees that each term of the resulting sum would not contain
all λ’s and the derivatives will all be zero. Hence the support can only be
those ntuple of points (x1, . . . , xn) for which x1 = · · · = xn. �

Another important property is the following;

Lemma 3.2. Any local functional F can be written as a finite sum of local
functionals of arbitrarily small supports.

Proof. (Cf. [14] for a similar argument) Let ε > 0. Let (Bi)i=1,...,n be a finite
covering of suppF by balls of radius ε/4 and let (χi)i=1,...,n be a subordinate
partition of unity. By a repeated use of the additivity of F we arrive at a
decomposition of the form

F =
∑

I

sIFI (3.13)

with sI ∈ {±1}, FI(ϕ) = F (ϕ
∑

i∈I χi) and where I runs over all subsets of
{1, . . . , n} such that Bi ∩ Bj 
= ∅ for all i, j ∈ I. From the definition of the
support of a functional we immediately find suppFI ⊂

⋃
i∈I Bi := BI . Since

any two points in BI have distance less than ε, each BI is contained in a
ball of radius ε. �

The previous lemma will find application in the next section and in
Appendix B.
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The possible interactions A for a quantum field theory build a subspace
Aloc(M) of A(M). It is characterized by the requirement that αHμ(A) is a
local functional for some, and hence for all μ.

Functional derivatives on A(M), as well as on Aloc(M), can be introduced
as linear maps from E(M) to A(M) by

〈
δ

δϕ
A, ψ

〉

= α−1
H

〈
δ

δϕ
αHA, ψ

〉

, (3.14)

since the right-hand side is independent of H.

4 Causal perturbation theory — the Epstein–Glaser method

While local interactions are more singular, they also have nice properties
which one can exploit for a perturbative construction of interacting quantum
field theories [4, 5, 16, 18]. We first collect some properties of the S-matrix
defined in (2.17). As much as we did in equation (2.1), we associate to every
A ∈ A(M) a compact region (denoted as supp(A) by abuse of notation) as
the set

supp(A) .= supp(αH(A)).

Notice that supp(A) does not depend on the choice of H, since the homeo-
morphisms αw do not change the support of a functional.

4.1 Renormalization and the Main Theorem

We use the fact that for A, B ∈ A0(M) with supp(A) later than supp(B) the
time ordered product coincides with the �-product

A ·T B = A � B. (4.1)

This implies the following causality property of the S-matrix

(C1) Causality : S(A + B) = S(A) � S(B) if supp(A) is later than supp(B).

The causality property determines the derivatives S(n) of S at the origin

S(n)(0)(B⊗n) ≡ S(n)(B⊗n) ≡ dn

dλn
S(λB)

∣
∣
∣
∣
λ=0

,
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(i.e., the higher order time ordered products) partially in terms of lower
order derivatives namely

S(n)(A⊗k ⊗ B⊗(n−k)) = S(k)(A⊗k) � S(n−k)(B⊗(n−k)) . (4.2)

While on A0(M) this is an immediate consequence of the definition of the
S-matrix and of (4.1), it is the key property by which an extension to local
functionals can be made, i.e., S : Aloc(M) → A(M) can be defined. Namely,
by Lemma 3.2, local functionals can be splitted into a sum of terms which
are localized in smaller regions. Together with the multilinearity of the
higher derivatives this allows the determination of the nth order in terms of
the derivatives with order less than n for all elements of the tensor product
Aloc(M)⊗n whose support is disjoint from the thin diagonal. Here the sup-
port of

∑
(Ai

1 ⊗ · · · ⊗ Ai
n) is defined as the union of the cartesian products

of the supports of Ai
k. Together with the property

(C2) Starting element : S(0) = 1, S(1) = id,

this fixes the higher derivatives of S at the origin partially on local func-
tionals.

The �-product and the time ordered product ·T on F0(M) were defined
in terms of functional differential operators. Therefore the S-matrix S(V ),
V ∈ F0(M) at the field configuration ϕ depends on ϕ only via the functional
derivatives of V at ϕ. We require that a similar condition holds true also
for the extension of S to Aloc(M).

Let V ∈ Aloc(M). The Taylor expansion of αH(V ) at ϕ = ϕ0 up to order
N is

αH(V )(N)
ϕ0

(ϕ) =
N∑

n=0

1
n!

〈
δnαH(V )

δϕn
(ϕ0), (ϕ − ϕ0)⊗n

〉

. (4.3)

We impose the following condition:

(C3) ϕ-Locality : αH ◦ S(V )(ϕ0) = αH ◦ S ◦ α−1
H (αH(V )(N)

ϕ0 )(ϕ0) + O(�N+1).

The condition is independent of the choice of the Hadamard function H.
For polynomial functionals V the condition is, up to the information on the
order in �, empty. The main profit of (C3) is that, for the computation
of a certain coefficient in the �-expansion of αH ◦ S(V ), we may replace
αH(V )(ϕ) by a polynomial in ϕ.

The ϕ-locality of the extension allows a rather explicit construction.
Namely, by Lemma 3.1, for a local interaction V the nth functional deriva-
tive of αH(V ) is, for every field configuration ϕ, a distribution with support



RG IN ALGEBRAIC QUANTUM FIELD THEORY 1559

on the thin diagonal Δn ⊂ M
n. As shown in [5], the condition on the wave

front set implies that such a distribution can be restricted to transversal
surfaces where the restrictions have support in a single point. Hence the
nth functional derivative has the form

δnαH(V )
δϕn

(x1, . . . , xn) =
∑

k

V H,n
k (x)pk(∂rel)δ(xrel), (4.4)

with the centre of mass x = 1
n

∑
xi, finitely many test functions V H,n

k (x)
(which depend on ϕ) and a basis (pk) of homogeneous symmetric polynomi-
als in the derivatives with respect to relative coordinates xrel.

Example. Let F (ϕ) = 1
2

∫
dxf(x)ϕ(x)∂ϕ(x)∂ϕ(x), with a test function f ∈

D(M). The second functional derivative of F is a symmetric distribution in
two variables, characterized by the condition

〈
δ2F

δϕ2 , h ⊗ h

〉

=
d2

dλ2

∣
∣
∣
∣
λ=0

F (ϕ + λh) , h ∈ E(M) .

We compute

d2

dλ2

∣
∣
∣
∣
λ=0

F (ϕ + λh) =
∫

dxf(x)(2∂ϕ(x)∂h(x)h(x) + ∂h(x)∂h(x)ϕ(x))

=
∫

dx1dx2δ(x1 − x2)f(x)
(
∂ϕ(x)(∂h(x1)h(x2)

+ ∂h(x2)h(x1)) + ϕ(x)(∂h(x1)∂h(x2))
)

,

where x = (x1 + x2)/2 is the centre of mass coordinate. Formal integration
by parts gives

d2

dλ2

∣
∣
∣
∣
λ=0

F (ϕ + λh)

=
∫

dx1dx2h(x1)h(x2)
(
−(∂x1 + ∂x2) (δ(x1 − x2)f(x)∂ϕ(x))

+ ∂x1∂x2 (δ(x1 − x2)f(x)ϕ(x))
)

.

Introducing relative coordinates ξ = x1 − x2 yields

δ2F

δϕ2

(

x +
1
2
ξ, x − 1

2
ξ

)

=
(

−∂(f∂ϕ)(x) +
1
4
(∂∂(fϕ))(x)

)

δ(ξ) − (fϕ)(x)(∂∂δ)(ξ)

which is of the form of (4.4).
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From (4.4) we obtain the following expansion of αH ◦ S(n):

αH ◦ S(n)(V ⊗n)(ϕ0) =
∑

kj ,lj

∫ (∏

j

dxjV
H,kj

lj
(ϕ0)(xj)

)
tkl (ϕ0)(x1, . . . , xn)

(4.5)
where tkl (ϕ0) is a distribution which is given by

tkl (ϕ0)(x1, . . . , xn) = αH ◦ S(n)(AH,k1
l1

(x1) ⊗ · · · ⊗ AH,kn

ln
(xn))(ϕ0) (4.6)

with the balanced fields [8] (normal ordered with respect to H, shifted by ϕ0)

AH,k
l (x) = α−1

H

(

pl(−∂rel)
(ϕ − ϕ0)(x1) · · · (ϕ − ϕ0)(xk)

k!

)∣
∣
∣
∣
x1=···=xk=x

.

(4.7)

To derive (4.5) we insert

V (ϕ) =
∑

k,l

∫
dx V H,k

l (ϕ0)(x) AH,k
l (ϕ)(x) (4.8)

into αH ◦ S(n)(V ⊗n)(ϕ) and use (C3) as well as linearity of S(n):

αH ◦ S(n)(V ⊗n)(ϕ) (4.9)

=
∑

kj ,lj

∫
dx1 · · ·V H,k1

l1
(ϕ0)(x1) · · ·αH ◦ S(n)(AH,k1

l1
(x1) ⊗ · · · )(ϕ). (4.10)

Setting ϕ = ϕ0 it results (4.5).

A convenient additional condition is that, loosely speaking, S should have
no explicit dependence on ϕ. Using the definition in equation (3.14),

(C4) Field Independence: 〈δS(V )/δϕ, ψ〉 = S(1)(V )〈δV/δϕ, ψ〉, with V ∈
Aloc(M).

For the action on A0(M) this is the case due to the fact that the differential
operators Γ· in terms of which time ordering, �-product and topology were
defined do not depend on ϕ. In formulae (4.5), (4.6) the distributions tkl
become therefore independent of ϕ0. Hence, in the resulting expansion of
αH ◦ S(n)(V ⊗n) the field dependence is only in the V

H,kj

lj
(xj). By condi-

tions (C3) and (C4) the construction of time ordered products is reduced to
the construction of the tkl (ϕ = 0), i.e., to the construction of time ordered
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products of balanced fields at ϕ = 0, hence, the methods and results of
e.g., [16] can be applied.

Example. Let αH(V ) =
∫

dx
∑

k fk(x)ϕ(x)k/k!, f ∈ D(M). Then

δnαH(V )
δϕn

(x1, . . . , xn) =
∑

k≥n

fk(x1)
ϕ(x1)k−n

(k − n)!
δ(x1 − x2) · · · δ(xn−1 − xn)

and now formula (4.5) is determined by the expression

V H,k
n (x) = fk(x)

ϕ(x)k−n

(k − n)!

and where formula (4.6) takes the form

tk1,...,kn(x1, . . . , xn) = αH ◦ S(n) ◦ α−1
H

(
ϕ(x1)k1

k1!
⊗ · · · ⊗ ϕ(xn)kn

kn!

)

(ϕ = 0) .

If one replaces H by Δ1, tH becomes the vacuum expectation value of the
time ordered product of Wick powers, hence one obtains the Wick expansion
formula of Epstein-Glaser [18].

The result of the Epstein–Glaser Theory is that the derivatives S(n) of
S at 0 can be extended to the full tensor product but that the extension
is not unique. The ambiguity is described by the Stückelberg–Petermann
renormalization group R0 which is the group of analytic maps of Aloc(M)[[�]]
into itself with the properties

Z(0) = 0, (4.11)

Z(1)(0) = id, (4.12)

Z = id + O(�), (4.13)

Z(A + B + C) = Z(A + B) − Z(B) + Z(B + C), if supp(A) ∩ supp(C) = ∅,
(4.14)

ϕ-locality in the sense of C3, (4.15)

δZ/δϕ = 0. (4.16)

Property (4.16) implies that Z preserves the localization region of the inter-
action,

supp(Z(V )) = supp(V ), V ∈ Aloc(M)[[�]] , (4.17)
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as may be seen from
〈

δ

δϕ
Z(V ), ψ

〉

= Z(1)(V )
〈

δ

δϕ
V, ψ

〉

. (4.18)

The additivity (4.14) expresses locality of Z. If one sets B = 0 in the
relation and uses Z(0) = 0 one obtains the condition previously adopted
in [16]. Actually, within perturbation theory, the two conditions are even
equivalent (for a proof see Appendix B).

In any case, since the formalism here adopted is different from the one
in the cited reference, we recall the Main Theorem and sketch its proof.
Roughly speaking, the main statement of this theorem is that in terms of
the S-matrix a change of the renormalization prescription can be absorbed
in a renormalization Z of the interaction, where Z is an element of the
Stückelberg–Petermann renormalization group R0. Similarly to the nota-
tions used for the derivatives of the S-matrix we use the shorthand notation
Z(n) ≡ Z(n)(0).

Theorem 4.1 (Main Theorem of renormalization). Given two S-matrices
S and Ŝ satisfying the conditions causality, starting element, ϕ-locality, and
field independence, there exists a unique Z ∈ R0 such that

Ŝ = S ◦ Z. (4.19)

Conversely, given an S-matrix S satisfying the mentioned conditions and
a Z ∈ R0, equation (4.19) defines a new S-matrix Ŝ satisfying also these
conditions.

Proof. Since the last part is obvious, we provide hints for the first part by
following [16]. So, let us assume that the first n elements of the formal power
series for Z are given, i.e., Z(k), k ≤ n, and define a second sequence

Z(k)
n

.=

{
Z(k), k ≤ n,

0, k > n.
(4.20)

The corresponding Zn is an element of R0. Hence, by the last part of the
theorem,

Ŝn
.= S ◦ Zn.

is an admissible S-matrix which coincides with Ŝ in lower orders k < n.
Hence

Z(n+1) .= Ŝ(n+1) − Ŝ(n+1)
n (4.21)
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is an element of Aloc(M)[[�]], which is of order �, satisfies locality (4.14)
and field independence (4.16). Therefore, we may use (4.21) to continue the
inductive construction of Z. �

The ambiguity described in the Stückelberg–Petermann renormalization
group can be reduced by imposing further renormalization conditions. One
of the conditions is

(C5) Unitarity : S(−V ) � S(V ) = 1,

where S is the anti-time ordered exponential, S(V ) = S(V ), hence S(V )
is unitary for imaginary interactions V . This condition can always be ful-
filled. It restricts the renormalization group to elements Z which satisfy the
equation Z(−V ) + Z(V ) = 0.

4.2 Symmetries

In general, if a symmetry g acts as an automorphism of A(M), commutes
with complex conjugation and leaves the set of localized elements invari-
ant, it will transform S to another S-matrix Ŝ = g ◦ S ◦ g−1 satisfying also
conditions (C1)–(C5). Therefore its effect can be described by an element
Z(g) ∈ R0, Ŝ = S ◦ Z(g). If the symmetries form a group G, one obtains in
this way a cocycle in R0,

Z(gh) = Z(g)gZ(h)g−1. (4.22)

Provided the cocycle is a coboundary, i.e., there exists an element Z ∈ R0
such that

Z(g) = ZgZ−1g−1 ∀g ∈ G, (4.23)

the S-matrix S ◦ Z is invariant.

In many cases the existence of a symmetric S-matrix just follows from
the fact that the cohomology of the group in question is trivial. This holds
in particular for amenable groups, where the trivializing element Z can be
obtained by integrating the cocycle over the group.

An important case, when the group is not amenable is that of the Poincaré
group P ↑

+. Here the result applies that the cohomology is trivial if all
finite-dimensional representations of the group are completely reducible (see
e.g., Appendix D of [16]). The invariance under the Poincaré group can be
imposed as a further condition:
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(C6) Invariance: S is Poincaré invariant.

A crucial example where the cocycle can (and will) be non-trivial is the
group of scaling transformations R+. Scaling transformations on generic
spacetimes can be encoded in a scaling of the spacetime metric (see [27]).
If one restricts the formalism to Minkowski space as we are doing it here,
it is more natural to scale the points in Minkowski space after fixing some
origin. This leads to the following action on field configurations ϕ ∈ E(M):

(σρϕ)(x) = ρ
2−d
2 ϕ(ρ−1x) (4.24)

with the spacetime dimension d. This induces an action on F0(M) which
is continuous with respect to the topology (3.7) and (3.8). Moreover, it
transforms the products �m into �ρm, and induces a linear isomorphism
between the completions F (m)(M) and F (ρm)(M). It therefore gives rise to
an action by automorphisms of A(M) defined by

σρ(A)m = σρ(Aρ−1m). (4.25)

On the basis of these arguments, let

σρ ◦ S ◦ σ−1
ρ = S ◦ Z(ρ). (4.26)

Then Z(ρ) satisfies the cocycle condition

Z(ρ1ρ2) = Z(ρ1)σρ1Z(ρ2)σ−1
ρ1

. (4.27)

The non-triviality of this cocycle is just the well-known scaling anomaly.
One may replace the condition of scale invariance which cannot be fulfilled
in general by the condition of almost scale invariance. In terms of definition
(4.26) above S is called almost scale invariant if

(C7) Scaling :
(

ρ
d

dρ

)n

Z(ρ) = O(�n+1), n ∈ N.

5 The renormalization groups

The formalism so far developed is flexible enough to allow a comparison
among different formulations of the idea of the renormalization group.
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Similar ideas like those exposed here are already present in the literature
of quantum field theory (see, e.g., [1] for the cocycle case), although mainly
using the euclidean formalism and viewing quantum field theory as a prob-
lem in statistical mechanics. We emphasize that in our setting the com-
parison can be done directly in terms of the physical spacetime, allowing
a possible extension of the techniques and results to situations beyond the
control of the euclidean framework.

5.1 The Gell–Mann–Low cocycle

Our main intention here is to study the effect of scaling on the renormal-
ization group, which may now be restricted to the subgroup R ⊂ R0 of all
Z leaving in addition conditions (C5)–(C7) invariant. They are those ele-
ments which fulfil Z(−V ) + Z(V ) = 0, are Poincaré invariant and satisfy
the condition (

ρ
d

dρ

)n

σρ ◦ Z ◦ σ−1
ρ = O(�n+1). (5.1)

For m = 0, this implies, together with the facts that Z maps local fields
into local fields and that local fields scale homogeneously, that Z is even
scale invariant. Smoothness in the mass now allows it to draw a similar
conclusion in the case of non-zero masses. In even spacetime dimensions d,
as was shown in [16], if one uses the Hadamard function Hμ, the transformed
renormalization group element

ZHμ = αHμ ◦ Z ◦ α−1
Hμ (5.2)

is actually scale invariant. If we exhibit the dependence on the mass m this
means

σρ ◦ Z
(m)
Hμ ◦ σ−1

ρ = Z
(ρm)
Hμ ,

hence the parameter μ is not scaled. Using the transformation properties of
Hμ under scaling

α−1
Hμ ◦ σρ ◦ αHμ = α−1

Hμ ◦ αHρμ ◦ σρ = αHρμ−Hμ ◦ σρ ,

we arrive at the explicit scale dependence of Z ∈ R

σρ ◦ Z ◦ σ−1
ρ = α−1

v log ρ2 ◦ Z ◦ αv log ρ2 , (5.3)

where v is the smooth function in equation (3.3).
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Unfortunately, the claim in [16], that ZHμ is independent of μ, is true
in general only in low orders in m2 (depending on the dimension). Z, as
defined above, is of course independent of μ, but no longer scale invariant.

We can now analyse the cocycle Z(ρ) of renormalization transformations
characterizing the dependence of S under scale transformations.

Using (5.3) the cocycle relation (4.27) takes the form

Z(ρτ) = Z(ρ) ◦ α−1
v log ρ2 ◦ Z(τ) ◦ αv log ρ2 . (5.4)

The cocycle (Z(ρ))ρ>0 may be decomposed into two one-parameter groups
such that one of them becomes trivial in the limit m → 0 and the other one
converges to Z(ρ),

Z(ρ) = Ẑ(ρ) ◦ αv log ρ2 . (5.5)

The one-parameter group (Ẑ(ρ))ρ>0 was found by Hollands and Wald [27]. It
is, however, not a subgroup of the Stückelberg–Petermann renormalization
group as defined above, since the linear term of Ẑ(ρ) is not the identity.

The β-function of standard perturbation theory is closely related to the
generator of the one-parameter group (Ẑ(ρ))ρ>0, which we call the
B̂-function,

B̂ = ρ
d

dρ
Ẑ(ρ)

∣
∣
∣
∣
ρ=1

= ρ
d

dρ
Z(ρ)

∣
∣
∣
∣
ρ=1

− 2�Γv.

The B̂-function is analytic, since Z(ρ) has this property. In the Taylor series
the first order term is given by Γv and the higher order terms by derivatives
of Z(ρ):

B̂(V ) = −2�Γv V +
∞∑

n=2

1
n!

B̂(n)(V ⊗n), (5.6)

where

B̂(n)(0)(V ⊗n) ≡ B̂(n)(V ⊗n) =
dn

dλn

∣
∣
∣
∣
λ=0

B̂(λV )

= ρ
d

dρ

∣
∣
∣
∣
ρ=1

dn

dλn

∣
∣
∣
∣
λ=0

Z(ρ)(λV )

for n ≥ 2.
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The action of the one-parameter group (Ẑ(ρ))ρ>0 on A(M) can now be
obtained as a solution of the differential equation

ρ
d

dρ
Ẑ(ρ) = B̂ ◦ Ẑ(ρ) .

Let us discuss a simple example of a B̂-function:

Example. Let V = ig
�

∫
dxf(x)ϕ(x)2 in d = 4 dimension, with f ∈ D(M).

For this interaction, renormalization is necessary only for the so-called fish
diagram. The undetermined term does not depend on m. Hence the com-
putation of Z(ρ)(V ) can be performed at m = 0, see (7.2). It results

Z(ρ)(V ) = V + ig2 log ρ

8π2

∫
dxf(x)2,

α−v log ρ2(V ) = V − ig
m2

4(2π)2
log ρ2

∫
dxf(x),

where we used v(x, x) = m2/4(2π)2 ((3.3) and Appendix A), hence

B̂(V ) = i

∫
dx

(

−g
m2

2(2π)2
f(x) + g2 f(x)2

8π2

)

.

The Gell–Mann–Low cocycle (Z(ρ))ρ>0 and the corresponding one param-
eter group (Ẑ(ρ))ρ>0 depend on the chosen renormalization prescription S.
The B̂-functions belonging to different renormalization prescriptions are
related as follows.

Lemma 5.1. Let S1 and S2 be two S-matrices and let Z ∈ R be the corre-
sponding renormalization group transformation: S2 = S1 ◦ Z. Let (Ẑ1(ρ))ρ>0

and (Ẑ2(ρ))ρ>0 be the pertinent one parameter groups (5.5). Their genera-
tors B̂1 and B̂2, respectively, are related by

Z ◦ B̂2 = B̂1 ◦ Z. (5.7)

To lowest non-trivial order this relation reads

B̂
(2)
1 − B̂

(2)
2 = 4�

2 Z(2) ◦ (Γv ⊗ Γv) + 2� Γv ◦ Z(2) . (5.8)

In the massless case the r.h.s. vanishes, i.e., B̂(2) is universal.
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Proof. Applying a scale transformation to S2 = S1 ◦ Z and using (4.26) and
(5.3) we obtain S2 ◦ Ẑ2(ρ) = S1 ◦ Ẑ1(ρ) ◦ Z , from which we conclude

Z ◦ Ẑ2(ρ) = Ẑ1(ρ) ◦ Z .

Application of ρ d
dρ |ρ=1 yields immediately the assertion (5.7). Inserting the

lowest order terms of the Taylor expansion of Z and B̂1, B̂2 (5.6), respec-
tively, it results (5.8). �

In odd spacetime dimensions d, the Hadamard function H(d) scales homo-
geneously. Therefore, all Z ∈ R are scale invariant and (Z(ρ))ρ>0 is a group
(i.e., αv log ρ2 does not appear in (5.3) and (5.4)). It follows that the r.h.s. of
(5.8) vanishes, that is B̂(2) is universal also for non-vanishing mass.

5.2 Flow equation

In this section, we formulate the renormalization method of the flow equation
in our formalism and relate the renormalization group in the sense of Wilson
to the Stückelberg–Petermann group.

As we pointed out in the introduction, the time ordering prescription T
can be formally understood as the operator of convolution with the oscillat-
ing Gaussian measure with covariance i�ΔD. The crucial point for us now is
that if we split the covariance in two, or more pieces, say i�ΔD = C1 + C2,
then we get a semigroup law from the convolution (2.10), namely

TF (ϕ) =
∫

dμC1(φ1)
(∫

dμC2(φ2)F (ϕ − φ2 − φ1)
)

. (5.9)

Hence, the idea is to split the covariance in such a way as to get more and
more regular convolutions. The splitting is usually parametrized by a cutoff
scale Λ. Since the left-hand side of (5.9) is independent of Λ, the derivative
of the right-hand side has to vanish. This leads to a differential equation,
the flow equation, that was first used for the purposes of perturbative renor-
malization by Polchinski [35] (see also [20]).

In our setting the procedure can be described as follows. Since the time
ordered product (2.12) is a deformation of the pointwise product induced
by the time ordering operator T , a regularization of the latter induces a
regularized time ordered product. Hence, by a regularizing procedure, we
interpolate between the pointwise and the time ordered products. Namely,
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let us pose TΛ
.= exp(i�ΓΛ) ≡ αhΛ−H , where (hΛ)Λ∈R+ is a family of sym-

metric smooth functions in M
2, which depend in a differentiable manner

on the parameter Λ, and is such that h0 = 0 and hΛ → HF in the sense of
Hörmander as Λ → ∞. (We recall that HF

.= iΔD + H, hence hΛ − H →
iΔD.) This means that, as initial condition we have αHT0 = id and that in
the limit Λ → ∞ we have αHTΛ → αHF

, by the sequential continuity of the
maps.

By means of this family of regularized time ordering operators, we can
construct a family of regularized S-matrices as SΛ

.= exp·TΛ
, as well as the

family of inverses S−1
Λ = TΛ ◦ log ◦ T−1

Λ . The principal aim of the flow equa-
tions is to study the behaviour of effective potentials under infinitesimal
cut-off variations. Effective potentials VΛ at scale Λ are thought of as aris-
ing from integrating out the degrees of freedom above Λ. In our formalism
they are defined by S(V ) = SΛ(VΛ), i.e., VΛ = S−1

Λ ◦ S(V ).

Now, we can prove, in our setting, that the effective potentials defined
above fulfil the flow equation.

Proposition 5.1. Let VΛ be the effective potential at scale Λ for any local
interaction V ∈ Aloc(M), then

d

dΛ
VΛ = −1

2

(
d

dΛ
MTΛ

)

(VΛ ⊗ VΛ) .

Proof. We have, by definition

VΛ = S−1
Λ ◦ S(V ) = TΛ log T−1

Λ T exp T−1(V ) ,

from which one also gets that T−1
Λ T exp T−1(V ) = expT−1

Λ (VΛ). Using the
previous relations we have the following chain of identities s

d

dΛ
VΛ = ṪΛ log T−1

Λ T exp T−1(V )

+ TΛ(T−1
Λ T exp T−1(V ))−1(−T−2

Λ )ṪΛT exp T−1(V )

= i�
(
Γ̇ΛVΛ + TΛ exp(−T−1

Λ (VΛ))(−Γ̇Λ) exp T−1
Λ (VΛ)

)

= i�
(
Γ̇ΛVΛ + TΛ(−Γ̇Λ)(T−1

Λ (VΛ))
)

− 1
2

(
d

dΛ
MTΛ

)

(VΛ ⊗ VΛ),

where in the last relation we made use of the fact that Γ̇Λ contains functional
derivatives of second order and that the Hadamard function is symmetric.
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Since the linear operators TΛ and Γ̇Λ commute, the first two terms add up
to zero and we obtain the flow equation. �

The attractive feature of the flow equation is that it can be immediately
integrated in perturbation theory, since the Λ-derivative of the nth order
term in V of VΛ is determined by the terms of order less than n due to
V

(0)
Λ = 0. In general, however, VΛ will not converge for Λ → ∞. Here we can

use the insight of Epstein–Glaser that S always exists on local functionals,
but is not unique. Moreover, one can show, that for each Λ there is an
element ZΛ of the Stückelberg–Petermann renormalization group1 R0, such
that

lim
Λ→∞

SΛ ◦ ZΛ = S. (5.10)

ZΛ adds the local counter terms which are needed for the existence of the
limit. One may determine ZΛ directly from the knowledge of SΛ, namely
the nth order term of SΛ ◦ ZΛ is, due to S

(1)
Λ = id

(SΛ ◦ ZΛ)(n) = Z
(n)
Λ + X

(n)
Λ , (5.11)

where X
(n)
Λ depends only on the terms of ZΛ of order less than n. Hence by

induction Z
(n)
Λ is uniquely determined up to the addition of a local map δZ

(n)
Λ

which converges as Λ → ∞. This amounts to the freedom of finite renor-
malization, encoded in the Stückelberg–Petermann renormalization group.

From the definition of VΛ it immediately follows that the flow of the
effective potential from Λ0 to Λ is given by S−1

Λ ◦ SΛ0 . Heuristically, this
operator is approximately equal to ZΛ ◦ Z−1

Λ0
∈ R0 for Λ, Λ0 big enough,

due to (5.10). In this sense Wilson’s flow of effective potentials can be
approximated by a two-parametric subfamily of the Stückelberg–Petermann
group.

As an application let us see now how one can construct the Gell–Mann–
Low cocycle Z(ρ) from the counter terms ZΛ. We assume that the regular-
ized S-matrices satisfy the scaling relation

σρ ◦ SΛ ◦ σ−1
ρ = SρΛ. (5.12)

1Generically, SΛ does not satisfy Poincaré invariance (C6) and the Scaling property
(C7), hence one may not expect that ZΛ is in R.
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Since a scale transformation commutes with the limit Λ → ∞ in (5.10), it
follows

lim
Λ→∞

SρΛ ◦ ZρΛ ◦ Z−1
ρΛ ◦ σρ ◦ ZΛ ◦ σ−1

ρ = S ◦ Z(ρ) .

Taking into account that limΛ→∞ SρΛ ◦ ZρΛ = S, we conclude

lim
Λ→∞

Z−1
ρΛ ◦ σρ ◦ ZΛ ◦ σ−1

ρ = Z(ρ). (5.13)

In this way the Gell–Mann–Low cocycle Z(ρ) can be obtained from the
counter terms ZΛ needed to cancel the divergences of the regularized
S-matrix. If S is almost scale invariant (C7), we see from (5.13) that
σρ ◦ ZΛ ◦ σ−1

ρ differs from ZρΛ only by log ρ-terms and terms vanishing for
Λ → ∞.

6 The renormalization group in the algebraic adiabatic limit

6.1 Introduction

In the previous sections, we showed how the renormalization group arises in
perturbative algebraic quantum field theory as a group of formal diffeomor-
phisms on the space of local functionals of smooth field configurations. We
want to analyse the structure in the so-called algebraic adiabatic limit where
the interaction is induced by a Lagrangian with no explicit dependence on
spacetime. Contrary to the adiabatic limit in the sense of operators on Fock
space (“strong adiabatic limit”) or in the sense of Wightman functions (i.e.,
vacuum expectation values of interacting fields) (“weak adiabatic limit”) —
both appear in the work of Epstein and Glaser — the algebraic adiabatic
limit does not suffer from any infrared problems and is in particular well
defined on generic globally hyperbolic spacetimes [5, 15, 27]. Traditionally,
in causal perturbation theory, Lagrangians are integrated against test func-
tions in order to obtain well-defined local functionals on field configurations.
But the action of the renormalization group on the space of local function-
als is non-linear, hence we prefer to admit also non-linear dependence on
the test function. Lagrangians in this generalized sense can be identified
with a certain class of non-linear functionals on the test function space with
values in the space of local functionals of field configurations. The space
of Lagrangians in this sense is invariant under the renormalization group;
moreover, Lagrangians which induce equivalent theories do so also after act-
ing on them with the renormalization group. We work out the analogue
of the β-function, compare the results obtained in our framework in a few
examples with results from the literature and find agreement.
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6.2 Generalized Lagrangian

The defining properties of a generalized Lagrangian are (partially) motivated
by the corresponding properties of the renormalization maps Z ∈ R.

Definition 6.1. A generalized Lagrangian L is a map

L : D(M) −→ Aloc(M)

with the following properties

AF1. supp(L (f)) ⊂ supp(f) ;
AF2. L (0) = 0;
AF3. L (f +g+h) = L (f +g)−L (g)+L (g + h), if supp(f) ∩ supp(h) = ∅;
AF4. αL ◦ L = L ◦ L∗ for all elements L of the Poincaré group P ↑

+.

Proposition 6.1. The space of generalized Lagrangians is invariant under
the action

L �→ Z ◦ L

of the renormalization group R.

Proof. If L is a generalized Lagrangian and Z an element of the renormaliza-
tion group, then Z ◦ L obviously satisfies the conditions AF1,2,4. To prove
that also condition AF3 is satisfied we first show the following remarkable
property of the map L (which is a weak substitute for linearity):

suppLg(f) ⊂ supp f, (6.1)

where Lg(f) = L (f + g) − L (g). Namely, let M � x 
∈ supp f . Choose
h ∈ D(M) with h = g in a neighbourhood of x such that supph ∩ supp f = ∅.
Then, from condition AF3,

L (f + g) = L (f + (g − h) + h) = L (f + (g − h)) − L (g − h) + L (g),

hence Lg(f) = Lg−h(f), thus suppLg(f) = suppLg−h(f) ⊂ (supp(f + g −
h) ∪ supp(g − h)) 
� x by using AF1.

We now use the additivity of Z and find for f and h with disjoint supports

Z(L (f + g + h)) = Z(Lg(f) + L (g) + Lg(h))

= Z(L (f + g)) − Z(L (g)) + Z(L (g + h)).

�
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Definition 6.2. Two generalized Lagrangians are said to induce the same
interaction, L ∼ L ′, if

supp(L − L ′)(f) ⊂ supp df , ∀f ∈ D(M) ,

(i.e., the corresponding field equations differ only by boundary terms).

Proposition 6.2. If L and L ′ induce the same interaction then so do
Z ◦ L and Z ◦ L ′ for all renormalization group elements Z.

Proof. Let L ∼L ′ and f ∈ D(M). Let h ∈ D(M) with supph ∩ supp df = ∅.
We have to show that

〈
δ

δϕ
(Z ◦ L − Z ◦ L ′)(f), h

〉

= 0.

Let Lλ(f) = (λL + (1 − λ)L ′)(f). Using the fundamental theorem of cal-
culus, we find for the left side

∫ 1

0
dλ

d

dλ

〈
δ

δϕ
Z ◦ Lλ(f), h

〉

=
∫ 1

0
dλ

〈
δ

δϕ
Z(1)(Lλ(f))(L − L ′)(f), h

〉

=
∫ 1

0
dλ

(

Z(2)(Lλ(f))
(〈

δ

δϕ
Lλ(f), h

〉

⊗ (L − L ′)(f)
)

+Z(1)(Lλ(f))
〈

δ

δϕ
(L − L ′)(f), h

〉)

.

Both terms in the integrand vanish because of the assumption on the
supports of df and h. The first, since Z(2)(Lλ(f)), as a bilinear map on
Aloc(M) × Aloc(M), vanishes if the arguments have disjoint supports. This
is the case since the support of the first factor is contained in supph and the
support of the second factor is contained in supp df due to the equivalence of
L and L ′. The second term in the integrand vanishes, since, for the same
reasons, the argument of the linear map Z(1)(Lλ(f)) is zero. This proves
the proposition. �
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6.3 Observables

We now want to investigate the action of the renormalization group on
observables. Given two local functionals V and F , the relative S-matrix

SV (F ) = S(V )−1 � S(V + F )

is the generating functional for the time ordered powers of the (retarded)
observable corresponding to F under the interaction V . If S is replaced by
Ŝ = S ◦ Z with a renormalization group element Z, we obtain

ŜV (F ) = SZ(V )(ZV (F )),

where ZV (F ) = Z(V + F ) − Z(V ).

We first observe that

ZV (F ) = ZV ′(F ) if supp(V − V ′) ∩ suppF = ∅. (6.2)

This follows from the additivity property of Z:

Z(V + F ) = Z((V − V ′) + V ′ + F ) = Z(V ) − Z(V ′) + Z(V ′ + F ).

Similarly to the proof of (6.1), relation (6.2) implies

suppZV (F ) ⊂ suppF. (6.3)

Let [L ] denote the equivalence class of the generalized Lagrangian L , in
the sense of Definition 6.2. Then we set

Z[L ](F ) = ZL (f)(F )

with f ≡ 1 on a neighbourhood of suppF . By the remark above and by
(6.1), the right-hand side does neither depend on f nor on the choice of the
Lagrangian in its equivalence class.

Let O be a relatively compact open subregion of Minkowski space. The
rough idea of the algebraic adiabatic limit is to achieve independence of the
observables on the behaviour of the interaction outside of O by admitting
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all interactions which yield the same field equation in O. For this purpose
we define

V[L ](O) .= {V ∈ Aloc(M) | supp(V − L1(f)) ∩ O = ∅,

if L1 ∈ [L ] and f ≡ 1 on O} , (6.4)

where L is a generalized Lagrangian. Note that if supp(V − L1(f)) ∩ O = ∅
for some L1 ∈ [L ] and some f ∈ D(M) with f ≡ 1 on O, then this holds
for all L1 and all f with these properties. Note also that ZV (F ) = Z[L ](F )
if V ∈ V[L ](O) and suppF ⊂ O. In addition we point out that

V ∈ V[L ](O) ⇔ Z(V ) ∈ V[Z◦L ](O) ,

which follows from (6.3) and Proposition 6.2.

The relative S-matrix in the algebraic adiabatic limit is defined by

SO
[L ](F ) = (SV (F ))V ∈V[L](O)

for F with suppF ⊂ O. The interpretation as algebraic adiabatic limit relies
on the following argument (see [5, 15]): SO

[L ](F ) is a “covariantly constant
section” in the sense that for any V1, V2 ∈ V[L ](O) there exists an automor-
phism β of A(M) such that

β(SV1(F )) = SV2(F ) ∀F ∈ Aloc(M) , suppF ⊂ O .

Hence, the structure of the algebra generated by SV (F ) , suppF ⊂ O is
independent of the choice of V ∈ V[L ](O).

The local algebra A[L ](O) of observables in the algebraic adiabatic limit
is generated by the elements SO

[L ](F ), suppF ⊂ O. For O1 ⊂ O2 the embed-

ding ιO2O1 : A[L ](O1) ↪→ A[L ](O2) is induced by ιO2O1 (SO1
[L ](F )) = SO2

[L ](F ).

We may now determine the action of the renormalization group on observ-
ables in the adiabatic limit. Let again Z be an element of the renormalization
group and Ŝ = S ◦ Z. Then

ŜO
[L ](F ) = (ŜV (F ))V ∈V[L](O) = (SZ(V )(ZV (F )))V ∈V[L](O) = SO

[Z◦L ](Z[L ](F )).

We conclude as a slight generalization of a Theorem in [16, 17] (cf. [27])

Theorem 6.1 (Algebraic renormalization group equation). Let Â[L ](O)
and A[L ](O) denote the algebra of observables obtained by using Ŝ and S,
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respectively. The pertinent renormalization group element Z ∈ R induces
an isomorphism αZ = (αO

Z ) of the nets,

αO
Z : Â[L ](O) → A[Z◦L ](O) , (6.5)

such that ιO2O1 ◦ αO1
Z = αO2

Z ◦ ι̂O2O1 for O1 ⊂ O2. The isomorphism is given
by

αO
Z (ŜO

[L ](F )) = SO
[Z◦L ](Z[L ](F )) . (6.6)

In particular, if L and Z ◦ L induce the same interaction, αZ is an auto-
morphism.

Remark 6.1 (Generalized fields). Motivated by the nice properties of a
generalized Lagrangian, we generalize the concept of fields by admitting
nonlinear dependence on the test function.

Definition 6.3. A generalized field is a map Φ from the space Γ0(T ∞(M))
of smooth sections with compact support on the tensor bundle over M into
the space of local functionals Aloc(M) with the following properties:

(1) supp Φ(f) ⊂ supp f ;
(2) Φ(0) = 0 ;
(3) Φ(f + g + h) = Φ(f + g) − Φ(g) + Φ(g + h) if supp f ∩ supph = ∅;
(4) αL ◦ Φ = Φ ◦ L∗ for all L ∈ P ↑

+.

Obviously, the support property (6.1) holds true also for generalized fields.

It is now easy to see that any Z ∈ R and any generalized Lagrangian L
induce via

Φ �→ Z[L ] ◦ Φ (6.7)

a map on the space of fields (generalized field strength renormalization)
which satisfies, due to the algebraic renormalization group equation, the
relation

αZ ◦ Ŝ[L ] ◦ Φ = S[Z◦L ] ◦ Z[L ] ◦ Φ. (6.8)

6.4 Scaling

One of the deepest insights in quantum field theory is that the invariance
of the physical content of the theory under a change of the renormalization
parameters (the renormalization group equation) provides information on
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the behaviour of the theory at different scales (Callan–Symanzik equation).
Usually, this relation is expressed as a differential equation for the vacuum
expectation values of time ordered products of fields. In our algebraic frame-
work we obtain a corresponding result without the necessity to incorporate
information on the existence and uniqueness of vacuum states.

In classical field theory, scaling would result in replacing the Lagrangian
L by the scaled Lagrangian L ρ, L ρ(f) = σρ(L (fρ)), where fρ(x) = f(ρ−1x)
denotes the scaled test function.2 In quantum field theory one obtains
instead

Theorem 6.2 (Algebraic Callan–Symanzik equation). The scaled Haag–
Kastler net O �→ A[L ](ρ−1O) is equivalent to the net O �→ A[Z(ρ)◦L ρ](O)
where the isomorphism is induced by αZ(ρ) ◦ σρ:

αZ(ρ) ◦ σρ(S[L ](σ
−1
ρ F )) = S[Z(ρ)◦L ρ](Z(ρ)[L ρ](F )) , F ∈ Aloc(O).

Proof. We have

σρ ◦ S[L ] ◦ σ−1
ρ = (S ◦ Z(ρ))[L ρ].

Hence the net O �→ σρA[L ](ρ−1(O)) coincides with the net Â[L ρ] where Â
is constructed from Ŝ = S ◦ Z(ρ). By the algebraic renormalization group
equation (6.5) αZ(ρ) induces an equivalence between the nets Â[L ρ] and
A[Z(ρ)◦L ρ]. Hence αZ(ρ) ◦ σρ induces the claimed equivalence between the
nets O �→ A[L ](ρ−1O) and A[Z(ρ)◦L ρ]. �

Finally we are going to perform the wave function and mass renormaliza-
tion and to define the β-function. For computations it is useful to represent
the abstract quantities A ∈ A by the functionals αH(A) ∈ F . In even dimen-
sions H depends on a parameter μ. This induces an additional scale into
the formalism. We assume that the generalized Lagrangian L is of the form

L (f) ≡ Lμ(f) = α−1
Hμ(F (f)) (∀f ∈ D(M))

for some F : D(M) → Floc(M) which satisfies the properties AF1–AF4 in
Definition 6.1. Note that [(ϕ2)μ] ≡ [α−1

Hμ ◦ ϕ2] = [ϕ2] and [((∂ϕ)2)μ] = [(∂ϕ)2]
since [c] = 0 for c ∈ C[[�]].

2Note that L ρ differs from L only by a scaling of the parameters: (L (Λ))ρ = L (ρΛ),
where Λ denotes the parameters of L which are assumed to have the dimension of a mass.
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The transformed Lagrangian [Z(ρ) ◦ (Lμ)ρ] will in general contain a mul-
tiple γμ(ρ) of the kinetic term i

2�
[(∂ϕ)2] and a multiple λμ(ρ) of the mass

term i
2�

(ρm)2 [ϕ2]. These terms may be absorbed in the free Lagrangian by
replacing ϕ by

ϕ′ .= (1 − γμ(ρ))
1
2 ϕ (“wave function renormalization”)

and m by

m′ .= m

√
1 + λμ(ρ)
1 − γμ(ρ)

(“mass renormalization”) .

Since the new free Lagrangian differs from the old one by −i
2�

(γμ[(∂ϕ)2] +
λμ(ρm)2[ϕ2]) we have to add this term to the interaction part [Z(ρ) ◦ (Lμ)ρ

(ϕ)]. The new interaction Lagrangian [L ′
μ] is then

[L ′
μ(ϕ′)] = [Z(ρ) ◦ (Lμ)ρ((1 − γμ(ρ))− 1

2 ϕ′)]

− i
2�

( γμ(ρ)
1 − γμ(ρ)

[(∂ϕ′)2] +
λμ(ρ) (ρm′)2

1 + λμ(ρ)
[(ϕ′)2]

)
. (6.9)

The derivative with respect to log ρ at ρ = 1 (with keeping ϕ′ fixed) now
defines the β-function. Using

B
.= ρ

d

dρ
|ρ=1Z(ρ), (6.10)

γμ(1) = 0, λμ(1) = 0 and (Lμ)ρ = (L ρ)ρμ the action of β on interaction
classes reads

β([Lμ]) = [B ◦ Lμ] +
γ̇μ

2
〈L (1)

μ , ϕ〉

− i
2�

(
γ̇μ [(∂ϕ)2] + λ̇μ m2 [ϕ2]

)

+ [ρ
d

dρ
(L ρ)μ|ρ=1] + [μ

d

dμ
Lμ], (6.11)

where 〈L (1)
μ , ϕ〉 is the equivalence class of f �→ 〈Lμ(f)(1), ϕ〉 and γ̇μ and

λ̇μ are the derivatives of γμ(ρ) and λμ(ρ) with respect to log ρ at ρ = 1.
This formula is less complicated as it seems, since −γ̇μ [(∂ϕ)2] + λ̇μ m2 [ϕ2]
subtracts precisely the [(∂ϕ)2]- and m2[ϕ2]-term of [B ◦ Lμ].
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7 Examples

After clarification of the general structure we now want to compute in our
framework renormalization group transformations for special examples to
low orders. The Gell–Mann–Low cocycle Z(ρ) is completely determined
by its generator B (6.10). It can be obtained by differentiating the scaled
S-matrix with respect to the scaling parameter,

ρ
d

dρ
|ρ=1(σρ ◦ S ◦ σ−1

ρ )(V ) = ρ
d

dρ
|ρ=1(S ◦ Z(ρ))(V ) = S(1)(V )B(V ),

where the linear map S(1)(V ) is invertible in the sense of formal power series
in � since its zeroth order term is the pointwise product with eV .

The computation of B(n) then amounts to differentiating (4.21), i.e.,

Z(n)(ρ) = σρ ◦ S(n) ◦ σ−1
ρ − (S ◦ Zn−1(ρ))(n) ,

where Zn−1(ρ) is given in terms of {Z(k)(ρ) | k ≤ n − 1} by (4.20). Namely,
since −(S ◦ Zn−1(ρ))(n)(V ) subtracts the contributions coming from the vio-
lation of homogeneous scaling of subdiagrams, one has to compute only the
contribution of those diagrams whose freedom of normalization is localized
on the total diagonal in M

n (cf. formulas (4.16-17) in [16]).

Representing the abstract functionals A ∈ A by the explicit functionals
αH(A) ∈ F , we have to take into account that αHμ does not commute with
the scaling transformations. With Sμ

.= αHμ ◦ S ◦ α−1
Hμ and Bμ

.= αHμ ◦ B ◦
α−1

Hμ we obtain

ρ
∂

∂ρ
|ρ=1(σρ ◦ Sμ ◦ σ−1

ρ )(V ) − μ
∂

∂μ
Sμ(V ) = ρ

d

dρ
|ρ=1(σρ ◦ Sρ−1μ ◦ σ−1

ρ )(V )

= S(1)
μ (V )Bμ(V )

for V ∈ Floc. Again, B
(n)
μ (V ) is obtained directly by omitting the contribu-

tions coming from the inhomogeneous scaling of subdiagrams.

In terms of the power series expansion of S with respect to V ,
the μ-derivative of the nth order S

(n)
μ can be computed by using
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μ ∂
∂μαHμ = 2� Γv ◦ αHμ(2.19,3.3) and δS

(n)
μ

δϕ = 0:

μ
∂

∂μ
S(n)

μ = μ
∂

∂μ
αHμ ◦ S(n) ◦ (α−1

Hμ)⊗n

= 2�

(
Γv ◦ S(n)

μ − S(n)
μ ◦

∑
(id ⊗ ... ⊗ Γv ⊗ ... ⊗ id)

)

= 2� S(n)
μ ◦

∑

i�=j

Γij
v (7.1)

with Γij
v

.= 1
2

∫
dxdy v(x, y) δ2

δϕi(x)δϕj(y) as a functional differential operator
on F(M)⊗n.

Let

Bμ(V ) =
∞∑

k=2

1
k!

B(k)
μ (V ⊗k), V ∈ Floc(M)

be the power series expansion of Bμ. Due to δ Z(ρ)
δϕ = 0 we have the commu-

tation relation

1
n!

δn

δϕn
◦ Bμ(V ) =

∞∑

k=1

∑

n1+...+nk=n

1
k!

B(k)
μ

× ◦
(

1
n1!

δn1

δϕn1
⊗ · · · ⊗ 1

nk!
δnk

δϕnk

)

(V ⊗k) .

The Taylor expansion of Bμ(V ) around ϕ = 0 is therefore determined by
the values of B

(k)
μ (V (n1) ⊗ · · · ⊗ V (nk)) at ϕ = 0. To obtain these values we

have to compute the violation of homogeneous scaling of the corresponding
renormalized time ordered products at ϕ = 0. Mostly this is done by using
momentum space techniques. A rigorous computation in our framework
is, however, easier in configuration space which also has the advantage to
simplify the extension to curved spacetimes. Our method is related to dif-
ferential renormalization [19]. Further useful renormalization procedures in
x-space are dimensional regularization [3], different kinds of analytic renor-
malization [23, 29] and in case of 2-point functions a method relying on the
Källen–Lehmann representation [16].

In order to simplify the formulas that will appear in the next two subsec-
tions, we use the notations φn .= ϕn/n!, n ∈ N, and (∂φ)2 .= ∂νϕ∂νϕ/2.
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7.1 β-function for the ϕ3-interaction in six dimensions

As a first example we discuss the φ3 interaction in six dimensions. Let

Lμ(f) =
ig
�

α−1
Hμ

∫
dx f(x) φ(x)3

be a generalized Lagrangian with a coupling constant g ∈ R . The orbit
under the renormalization group is contained in the subspace generated
by φ3, φ2, (∂φ)2, φ and 1. Since we are interested only in equivalence
classes of Lagrangians we may ignore the constant terms. Moreover, we
may also ignore the linear terms, since they do not influence the action
of the renormalization group on the other terms. In second order in the
Lagrangian the only contribution comes from φ3 and yields a term of second
order in φ. This contribution is therefore determined by

B(2)
μ

(
φ3(x1) ⊗ φ3(x2)

)
= B(2)

μ

(
φ2(x1) ⊗ φ2(x2)

)∣∣
∣
φ=0

φ(x1)φ(x2) ,

B(2)
μ

(
φ2(x1) ⊗ φ2(x2)

)∣∣
∣
φ=0

= ρ
d

dρ
|ρ=1ρ

8tρ
−1μ

ρ−1m
(φ2, φ2)(ρ(x1 − x2)) ,

where tμm(φ2, φ2) is an extension of (�Hμ
F,m)2/2 (to be considered as a distri-

bution on D(M2 \ Δ2)) to an everywhere defined distribution with the same
scaling degree. Moreover, exhibiting the dependence on the mass, we write

(Hμ
F,m)2/2 = D2

F /2 + m2DF · ∂

∂m2 Hμ
F,m(m = 0) + Rμ

m,

where the scaling degree of Rμ
m is smaller than the dimension, such that

there is a unique extension with the same scaling degree. Since ρ8Rρ−1μ
ρ−1m

(ρx)
(with x ≡ x1 − x2) is independent from ρ, only the two first terms contribute
to Bμ.

The extension tμm can be written in the form

tμm = t0 + m2t1 + Rμ
m,

where t0, t1 are extensions of �
2D2

F /2 and �
2DF · ∂

∂m2 Hμ
F (m = 0), respec-

tively, which scale almost homogeneously.
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From Appendix A (A.8), we get DF (x) = 1
4π3(x2−iε)2 and ∂

∂m2 Hμ
F (m = 0) =

1
24π3(x2−iε) . We can now use the general results of Appendix C and conclude

ρ
d

dρ
|ρ=1(ρ8t0(ρx) + m2ρ6t1(ρx))|ρ=1 = �

2(a0�δ(x) + a1m
2δ(x)),

where a0 = i
27·3π3 and a1 = i

26π3 .

We now turn to terms of third order in the Lagrangian. There is no term
of second order in φ, and there is exactly one term in third order in φ,
corresponding to the triangle diagram. We have to calculate

B(3)
μ

(
3
⊗

j=1
φ3(xj)

)

= B(3)
μ

(
3
⊗

j=1
φ2(xj)

)∣
∣
∣
∣
φ=0

φ(x1)φ(x2)φ(x3).

Again the μ-dependent part is regular and can thus be absorbed in the ρ
derivative. We obtain

B(3)
μ

(
⊗3

j=1φ
2(xj)

)
|φ=0 = ρ

d

dρ
|ρ=1ρ

12tρ
−1μ

ρ−1m
(φ2, φ2, φ2)(ρx, ρy),

where x ≡ x1 − x2 , y ≡ x2 − x3. tμm(φ2, φ2, φ2)(x, y) is an almost homoge-
neous extension of �

3Hμ
F (x)Hμ

F (y)Hμ
F (x + y). In the Taylor expansion with

respect to the mass only the leading term has a non-unique extension which
can give rise to a contribution to Bμ. Hence, we have to determine the
distribution

B(3)
μ

(
⊗3

j=1φ
2(xj)

)
|φ=0 = �

3(∂x,μxμ + ∂y,μyμ)DF (x)DF (y)DF (x + y) .

As before this is the divergence of a distribution with scaling degree less than
the dimension of space. It must have the form �

3a2δ(x)δ(y) with a2 ∈ C.

To compute this number, we use the explicit form of the Feynman prop-
agator DF and the method of Feynman parameters:

1
b1b2 . . . b6

= 5!
∫ ∞

0

dz1dz2 . . . dz6 δ(1 − (z1 + z2 + · · · + z6))
(b1z1 + b2z2 + . . . + b6z6)6

.

With that we find

a2δ(z) = lim
ε↓0

(4π3)−35!
∫

α,β,γ>0,α+β+γ=1
dαdβ αβγ

∂

∂zj
zj (〈z, Gz〉 − iε)−6

where z = (x, y) and 〈z, Gz〉 = αx2 + βy2 + γ(x + y)2.
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Up to a linear coordinate transformation on R
12 which brings the qua-

dratic form G into the standard form on R
2,10, the distribution (〈z, Gz〉 −

iε)−6 is of the form treated in Appendix C. We conclude that

∂

∂zj
zj (〈z, Gz〉 − iε)−6 = |S11| |det G|− 1

2 δ(z)

Thus we find

a2 = (4π3)−35! · 1
10

π6

6
I =

1
25π3 I

with the integral over the Feynman parameters

I =
∫

α,β,γ>0,α+β+γ=1
dαdβ αβγ | det G|− 1

2 .

The determinant of G is (αβ + βγ + γα)6. To compute this integral we
substitute α = λκ, β = (1 − λ)κ with λ, κ ∈ (0, 1). We find

I =
∫ 1

0
dλ

∫ 1

0
dκ

λ(1 − λ)κ3(1 − κ)
(λ(1 − λ)κ2 + κ(1 − κ))3

=
∫ 1

0
dλ

∫ 1

0
dκ

λ(1 − λ)(1 − κ)
(λ(1 − λ)κ + (1 − κ))3

.

The integral over κ turns out to be independent of λ ∈ (0, 1) and has the
value 1

2 . Thus we finally obtain

a2 =
1

26π3 .

We arrive at the action of Bμ on the interaction classes up to third order

[Bμ ◦ gφ3] =
[

−�
2 ig2

3 · 27π3 (∂φ)2 + �
2 m2 ig2

26π3 φ2 + �
3 g3

26π3 φ3
]

.

Using formula (6.11) for the β-function and exhibiting the factor i
�

in the
interaction, we get in lowest non-trivial order (rewriting everything in terms
of the original notation for fields)

�

i
β

(
i
�
g
[(ϕ3)μ]

3!

)

= −3 �g3

28π3
[(ϕ3)μ]

3!

from which we read off the coupling constant renormalization. Our result
agrees with formula (3.4.64) in [34]; the negative sign exhibits asymptotic
freedom.



1584 R. BRUNETTI ET AL.

7.2 Renormalization group flow for the ϕ4-interaction in four
dimensions

As another example we study the φ4 interaction in four dimensions. We may
restrict ourselves to renormalizations which respect the symmetry φ → −φ.
The orbit in the renormalization group is contained in the subspace gener-
ated by φ4, φ2, (∂φ)2 and 1, where the constant terms can again be ignored.
We are going to determine the renormalization group flow completely, i.e., we
will compute Bμ( i

�
(g [φ4] + am2 [φ2] + b[(∂φ)2])).

In second order in the interaction the following terms occur

B(2)
μ

(
φ(x)4 ⊗ φ(y)4

)
= B(2)

μ

(
φ(x)3 ⊗ φ(y)3

)∣∣
∣
φ=0

φ(x)φ(y)

+ B(2)
μ

(
φ(x)2 ⊗ φ(y)2

)∣∣
∣
φ=0

φ(x)2φ(y)2,

B(2)
μ

(
φ(x)4 ⊗ φ(y)2

)
= B(2)

μ

(
φ(x)2 ⊗ φ(y)2

)∣∣
∣
φ=0

φ(x)2,

B(2)
μ

(
φ(x)4 ⊗ (∂φ(y))2

)
= B(2)

μ

(
φ(x)2 ⊗ (∂φ(y))2

)∣∣
∣
φ=0

φ(x)2.

The computation of the term B
(2)
μ

(
φ(x)2 ⊗ φ(y)2

)∣∣
∣
φ=0

proceeds as in the

case of φ3
6 (taking now the explicit expression for DF from (A.7)) and yields

B(2)
μ

(
φ(x)2 ⊗ φ(y)2

)∣∣
∣
φ=0

=
−i�2

24π2 δ(x − y). (7.2)

The term B
(2)
μ

(
φ(x)2 ⊗ (∂φ(y))2

)∣∣
∣
φ=0

is of the form

B(2)
μ

(
φ(x)2 ⊗ (∂φ(y))2

)∣∣
∣
φ=0

= �
2 (a1�δ(x − y) + b1m

2δ(x − y)
)
.

Inserting this form into the expression for B
(2)
μ

(
φ(x)4 ⊗ (∂φ(y))2

)
, one

observes that the term proportional to �δ produces a total derivative in the
interaction Lagrangian and may therefore be ignored. The term of order m2

arises from

b1δ(x) = ∂ν

(

xν(∂λDF )(x)∂λ ∂

∂m2 HF,μ(m2 = 0)(x)
)

.

In d = 4 dimensions we have

∂λ ∂

∂m2 HF,μ(m2 = 0)(x) =
1

23π2
xλ

x2 − iε
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and

∂λDF (x) =
1

2π2
xλ

(x2 − iε)2

(both formulas can be read off from (A.7)), thus

∂λDF (x)∂λ ∂

∂m2 HF,μ(m2 = 0)(x) =
1

24π4
1

(x2 − iε)2

and we are back to the case treated in Appendix C. We obtain

b1 =
−i

23π2 .

The most interesting case is the contribution of B
(2)
μ

(
φ(x)3 ⊗ φ(y)3

)∣∣
∣
φ=0

.

We have

B(2)
μ

(
φ(x)3 ⊗ φ(y)3

)∣∣
∣
φ=0

= ρ
d

dρ
tρ

−1μ
ρ−1m

(φ3, φ3)(ρ(x − y)),

where tμm(φ3, φ3) is an extension of
(� Hμ

F,m)3

3! whose μ-dependence is given in
terms of tμm(φ2, φ2),

μ
∂

∂μ
tμm(φ3, φ3)(x, y) = 2� v(x − y)tμm(φ2, φ2)(x, y).

We compute for x 
= 0

(Hμ
F,m)3(x)

3!
=

D3
F (x)
3!

+ m2 D2
F (x)
2

∂

∂m2 Hμ
F,m(m2 = 0)(x) + Rμ

m(x),

where R is regular and scales homogeneously. The scale dependence of the
extensions t0 of D3

F /3! is of the form treated in Appendix C and is given by

c(t0)δ =
i

29 · 3π4 �δ.

The next leading term in m2 is still singular. Its extension m2tμ1 is
μ-dependent, where the μ-dependence as shown above is determined from
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the m2 = 0 contribution t2 of tμm(φ2, φ2),

μ
∂

∂μ
tμ1 = 2�

∂ v

∂m2 |m2=0 t2.

We now compute the partial ρ-derivative (with fixed μ) of tμ1 . This is the

divergence of xνtμ1 which is the unique extension of �
3 xν D2

F
2(

∂
∂m2 Hμ

F,m(m2 = 0)(x)
)
.

From Appendix A (A.7) we get

∂

∂m2 Hμ
F,m(m2 = 0)(x) =

1
24π2 log(−μ2(x2 − iε)) + F (0) , F (0) =

2 C − 1
4π

.

We use

∂ν log(−μ2(x2 − iε))
x2 − iε

= 2xν 1 − log(−μ2(x2 − iε))
(x2 − iε)2

and the fact that

−� log(−μ2(x2 − iε)
x2 − iε

is an extension of 4 · (4π2)2DF (x)2. t2 is an extension of �
2

2 D2
F which we

may parametrize by a real parameter τ ,

t2(x) = − �
2

27 π4 � log(−τ2(x2 − iε))
x2 − iε

.

We also use ∂ v
∂m2 |m2=0 = 1

24 π2 which results from (3.3) and (A.7). In (∂νx
ν −

μ ∂
∂μ)tμ1 the two extensions cancel up to a multiple of a δ-function, and we

finally obtain

B(2)
μ

(
φ(x)3 ⊗ φ(y)3

)
|φ=0 = i�3

( 1
29 · 3 π4 �δ(x − y)

−
(

1
28 π4 (1 + log

μ2

τ2 ) +
F (0)
24 π2

)

m2 δ(x − y)
)

.
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We conclude that the action of Bμ on interaction classes is to second order
given by
[
B(2)

μ ◦
((

g φ4 + a m2 φ2 + b (∂φ)2
)⊗2

)]

= − i �2 g2 3
24 π2 [φ4] − i �3 g2

3 · 29 π4 [(∂φ)2]

− i
(

�
2 a g

24 π2 +
�

2 b g

23 π2 + �
3 g2

(
1

28 π4 (1 + log
μ2

τ2 ) +
F (0)
24 π2

))

m2 [φ2] .

In the argument of the β-function we omit the [(∂φ)2]- and m2 [φ2]-term,
since β is defined after having absorbed these terms by the wave function and
mass renormalization. Using [μ d

dμ(φ4)μ] = −2� [Γv((φ4)μ)] = −2� [Γvφ
4] =

− �

16π2 m2[φ2] (see (3.3,A.7)) we obtain

�

i
β

(
ig
�

[(φ4)μ]
)

=
g2

� 3
24 π2 [(φ4)μ] − g �

24 π2 m2 [φ2] + · · ·

where the dots stand for terms of third or higher orders in g. From

γ̇μ

2
〈g(φ4)(1)

μ , φ〉 =
γ̇μ g

2
(
4 [(φ4)μ] + 2� [ΓHμφ4]

)

we get a further [φ2]-term, which is of order g3. Note that if we apply
definition (6.11) of the β-function to an interaction which is ∼ [φ4], we get
a result which is ∼ [φ4].

8 Conclusions

Quantum field theory on generic curved backgrounds requires a revision of
the standard methods of perturbative quantum field theory; in particular
the dependence on the choice of a distinguished state (the “vacuum”) would
introduce an unwanted nonlocal feature and has to be avoided in order to
remain in agreement with the principle of general covariance. This pro-
gram could be successfully performed [5, 25, 26] by the use of the following
ingredients:

• Algebras of observables are directly constructed without a detour via
expectation values in distinguished states.

• Techniques of microlocal analysis replace momentum space techniques.
• Dimension full parameters (e.g., the mass) are treated as expansion

parameters.
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In the present paper, we analysed the consequences of this approach for
standard quantum field theory and compared our formalism with other for-
malisms, in particular with the method of renormalization by the flow equa-
tion [35, 38].

The independence of the formalism on the choice of the mass required
the replacement of the vacuum two point function by a so-called Hadamard
function which differs from it by a smooth function of position. In even
dimensions the Hadamard function depends on an additional mass param-
eter, whereas in odd dimensions it is unique. In particular it also exists in
two spacetime dimensions.

The (off shell) observables were represented as functionals on a space of
smooth field configurations. Several algebraic structures on the space of
observables were introduced: The (classical) product by pointwise multi-
plication, the (quantum) product as a ∗-product involving the Hadamard
function and the time ordered product by which the interacting theory was
constructed inside the (off shell) algebra of the free theory. Since all these
algebraic structures involve only the functional derivatives of the observ-
ables with respect to the field, the formalism is not restricted to poly-
nomial functionals, as long as one remains in the realm of formal power
series.

Renormalization in this framework consists in an extension of the time
ordered product to the more singular local functionals for which we gave a
new intrinsic definition. The extension can be done by the methods of the
Stückelberg–Bogoliubov–Epstein–Glaser approach [18], but is not unique.
The nonuniqueness is described by a group of transformations on the space
of local functionals, which is the renormalization group in the sense of
Stückelberg and Petermann [42].

A comparison with the method of flow equations can be reached by
approximating the Hadamard function by a more regular family of func-
tions labeled by a regularization parameter Λ. The effective potential as a
function of Λ can be defined and is shown to satisfy the flow equation. As a
consequence of the existence of extensions in the sense of the Epstein–Glaser
method it immediately follows that there exist appropriate counter terms
which guarantee the convergence of the effective potentials. The somewhat
cumbersome estimates in the flow equation method which up to now compli-
cated a generalization of the method to generic Lorentzian spacetimes (see
[32] for Minkowski space) are not required. Moreover, the choice of regu-
larization is completely arbitrary. One may, in particular, make a specific
choice of a parameter such that the effective potential becomes a meromor-
phic function of it, with a possible pole at the removal of the cutoff. This
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might lead to explicit choices of extensions as e.g., minimal subtraction for
dimensional regularization.

Of particular interest is the behaviour of the theory under scaling. We
found a purely algebraic analogue of the Callan–Symanzik equation, much
in the spirit of the Buchholz–Verch approach to an intrinsic renormalization
group within axiomatic algebraic quantum field theory [9], but technically
quite different. As a matter of fact our analysis is completely free of any
dependence on the mass of the theory. In standard perturbation theory
a corresponding observation was made in the context of dimensional reg-
ularization by Collins [10], but there the reasons for this effect remained
mysterious.

The Epstein–Glaser method relies on coupling constants which are test
functions with compact support. This avoids all infrared problems during
the construction but leads to the problem of the adiabatic limit in which the
test functions approach constant functions. In general, all infrared problems
now could reappear. But exploiting the method of the algebraic adiabatic
limit [5] the construction of the algebra of observables can be done directly,
and in this paper we show how this method can also be used to define
the renormalization group and the beta function in the adiabatic limit. In
particular, the beta function turns out to be state independent (and, as
noted previously [27], independent of the topological features of spacetime).

We compared our findings with the standard definition of the beta func-
tion, present explicit calculations within our framework for ϕ3

6 and ϕ4
4 and

obtain agreement with the literature.

We did not yet enter a detailed comparison of our method with the BPHZ
method and its modern version in terms of the Connes–Kreimer theory
[11, 12]. In spite of the fact that both methods are known to be equiva-
lent, the involved combinatorics of renormalization is quite different, and
understanding the relations requires additional work. We hope to return to
this problem in a future publication.
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Appendix A Determination of the Hadamard function H

The Wightman two-point function Δ+ in d ≥ 2 dimensions for m2 > 0 can
be expressed in terms of modified Bessel functions

Δ+
m(x) = (2π)− d

2 md/2−1|x2|
2−d
4 Kd/2−1(

√
m2|x2|) (A.1)

for spacelike arguments x. To obtain the Hadamard function, we have to
add a smooth Lorentz invariant solution of the Klein–Gordon equation such
that the sum is a smooth function of m2. Each Lorentz invariant solution
F is for spacelike arguments of the form F (x) = |x2| 2−d

4 G(
√

m2|x2|) where
G satisfies the modified Bessel equation of order d/2 − 1,

G′′(y) +
1
y
G′(y) −

(

1 +
(d
2 − 1)2

y2

)

G(y) = 0 . (A.2)

The solutions of this differential equation are linear combinations either of
I d

2 −1(y) and I1− d
2
(y) (if d is odd) or of I d

2 −1(y) and K d
2 −1(y) (if d is even).

In both cases smoothness in x at x = 0 then implies that F is a multiple
of |x2| 2−d

4 I d
2 −1(

√
m2|x2|). Modified Bessel functions of noninteger order ν

satisfy the relation

Kν =
π

2 sin νπ
(I−ν − Iν). (A.3)

With that, in odd dimensions d, we obtain the unique Hadamard function

Hm(x) =
1

4 sin(d
2 − 1)π

(2π)
2−d
2 md/2−1|x2|

2−d
4 I1−d/2(

√
m2|x2|) (A.4)

for x2 < 0. Namely, since Iν(y) is of the form yνF (y2) with an entire analytic
function F , Hm is a smooth function of m2.
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In even dimension d we introduce a parameter μ with the dimension of a
mass and consider the family of functions

Hμ,z
m (x) =

μ−z

4 sin(d+z
2 − 1)π

(2π)
2−(d+z)

2

× m(d+z)/2−1|x2|
2−(d+z)

4 I1−(d+z)/2(
√

m2|x2|), (A.5)

where x2 < 0 is assumed. The factor μ−z is needed in order that Hμ,z
m (x)

has the dimension [md−2] (as required for a two-point function in d dimen-
sions). For the same reasons as for Hm (A.4), this ‘’dimensionally regu-
larized Hadamard function” is smooth in m2 and differs from Δ+ (d+z)

m (x)
(i.e., (A.1) with d replaced by d + z) by a smooth Lorentz invariant func-
tion which “solves the Klein–Gordon equation in (d + z)-dimensions” (i.e., it
solves (A.2) for (d + z)). By using (A.3) we express I1−(d+z)/2 in terms of
I(d+z)/2−1 and K(d+z)/2−1. The limit z → 0 exists for the K(d+z)/2−1-term
and gives Δ+

m(x). But the I(d+z)/2−1-term is meromorphic in z with a sim-
ple pole at z = 0. Since the residuum is smooth in m2 and, with respect to
x, a smooth Lorentz invariant solution of the Klein–Gordon equation in d
dimensions,3 we may subtract the pole term. Taking then the limit z → 0
we get the Hadamard function

Hμ
m(x) = Δ+

m(x) +
(−1)

d
2

2(2π)
d
2

log
μ2

m2 md/2−1|x2|
2−d
4 Id/2−1(

√
m2|x2|) (A.6)

for x2 < 0, which is unique up to the choice of the parameter μ.

The values of H (any dimension) for arbitrary x and m2 ∈ R are obtained
by replacing |x2| by −(x2 − ix00) and then by symmetrizing w.r.t. x.

The corresponding Feynman propagator Hμ
F is defined by

Hμ
F (x) = θ(x0)Hμ(x) + θ(−x0)Hμ(−x) .

We conclude that the explicit expression for Hμ
F is obtained from (A.4) and

(A.6), respectively, by replacing |x2| by −(x2 − i0): e.g., in even dimensions

3For subtraction of a term (with the wanted properties) which is a solution of the
Klein–Gordon equation in d + z dimensions see [31]. Note that the residuum of Hμ,z

m at
z = 0 is ∼ |x2|

2−d
4 I1−d/2(

√
m2|x2|) and, hence, not smooth in x.
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it results

Hμ
F (x) =

md−2

(2π)
d
2 y

d
2 −1

(
K d

2 −1(y) + (−1)
d
2 log

μ

m
I d

2 −1(y)
)

,

where y
.=
√

−m2(x2 − i0). In the main text the following formulas are used
for explicit computations in d = 4 and 6 dimensions:

H
μ (4)
F (x) =

−1
4π2(x2 − i0)
+ log(−μ2(x2 − i0)) m2f(m2x2) + m2F (m2x2) , (A.7)

H
μ (6)
F (x) =

1
4π3(x2 − i0)2

+
m2f(m2x2)
π (x2 − i0)

+
1
π

(
log(−μ2(x2 − i0)) m4f ′(m2x2) + m4F ′(m2x2)

)
, (A.8)

where f and F are realvalued analytic functions. f and f ′ can be expressed
in terms of the Bessel functions J1 and J2, respectively, namely

f(z) .=
1

8π2√z
J1(

√
z) , f(0) =

1
24 π2 , f ′(z) =

−1
16 π2 z

J2(
√

z) ; (A.9)

and F is given by a power series

F (z) .= − 1
4π

∞∑

k=0

{ψ(k + 1) + ψ(k + 2)} (−z/4)k

k!(k + 1)!
, F (0) =

2 C − 1
4π

,

(A.10)

where C is Euler’s constant and the Psi-function is related to the Gamma-
function by ψ(x) .= Γ′(x) / Γ(x).

Appendix B Additivity of Z

In this appendix we derive the additivity relation (4.14) of the renormaliza-
tion group transformation Z under the assumption that Z satisfies the sim-
ple additivity relation Z(A + C) = Z(A) + Z(C) for supp A ∩ supp C = ∅.
We use the fact that Z(A + λB + C) is determined within perturbation the-
ory by its derivatives with respect to λ at λ = 0. We prove that the nth
derivative on both sides coincide for all n.

Let A, B, C ∈ Aloc with supp A ∩ supp C = ∅. From Lemma 3.2 we con-
clude that B may be written as a sum of N > n terms, B =

∑N
i=1 Bi (where
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Bi ∈ Aloc) such that all subsets I ⊂ {1, . . . , N} with at most n elements
admit a decomposition I = I1 ∪ I2, I1 ∩ I2 = ∅ such that (suppA ∪

⋃
i∈I1

supp Bi) ∩ (supp C ∪
⋃

j∈I2
suppBj) = ∅.

Let B(λ) =
∑N

i=1 λiBi for λ = (λ1, . . . , λN ) ∈ R
N . We prove that for

every multiindex α = (α1, . . . , αN ) with |α| =
∑N

i=1 αi ≤ n the derivative

∂α
λ (Z(A + B(λ) + C) − Z(A + B(λ)) + Z(B(λ)) − Z(B(λ) + C))

vanishes at λ = 0. Let I = {i ∈ {1, . . . , N} |αi 
= 0}. We choose a decompo-
sition I = I1 + I2 as described above. Let BI1(λ) =

∑
i∈I1

λiBi and BI2(λ) =∑
j∈I2

λjBj . Then the derivative above does not change at λ = 0 when we
replace B(λ) by BI1(λ) + BI2(λ). Due to the assumed support properties
we may now use the simple additivity relation and obtain the result that
the derivative vanishes. This proves the claim.

Appendix C Scaling violations of extensions of homogeneous
distributions

The position space renormalization relies crucially on the theorem on the
extension of distributions. This theorem goes back to Epstein–Glaser [18]
and Steinmann [40] and was generalized to differentiable manifolds by
Brunetti and Fredenhagen [5]. A refinement for almost homogeneous distri-
butions was obtained by Hollands and Wald [26]. (Cf. also [16, 22].)

Theorem C.1. Let t0 ∈ D′(Rd \ {0}) such that (ρ d
dρ)kρlt0(ρ ·) = 0 for some

k ∈ N, l ∈ R. Then there exists an almost homogeneous distribution t ∈
D′(Rd) which coincides with t0 outside of the origin. If l < d or l 
∈ Z, t
is unique and fulfils the scaling relation with the same power k as t0. If
l ∈ d + N0, t satisfies the scaling condition

(

ρ
d

dρ

)k+1

ρlt0(ρ ·) = 0.

Moreover, (ρ d
dρ)kρlt(ρ ·)|ρ=1 = c(t0) δ, where c(t0) is a homogeneous differ-

ential operator of order l − d which is independent of the choice of the exten-
sion t.

Proof. The proof of the first part of the theorem may be found in the men-
tioned literature, e.g., in [26]. The second statement follows from the fact
that different extensions differ by a (l − d)th derivative of the δ-function
which is homogeneous of degree l and thus does not contribute to c(t0). �
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We now want to compute the scaling violations of extensions of homoge-
neous distributions for some typical examples (cf., e.g., [21]). We first recall
fundamental solutions of the Laplacian on the pseudo Riemannian spaces
R

d−s,s, s < d, d even and d > 2, with the metric g = diagonal(+1, . . . ,+1
︸ ︷︷ ︸

d−s

,

−1, . . . ,−1
︸ ︷︷ ︸

s

). Let x2 =
∑d−s

i=1 (xi)2 −
∑d

i=d−s+1(x
i)2 and � =

∑d−s
i=1

∂2

∂(xi)2 −

∑d
i=d−s+1

∂2

∂(xi)2 . Then

Lemma C.1.

� 1

(x2 − iε)
d
2 −1

= is(2 − d) |Sd−1| δ(x),

where |Sd−1| is the volume of the unit sphere in d dimensions.

Proof. Let g be any constant Riemannian metric on R
d. Then

∂μ

√
det ggμν∂ν

1

(xμxνgμν)
d
2 −1

= (2 − d) |Sd−1| δ(x).

Let gμν = diagonal(1, . . . , 1
︸ ︷︷ ︸

d−s

, z, . . . , z
︸ ︷︷ ︸

s

). The left-hand side is an analytic func-

tion of z outside of the negative real axis. We then take the limit z → −1
in the lower halfplane and obtain

√
det g = (−i)s and thus

(−i)s� 1

(x2 − iε)
d
2 −1

= (2 − d) |Sd−1| δ(x).

�

The first example we want to treat is 1

(x2−iε)
d
2
. This is a well defined dis-

tribution outside of the origin. Let t be an almost homogeneous extension.
Then

ρ
d

dρ
ρdt(ρx)|ρ=1 = ∂μ(xμt).

But xμt is an almost homogeneous extension of the distribution xμ

(x2−iε)
d
2

which has degree d − 1, thus xμt is unique. Moreover

xμ

(x2 − iε)
d
2

=
1

2 − d
∂μ 1

(x2 − iε)
d
2 −1

.
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Thus
ρ

d

dρ
ρdt(ρx)|ρ=1 =

1
2 − d

� 1

(x2 − iε)
d
2 −1

= is|Sd−1|δ(x), (C.1)

and we find

c

(
1

(x2 − iε)
d
2

)

= is|Sd−1| (C.2)

To derive an explicit expression for an extension t we set u
.= (x2 − iε). We

have to find a distribution F (u) such that �x F (u) = u− d
2 . Due to

�x F (u) = 2d F ′(u) + 4u F ′′(u) =
4

u
d
2 −1

d

du
(u

d
2 F ′(u))

the differential equation can easily be integrated:

F ′(u) =
log(−κ2u) − 1

d
2 −1

4 u
d
2

,

where κ2 > 0 is an integration constant. A further integration yields F (u)
and we get the extension

t(x) = �x F (u) =
1

4 − 2d
� log(−κ2(x2 − iε))

(x2 − iε)
d
2 −1

.

We now consider the distributions 1

(x2−iε) d
2 +k

, k ∈ N. Since these distri-

butions are invariant under the pseudo-orthogonal group O(d − s, s), the
differential operator characterizing the scaling violations of extensions must
have the form

c

(
1

(x2 − iε)
d
2+k

)

= ck�k, ck ∈ C.

Let tk be an extension of 1

(x2−iε) d
2 +k

. We multiply both sides of the equation

ρ
d

dρ
ρd+2ktk(ρx)|ρ=1 = ck�kδ(x)

by (x2)k. We have (x2)k�kδ(x) =
(
�k(x2)k

)
δ. A straightforward calcula-

tion shows

�k(x2)k = 22k k!(d
2 + k − 1)!

(d
2 − 1)!

.
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On the left-hand side the computation can be traced back to (C.1),

(x2)kρ
d

dρ
ρd+2ktk(ρx)|ρ=1 = ρ

d

dρ
ρdt(ρx)|ρ=1 = is |Sd−1| δ(x),

thus ck = is |Sd−1| ( d
2 −1)!

22kk!( d
2+k−1)!

.
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