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Abstract

We explain how to construct a large class of new quiver gauge theories
from branes at singularities by orientifolding and Higgsing old examples.
The new models include the MSSM, decoupled from gravity, as well as
some classic models of dynamical SUSY breaking. We also discuss topo-
logical criteria for unification.
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1 Introduction

1.1 Overview: merits of local constructions

String theory grew out of a desire to provide a framework for particle physics
beyond the Standard Model and all the way up to the Planck scale. In order
to make progress, one needs to find an embedding of the SM, or some realistic



GEOMETRY OF PARTICLE PHYSICS 949

extension such as the MSSM, in ten-dimensional (10D) string theory. A
beautiful aspect of such a picture is that the details of the matter content
and the interactions are governed by the geometry of field configurations in
the six additional dimensions.

The main approaches that have been considered are

• heterotic strings;
• global D-brane constructions;
• local D-brane constructions.

Here we have distinguished two kinds of D-brane constructions. By a local
construction we mean a construction which satisfies a correspondence prin-
ciple: we require that there is a decoupling limit in which the 4D Planck
scale goes to infinity, but the SM couplings at some fixed energy scale remain
finite. This requirement is motivated by the existence of a large hierarchy
between the TeV scale and the Planck scale. The natural set-up which
satisfies this principle is fractional branes at a singularity.

Our use of the words “local construction” differs from some of the liter-
ature. In global constructions the SM fields are often also localized in ten
dimensions, but in the MPl,4 → ∞ limit most of the Standard Model inter-
actions are turned off. This is because either the cycle on which a brane is
wrapped becomes large, turning off the gauge coupling, or because fermion
and scalar wave functions are supported on regions which get infinitely sep-
arated in this limit, turning off Yukawa couplings. Similarly in the heterotic
string, the perturbative gauge interactions are shut off if we take the volume
of the Calabi–Yau to infinity. We will require that all these interactions
remain finite in the decoupling limit (see figure 1).

We cannot guarantee that the correspondence principle is satisfied in
nature. However, we believe that insisting on it is an important model
building ingredient, if only to disentangle field theoretic model building
issues from quantum gravity. In addition, insisting on such a scenario has a
number of practical advantages:

• Holography : Higher energy scales in the gauge theory correspond to
probing distances farther away from the brane. This property allows
one to take a bottom-up perspective to model building [1]. In order to
reproduce the SM we only need to know a local neighbourhood of the
brane of radius r, where U = r/α′ ∼ 1 TeV.

• Adjustability : The couplings of the gauge theory translate to boundary
values of closed string fields on the boundary of this local
neighbourhood, and we may adjust them at will. Their values are
set by some high energy physics which we have not yet included.
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Figure 1: Caricature of a global D-brane model. If the size of the T 2 goes
to infinity, as typically happens in the Mpl,4 → ∞ limit, the volumes of the
branes and the distance between their intersections goes to infinity as well,
shutting of the Standard Model couplings.

• Uniqueness: It is expected that the closed string theory can be recov-
ered from the open string theory. So up to some natural ambiguities
like T-dualities, the local neighbourhood should be completely deter-
mined by the ensemble of gauge theories obtained by varying the ranks
of the gauge groups. Thus finding the local geometry for a gauge theory
is a relatively well-posed problem which should have a unique solution.
The apparent non-uniqueness seen in other approaches is reflected here
in the fact that there might be many different extensions of the same
local geometry.

In [2] Herman Verlinde and the author gave a construction of a local
model resembling the Minimal Supersymmetric Standard Model (MSSM).1

This construction had some drawbacks which could be traced back to the
fact that we were working with oriented quivers. In this paper we address
the problem of giving a local construction of the MSSM itself.

We have frequently seen the sentiment expressed that gauge theories
obtained from branes at singularities are somehow rather special. The
main message of this paper is not so much that we can construct some
specific models. Rather it is that with the present set of ideas we can get
pretty much any quiver gauge theory from branes at singularities. To illus-
trate this point, we also engineer some classic models of dynamical SUSY
breaking.

While we touch on some more abstract topics like exceptional collections,
the strategy is really very simple. We look for an embedding of the MSSM

1A closely related model was considered in [3].
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into a quiver gauge theory for which the geometric description is known, and
then turn on various vacuum expectation values (VEVs) and mass terms.
In order to keep maximum control we require the deformations to preserve
supersymmetry. Below the scale of the masses, we can effectively integrate
out and forget the extra massive modes. On the geometric side, this corre-
sponds to turning on certain moduli of the fractional brane or changing the
complex structure of the singularity, and cutting off the geometry below the
scale of the superfluous massive modes (see figure 2). Hence we can speak
of the geometry of the MSSM.2

The Del Pezzo quiver and other intermediate quivers are purely auxiliary
theories which are possible UV extensions of the MSSM. Our construction
appears to be highly non-unique. This is a reflection of the bottom-up
perspective, in which the theory can be extended in many ways beyond the
TeV scale.

While we do not believe it is an issue, we should mention a possible caveat
in our construction. As we will review we can vary superpotential terms in
the original Del Pezzo quiver independently,3 and it is expected but not
completely obvious that the same is true in the Higgsed superpotential.
One would like to prove that one can vary mass terms independently so
that we can keep some non-chiral Higgs fields light and the remainder arbi-
trarily heavy. We checked on the computer in a number of simple examples
that it works as expected. However, in our realistic examples some of the
mass terms in the Higgsed quiver should be induced from superpotential
terms in the original Del Pezzo quiver which are of 12th order in the fields.
Unfortunately, due to memory constraints we have only been able to handle
fourth and eighth order terms on the computer, and so we have not explic-
itly shown in these examples that all excess non-chiral matter can be given
a mass.

1.2 The MSSM as a quiver

Let us now describe what we mean by obtaining the MSSM. With D-branes,
the best one can do is obtaining the MSSM together with an additional
massive gauge boson. In addition, the right-handed neutrino sector is not
set in stone. We first describe the quiver we would like to produce. In later
sections, we describe how to engineer it.

2Recently some attempts have been made to construct such a geometry directly from
the MSSM [4].

3This is a crucial difference with generic global D-brane models.
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Figure 2: The radial direction away from the fractional brane is interpreted
as an energy scale. After Higgsing the Del Pezzo quiver theory, a sufficiently
small neighbourhood of the singularity describes the MSSM.

Any weakly coupled4 D-brane construction of the MSSM will have at least
one extra massive gauge boson, namely gauged baryon number,5 because
the SU(3)colour always gets enhanced to U(3). In addition, we have to choose
how to realize the right-handed neutrino sector. The most likely sources for
right-handed neutrinos are:

(a) open strings charged with respect to a gauge symmetry that is not
part of the SM;

(b) uncharged open strings;
(c) superpartners of closed string moduli.

Since all such modes are singlets under the observed low-energy gauge
groups, they will probably mix and there may not be an invariant distinction
between them.

One of the closest quivers we could try to construct is shown in figure 3A.
This is essentially the “four-stack” quiver first discussed in [5]. It consists of
the MSSM plus U(1)B and U(1)L vector bosons, and a right-handed neutrino
sector from charged open strings. Many groups have searched for this model
and closely related ones in specific compactifications, see for instance [6, 7]
and the review [8].

4This conclusion can be evaded by using mutually non-local 7-branes in the construc-
tion, that is by dropping the requirement that the dilaton is small near the 7-branes.

5It is possible to construct weakly coupled D-brane models in which the extra U(1)
is not baryon number, e.g., by taking right-handed quarks to be in the 2-index anti-
symmetric representation of SU(3). However, such models are problematic at the level of
interactions and so will not be considered.
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Figure 3: (A) An MSSM quiver, with an additional massless U(1)B−L. (B)
Model I, a left-right unified model which can be Higgsed to the MSSM.

The combination U(1)B+L is anomalous, and as usual gets a mass by
coupling to a closed string axion (the Stückelberg mechanism). Note this
is not the PQ axion, which may or may not exist, depending on the UV
extension of the local geometry. The combination U(1)B−L is not anoma-
lous, but could still get a mass by coupling to a closed string axion, also
depending on the UV completion. However, if we take the gauge group on
the bottom node to be literally O(2), i.e., obtained from an orientifold pro-
jection of U(2), then this O(2) cannot have a Stückelberg coupling to an
axion. Since we would like to keep a massless U(1)Y , and since U(1)Y is
a linear combination of the SO(2) and U(1)B−L, this means that U(1)B−L

cannot get a mass through the Stückelberg mechanism.6

Thus we have two options. Either we instead construct the orientifold
model in figure 4, where the U(1) on the bottom node comes from identifying
two different nodes on the covering quiver. Then we have recourse to the
Stückelberg mechanism to get rid of U(1)B−L. We will call this quiver model
II. A construction of this model is given in Section 4.3.

Alternatively we can make the extra U(1) massive by conventional Hig-
gsing. This requires adding some non-chiral matter and condensing it, or
turning on a VEV for a right-handed s-neutrino. In this case, we would
finally end up with the quiver in figure 5.7 This quiver consists of the
MSSM, together with a massive U(1)B gauge boson, and a right-handed
neutrino sector from uncharged open strings (adjoints).

6This agrees with [7], where all the O(2) models had a massless U(1)B−L.
7The non-SUSY version of this quiver was recently discussed in [9].
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Figure 4: Model II: a quiver consisting of the MSSM, U(1)B−L plus a mas-
sive U(1)B+L. The U(1)B−L can be coupled to a Stückelberg field.

Figure 5: The Standard Model plus U(1)B. Note we still need R-parity to
forbid undesirable couplings.

If in fact we use the second option, adding non-chiral matter and Higgsing,
then for our purposes here we might as well replace the O(2) with a USp(2),
since both break to the same model up to some massive particles. In the
local set-up, the masses of the extra particles may be taken arbitrarily large.
Moreover, up to the massive U(1)B this is actually a well-known unified
model, the minimal left–right symmetric model (an intermediate step to
SO(10) unification), so it has some independent interest. Thus we might
as well construct the quiver in figure 3B, which we will call model I. This
is the simpler of the constructions in this paper, and will be explained in
Section 4.1.

We should point out that R-parity is not quite automatic in either of our
models, although both models appear to have a global U(1)B−L. In our
first model we must preserve R-parity in our final Higgsing to the MSSM.
In both models we might need to worry about D-instanton effects which



GEOMETRY OF PARTICLE PHYSICS 955

Figure 6: (A) Covering quiver of model I. (B) Covering quiver of model II.
In (B) we have grouped nodes together if they have the same intersection
numbers with all other nodes, to make the diagram less cluttered.

break this symmetry after coupling to 4D gravity, though such effects are
presumably small. This is not really surprising: the MSSM does not explain
R-parity, it merely assumes it. To explain it, we must know more about the
UV extension of our models.

Now to get a hint for finding these quivers, we first draw the oriented
covering quivers. The covering quiver for the quivers in figure 3 is drawn in
figure 6A, and the covering quiver for figure 4 is given in figure 6B.

These quivers have to our knowledge not yet been encountered in the
literature on D-branes at singularities. Although the number of generations
does not match, these quivers still bear a close resemblance to the charac-
teristic structure of Del Pezzo quivers, and especially to Del Pezzo 5. Recall
that a Del Pezzo singularity is a Calabi–Yau singularity with a single Del
Pezzo surface collapsing to zero size. The Del Pezzo surfaces are P1 × P1 or
P2 blown up at up to eight points. We will give a discussion of orientifolds
of Del Pezzo 5 (i.e., five blow-ups of P2) in Section 3.

1.3 Why Del Pezzo surfaces?

The fact that the Del Pezzo quivers are seen to be relevant is not surprising.
It is practically guaranteed when we ask for chiral gauge theories which are
not too complicated. Let us explain this point.

Any CY3 singularity has a collection of 2- and 4-cycles collapsing to zero
size. Now chiral matter comes from intersection of 2-cycles with 4-cycles.
This is easy to see: for instance if we have only branes wrapping 2-cycles, we
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can always deform the branes (at some cost in energy) so that they do not
intersect. Then all open string modes are massive, and thus the net number
of chiral fermions must be zero. So requiring chiral fermions implies that
we have to have some collapsing 4-cycles in the geometry. The Del Pezzo
singularities, which have precisely a single collapsing 4-cycle, are then the
simplest examples.

Moreover, a minimal D-brane realization of the SM has one local U(1)
which is anomalous, namely U(1)B, and this lifts to two anomalous U(1)’s
on the oriented covering quiver. Now the the number of anomalous U(1)’s
is interpreted geometrically as the rank of the intersection matrix of vanish-
ing cycles. Hence the Del Pezzo quivers and their orientifolds are natural
candidates because they are chiral quivers with the minimum number of
anomalous U(1)’s, namely two.

Although the models we are looking for are not among the known Del
Pezzo quivers, these arguments convinced us that we should derive them
from the quivers that were already known, rather than look for new singu-
larities.

2 Lightning review of branes at singularities

Consider a Calabi–Yau singularity in IIb string theory, characterized by a
collection of vanishing 2- and 4-cycles. Since the curvature is very large, it is
in general not clear how to define the notion of a D-brane at a singularity. An
notable exception is the case of orbifold singularities, where we can use free
field theory. From this special case the following picture has emerged: given
a singularity we expect the existence of a finite set of irreducible “fractional”
branes. For the case of orbifolds these irreducible branes are in one-to-one
correspondence with the irreducible representation of the orbifold group.
To these irreducible branes we can associate the basic quiver diagram. For
each irreducible fractional brane we draw a node, and for each massless
open string which goes from brane i to brane j we draw an arrow or an
edge between the corresponding nodes. All the remaining branes can be
expressed as bound states of these irreducible branes, or equivalently as a
Higgsing of the basic quiver.

Now how do we find the basic quiver for a general singularity? Let us
assume our branes are half BPS and space–time filling, so that we get a
4D N = 1 quiver gauge theory. Then we can use the following strategy:
we make sure that the F-term equations are satisfied, but we temporarily
ignore the D-term equations. Then we can blow up the vanishing 2- and
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Figure 7: Ignoring the D-terms and extrapolating to the large volume limit.

4-cycles and extrapolate to the large volume limit (figure 7). This limit is
unphysical from the point of view of the quiver gauge theory, because the D-
terms are not satisfied, but in this limit we understand how to compute the
F-term equations. Moreover, due to the shift symmetry of the B-field we can
argue that the perturbative superpotential does not depend on complexified
Kähler moduli and must be the same as in the small radius limit. When the
cycles are large and the curvature is small, we can represent the D-branes by
sheaves localized on the vanishing cycles. The irreducible fractional branes
get mapped to an exceptional collection {F1, . . . , Fn}, that is a collection
of rigid bundles whose relative Euler characters χ(Fi, Fj) form an upper-
triangular matrix.

The exceptional collections have been worked out for many interesting
singularities. For the purpose of this paper all that we are going to need is
the charge vector or Chern character ch(Fi) of the branes in the exceptional
collection. The Chern character of a sheaf tells us the rank, the fluxes and
the instanton number, in other words it tells us the effective (D7, D5, D3)
wrapping numbers of the fractional brane.

Thus to an exceptional collection we can associate a quiver diagram. Each
sheaf in the collection corresponds to an irreducible fractional brane, and
thus to a node. The net number of chiral fields between two nodes is simply
the net intersection number of the cycles that the fractional brane wraps. We
can put this in the form of a matrix, the adjacency matrix of the quiver. In
the case of collapsed 4-cycles this is just the anti-symmetrization χ−(Fi, Fj)
of the upper-triangular matrix of the collection. The non-chiral matter can
be obtained by a slightly more refined cohomology computation.
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As mentioned we can also reconstruct other F-term data such as the
superpotential. The physicists method is to compute some correlation func-
tions of the chiral fields. The mathematicians method is to first compute the
dual exceptional collection, whose relative Euler characters are given by the
inverse of the above-mentioned upper-triangular matrix. The superpotential
now follows from the relations in the path algebra of the dual collection.

The superpotential encodes all of the complex geometry of the Calabi–Yau
singularity. This complex geometry is generically non-commutative. Let us
consider for example pure N = 4 Yang–Mills theory (see figure 8). Its quiver
is a single node with three arrows back to itself. The superpotential is

W =
1
6

εijk Tr(ZiZjZk), i, j, k = 1, 2, 3. (2.1)

The Zi’s are matrices after we assign gauge group ranks to the nodes, but let
us temporarily treat them as formal non-commuting variables. The F-term
equations then tell us that

1
2
εijk ZiZj = 0, (2.2)

in other words the Calabi–Yau is a commutative C3. However, we may
perturb the superpotential, for instance by adding mass terms

W =
1
6

εijk Tr(ZiZjZk) +
1
2
mkl Tr(ZkZ l). (2.3)

The new F-term equations tell us that

1
2
εijkZ

iZj = mklZ
l. (2.4)

In other words, we may deform C3 to a generic 3D Lie algebra. This illus-
trates another important point that we also emphasized in the Introduction.
The quiver gauge theory itself is in fact the best definition of the local geom-
etry.

Figure 8: (A) Quiver for N = 4 Yang–Mills theory. (B) Quiver for the coni-
fold.
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As another example, let us consider the quiver for the conifold. It has a
superpotential

W = Tr(AiBkAjBl) εijεkl, i, j, k, l = 1, 2. (2.5)

If we define

z1 = A1B1, z2 = A1B2, z3 = A2B1, z4 = A2B2, (2.6)

then the F-term equations tell us that

zizj − zjzi = 0, z1z4 − z2z3 = 0. (2.7)

Superpotential deformations correspond to deformations of these equations.
For instance, we could turn on mass terms

W → W + mij Tr(AiBj). (2.8)

This leads to the relations

z1z2 − z2z1 = m21z1 + m22z2, z2z3 − z3z2 = m22z4 − m11z1,
z3z1 − z1z3 = m12z1 + m22z3, z2z4 − z4z2 = m11z2 + m21z4,
z1z4 − z4z1 = m12z2 − m21z3, z4z3 − z3z4 = m11z3 + m12z4,

z1z4 − z2z3 = −m11z1 − m12z2.

(2.9)

This “massive conifold” is the analogue of the N = 1∗ deformation of N = 4
Yang–Mills theory. Actually this is only part of the story, because the
superpotential is modified quantum mechanically. In the IR both gauge
groups will confine and lead to glueball condensates. Presumably this leads
to a combination of a conifold transition and a Myers effect.8 This theory
exhibits many further interesting effects like meta-stable vacua. Surprisingly
it has received no attention in the literature and we are further inves-
tigating it.

8In fact, there are some natural conjectures one can make because the vacua are largely
constrained by the representation theory of SU(2) × SU(2). Classically, the conifold has
an S2 at the bottom with a B-field through it, and a transverse S3. Then turning on the
mass terms breaks the SU(2) × SU(2) isometry, but for certain masses there is a linear
combination corresponding to some S2 ⊂ P1 × P1 which is preserved. E.g., if we turn
on W → W + m Tr(A1B2 − A2B1) then we would preserve the diagonal P1, and vacua
would be labelled by representations of the diagional SU(2). This presumably causes some
of the branes to expand to wrap the preserved S2 with a radius depending on m. Turning
on the glueball superpotential should lead to a conifold transition. Now we should end
up with a D5-brane, or in the S-dual picture an NS5-brane wrapping the preserved S2.
Note that if we take the diagonal S2 to be preserved, then we seem to end up with an
NS5-brane wrapping S2 ⊂ S3 on the deformed conifold. This would be a supersymmetric
configuration but it is very reminiscent of the KPV meta-stable vacuum [10].
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More generally, we will be interested in adding irrelevant terms to the
superpotential. These clearly correspond to subleading complex structure
deformations of the singularity.

The physical intuition is that closed string modes are in one-to-one cor-
respondence with general gauge invariant deformations of the quiver. For
superpotential deformations this has been put on a firm footing by
Kontsevich [11], who shows that infinitesimal deformations of the “derived
category” (i.e., single trace superpotential deformations) correspond to
observables in the closed string B-model. In the context of mirror sym-
metry, the significance of this statement is that together with a correspond-
ing statement for the A-model, it provides evidence for the correspondence
principle, i.e., the idea that classical mirror symmetry can be recovered from
homological mirror symmetry.

As we explained, our main interest will be in the Del Pezzo quivers.
The first five Del Pezzo quivers were found using orbifold and toric tech-
niques [12–16]. Some of these were rederived using exceptional collections
in [17,18], and finally the remaining five non-toric Del Pezzo quivers, includ-
ing Del Pezzo 5 which will play a central role in this paper, were found
using exceptional collections [19]. We refer to [19, 20] for more detailed
reviews and explicit computations. For other interesting works we refer
to [21–25].

3 Orientifolding quivers

Discussions of orientifolds and derived categories have recently been given
in the LG regime [26] and in the large volume regime [27]. Here we describe
orientifolds in another regime, which is captured by quiver gauge theories.
Traditionally orientifolds of branes at singularities have been derived by first
specifying an orientifold action on the closed string modes, and then finding
the induced action on open string modes. Here we start by specifying an
orientifold action on the open string modes. This simplifies the task of
finding a brane realization of a desired gauge theory, and at any rate the
closed string geometry can be reconstructed from the gauge theory.

3.1 General discussion of orientifolding

Perturbative string theory on IIb backgrounds has a number of Z2 symme-
tries. They include (−1)FL and worldsheet parity P . In addition, on a given
background the theory may have an additional Z2 symmetry σ.
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Given such a symmetry, we can construct a new perturbative string back-
ground by gauging it. An orientifold projection is an orbifold which involves
P . In addition, we would like to preserve N = 1 SUSY in four dimensions.
Recall that in IIB string theory on a Calabi–Yau the supercharges with
positive 4D chirality are derived from the currents

j1
α = e−ϕL/2 SLα e

1
2

∫
JL , j2

α = e−ϕR/2 SRα e
1
2

∫
JR , (3.1)

where in the large volume limit

e
∫

JL = Ω(3,0)
ijk ψi

Lψj
Lψk

L, e
∫

JR = Ω(3,0)
ijk ψi

Rψj
Rψk

R. (3.2)

We have used the conventional notations for the bosonized superghost, 4D
spin fields and wordsheet fermions. In type IIa, the second current would
have been proportional to the square root of Ω̄(0,3)

īj̄k̄
ψī

Rψj̄
Rψk̄

R, because the
second spinor must have negative 10D chirality. In order to preserve SUSY
there must be a linear combination that is preserved. If we do not include
(−1)FL , then

Q1
α + Q2

α (3.3)

is preserved under orientifolding, provided σ is a symmetry of the internal
CFT that maps Ω(3,0) → Ω(3,0). If we instead include (−1)FL in the orien-
tifolding, then

Q1
α − iQ2

α (3.4)

is preserved under orientifolding, provided σ maps Ω(3,0) → −Ω(3,0).

Parity exchanges the Chan–Paton factors at the ends of an open string,
and acts as −1 on massless open string modes, so it maps gauge fields and
chiral fields to minus their transpose. We are interested in local orientifold
models, so we will be looking for symmetries of the quiver of irreducible
branes which map a gauge field at node i to minus the transpose of the
gauge field at some node j, and map any chiral field X to the transpose Y T

of some other chiral field, possibly up to an additional gauge transformation
which we call γ. We denote this as i ↔ j∗. In our decoupling limit, finding
such a symmetry is sufficient, because the irreducible branes generate all
other branes and closed strings ought to be recovered from open strings.
In particular, we can read of the local geometry from the gauge invariant
operators and their relations.

We will assume canonical kinetic terms for the chiral fields, so we can
actually map X → eiϕY T for some phase ϕ. If there are multiple arrows
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between two nodes, we can upgrade the map to a unitary matrix. In order to
preserve SUSY, the orientifold action has to leave the superspace coordinate
θ invariant, and hence it will also have to leave the superpotential invariant.
This may lead to correlations between the SO and Sp projections on different
nodes, and symmetric or anti-symmetric projections on chiral fields that are
mapped to themselves.

One should keep in mind that a non-anomalous quiver theory may become
anomalous after projection if the ranks of the gauge groups are not adjusted.
The orientifold may project out more of the positive than of the negative con-
tributions to an anomaly. This is generically the case if the projected theory
contains symmetric and anti-symmetric tensor matter. From the geometric
point of view, this is because an orientifold plane may give additional tad-
pole contributions, which need to be cancelled by adding additional branes,
i.e., adjusting the ranks of the gauge groups.

We can also understand how the orientifold acts on closed string modes.
The modes that are kept are simply the closed string modes on the cover
that can be used to deform the orientifolded theory. To preserve SUSY,
the orientifold action maps τi → τj∗ and Li → −Lj∗ , where τ denotes the
complexified gauge coupling and L denotes the linear multiplet containing
the FI parameter and the Stückelberg 2-form field.

3.2 Examples

Orientifold of P2

The simplest case to understand is the Calabi–Yau cone over P2, which is
identical to the orbifold singularity C3/Z3. This orientifold is already known
in the literature [28], but we will use a slightly more geometric perspective.
We denote the hyperplane class by H. The quiver is given in figure 9A and
may be obtained from a set of fractional branes with the following (D7, D5,
D3) wrapping numbers:

1. (1, 0, 0) 2. −
(

2, H, −1
2

)
3.

(
1, H,

1
2

)
. (3.5)

We consider the following symmetry:

1 ↔ 1∗, 2 ↔ 3∗. (3.6)

We may take an Sp- or SO-projection. Assuming the usual orbifold superpo-
tential, the matter between nodes 2 and 3 projects to a conjugate symmetric
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Figure 9: (A) Quiver for P2. (B) Orientifold.

tensor (for Sp) or a conjugate anti-symmetric tensor (for SO). The orien-
tifolded quiver is given in figure 9B.

We expect an orientifold plane which coincides with the fractional brane
on node 1, i.e., it is an O7-plane wrapped on the vanishing Del Pezzo.
Anomaly cancellation implies that n1 = n2 + 4 for symmetric tensor matter,
and n1 = n2 − 4 for anti-symmetric tensor matter. In order to cancel the
flux through the hyperplane class, we take the charge vector of the O7-plane
to be (∓4, 0, 0). We do not guarantee, however, that there are no further
O3-plane charges.

In the geometric regime the net number of symmetric and anti-symmetric
matter is given by [29]

# sym =
1
2
Inn∗ +

1
8
InO,

# asym =
1
2
Inn∗ − 1

8
InO, (3.7)

where Iij is the intersection form of the Calabi–Yau. We expect this formula
also for small volume, and indeed it agrees with the spectrum above. How-
ever, it is not always clear what charges we should assign to an orientifold
plane. The guiding principle is that we get a sensible gauge theory in which
all anomalies are cancelled, and from that we may try to reconstruct the
orientifold plane.

The proposed O7-plane is not the fixed locus of any Z2 after blowing up,
so we believe that the large volume limit is projected out. There are other
ways to see this. The definition of the orientifold which produces this quiver
involves a symmetry which interchanges oppositely twisted sectors, which
is not available after blowing up. There is no symmetry that maps a rank
2 bundle to a rank 1 bundle in the geometric regime. And the orientifold
imposes relations on the gauge couplings of nodes 2 and 3, which in turn
freezes the Kähler modulus.
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The case of the SO projection with n2 = 5 gives us a simple 3-generation
SU(5) GUT with a 5̄ and a 10 from the anti-symmetric [28]. There are no
Higgses, though they could presumably be generated by first increasing the
ranks and then Higgsing. Of course, there would be well-known problems
with getting the 5 × 10 × 10 Yukawa’s. This model also exhibits dynamical
SUSY breaking [28], but with a runaway behaviour.

Orientifold of P1 × P1

The next interesting case is P1 × P1. This example is very similar to the
C3/Z4 orbifold singularity, to which it is related by turning on masses for
the non-chiral fields and flowing to the IR. We denote the first P1 by H1 and
the second by H2. Their intersection numbers, when restricted to P1 × P1,
are

H1 · H1 = H2 · H2 = 0, H1 · H2 = 1. (3.8)
The quiver is shown in figure 10 and can be obtained from an exceptional
collection with the following (D7, D5, D3) wrapping numbers:

1. (1, 0, 0), 2. − (1, H1, 0), 3. − (1, H2−H1, 1), 4. (1, H2, 0). (3.9)

We are interested in the following orientifold action:

1 ↔ 1∗, 2 ↔ 4∗, 3 ↔ 3∗ (3.10)

and

XT
12γ1 = X41, Y T

12γ1 = Y41, γ−1
3 XT

23 = X34, γ−1
3 Y T

23 = Y34. (3.11)

As usual we have
γT

1 = s(1) · γ1, γT
3 = s(3) · γ3 (3.12)

Figure 10: (A) Quiver for P1 × P1. (B) Orientifold.
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with s = ±1, in order for the action on the gauge fields to be an involution.
The superpotential of the commutative P1 × P1 quiver is

W = X12X23X34X41 − X12Y23X34Y41 + Y12Y23Y34Y41 − Y12X23Y34X41.
(3.13)

In order for this particular superpotential to be invariant, we also need

s(1) · s(3) = +1, (3.14)

so we can have an SO/SO or an Sp/Sp projection. More generally we could
work the other way around. We first decide on the projections that we
would like to have, and then we write down the most general superpotential
compatible with those projections.

The orientifold locus appears to consist of the union of two O7-planes,
with wrapping numbers 4(1, 0, 0) and −4(1, H2−H1, 1). This is not the
fixed locus of any Z2 symmetry after blowing up, so the large volume limit
is projected out.

Orientifold of Del Pezzo 5

Now we come to the main case of interest, the Del Pezzo 5 singularity.
The Del Pezzo 5 surface is a P2 blown up at five generic points. As a basis
for the 2-cycles we use the hyperplane class H and the exceptional curves
created by the blow-ups, Ei, i = 1, . . . , 5, with the intersections

H · H = 1, H · Ei = 0, Ei · Ej = −δij . (3.15)

We can construct the DP5 quiver from a collection of line bundles with the
following charge vectors:

1. (1, H−E1, 0), 3. −(1, 2H−E1−E2−E4,
1
2),

2. (1, H−E2, 0), 4. −(1, 2H−E1−E2−E5,
1
2),

5. −(1, H−E3, 0), 7. (1, H, 1
2),

6. −(1, E4+E5,−1), 8. (1, 2H−E1−E2−E3,
1
2).

(3.16)

This singularity has a well-known toric limit which is the Z2 × Z2 orbifold of
the conifold. This limit will not have any special significance for us, but we
point it out because it is perhaps more familiar to the reader. In the toric
limit the superpotential can be graphically represented through a dimer
diagram (we refer to [30] for dimer rules). Since orientifolding leaves the
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superpotential invariant, it must correspond to a reflection or 180◦ degree
rotation of the dimer. The toric superpotential is read off to be:

W = X13X35X58X81 − X14X46X68X81 + X14X45X57X71

− X13X36X67X71 + X24X46X67X72 − X23X35X57X72

+ X23X36X68X82 − X24X45X58X82 (3.17)

and it is invariant under the reflection in the axis indicated in figure 11.

We are interested in the following orientifold action (see figure 12):

1 ↔ 1∗, 2 ↔ 2∗, 3 ↔ 8∗, 4 ↔ 7∗, 5 ↔ 5∗, 6 ↔ 6∗. (3.18)

The action on the fields is

XT
13γ1 = X81, XT

14γ1 = a X71, XT
23γ2 = bX82, XT

24γ2 = X72,

γ−1
5 XT

35 = X58, γ−1
5 XT

45 = X57, γ−1
6 XT

36 = X68, γ−1
6 XT

46 = X67,
(3.19)

where a and b are phases. If we insist on taking the toric superpotential,
then invariance of the superpotential implies

s(1)s(5) = s(1)s(6)a = s(1)s(6)a−1 = s(2)s(5)b−1

= s(2)s(5)b = s(2)s(6) = 1. (3.20)

Hence with this superpotential, the projections on nodes 1 and 5, and the
projections on nodes 2 and 6 are always the same, but other than that it
is free to be chosen. In particular the all Sp projection that we will use
for our first construction is actually realized in the toric limit, and can be
seen for instance in the dimer description. However, we will consider generic
superpotentials compatible with the projection.

Figure 11: Dimer graph/brane box picture for a toric degeneration of Del
Pezzo 5.
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Figure 12: (A) The Del Pezzo 5 quiver. (B) Orientifold associated to the
toric Z2 symmetry.

The orientifold locus should consist of the union of four O7-planes, coin-
ciding with the fractional branes of nodes 1, 2, 5 and 6.

Another orientifold of Del Pezzo 5

We consider the same Del Pezzo 5 quiver, but with an alternative orien-
tifold action (see figure 13)

1 → 1∗, 2 → 2∗, 3 → 8∗, 4 → 7∗, 5 → 6∗. (3.21)

The conditions on the fields are

XT
13γ1 = X81, XT

14γ2 = X71, XT
23γ2 = X82, XT

24γ2 = X72, (3.22)

XT
35 = X68, XT

36 = X58, XT
45 = X67, XT

46 = X57. (3.23)

We take the Sp/Sp projection on nodes 1 and 2. Presumably there are two
O7-planes, coinciding with the fractional branes on nodes 1 and 2.

Figure 13: Another interesting orientifold of Del Pezzo 5.
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Figure 14: Quiver for Del Pezzo 7.

Del Pezzo 7

Several other Del Pezzo quivers could be used for MSSM constructions.
We briefly mention a quiver for Del Pezzo 7 (see figure 14). The vanish-
ing homology classes again consist of the class of the 4-cycle, 0-cycle, the
hyperplane class H, and the exceptional curves Ei, i = 1, . . . , 7, with the
intersection numbers

H · H = 1, H · Ei = 0, Ei · Ej = −δij . (3.24)

An exceptional collection is given by

1. (2, H, −1
2), 2. −(1, H−E5, 0),

3. −(1, H−E6, 0),
4. −(1, H−E7, 0),
5. −(1, 3H−

∑
i Ei, 1).

6. −(2, E5+E6+E7,−3
2), 7. (1, H−E1, 0),

8. (1, H−E2, 0),
9. (1, H−E3, 0),
10. (1, H−E4, 0).

(3.25)

One way to orientifold this quiver is by reflecting in the axis through nodes
1 and 6.

4 The Higgsing procedure

4.1 Model I

Now we would like to engineer the MSSM quivers we have discussed. We
take the quiver in figure 12 with an Sp/Sp/Sp/Sp projection. As far as
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the chiral field content goes, this contains the MSSM with one generation
of quarks and leptons. In order to increase the number of generations, we
have to create some non-trivial bound states of fractional branes.

Let us try to give a rather imprecise but intuitive geometric picture of our
procedure (which we will then promptly abandon in favour of more precise
statements). Each fractional brane corresponds to a line bundle on the Del
Pezzo surface, i.e., a non-trivial U(1) gauge field configuration. Roughly
we want to take three identical fractional branes (which corresponds to a
U(1)3 field configuration with U(1) holonomy) and add some instantons to
get a field configuration with U(3) holonomy on the Del Pezzo. Recall that
the 4D gauge symmetry is the subgroup of the gauge group on the brane
that commutes with the holonomy. This new fractional brane then has the
same intersection numbers as the original brane, times a factor of three.
Any moduli of the new fractional brane can be lifted by turning on suitable
B-fields.

The more pedestrian and precise statements are that we first increase the
ranks of the gauge groups and then turn on suitable VEVs in order to get
to the quiver we want. We claim that there exists a bound state Fb with
the following charge vector:

ch(Fb) =
∑

i

ni ch(Fi) = −(3, 2H−E2−E3+E4+E5,−2),

�n = {1, 0, 1, 1, 2, 2, 1, 1}. (4.1)

To see this, let us fix the gamma matrices to be

γ1 = iσ2 =
(

0 1
−1 0

)
, γ5 = γ6 =

(
iσ2 0
0 iσ2

)
, (4.2)

and consider the following VEVs:

X13 = (b1), X35 = (b2 0), X36 = (b3 0), (4.3)

X14 = (d1), X45 = (0 d2), X46 = (0 d3), (4.4)

with the remaining fields determined by the orientifold conditions. The
entries here are 2 × 2 matrices. These VEVs break the gauge symmetry
to Sp(2), so the fractional brane Fb will come with an Sp-projection. The
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D-term equations may be satisfied by taking

1
5
b1 =

1
4
b2 =

1
3
b3 =

(
χ1 0
0 χ1

)
,

1
5
d1 =

1
4
d2 =

1
3
d3 =

(
χ2 0
0 χ2

)
. (4.5)

Clearly we need both quartic and octic terms in the superpotential, in order
to get mass terms for the adjoints associated with a rescaling of the VEVs.
With such a superpotential, tuned so that the F-term equations are satisfied
and so that the orientifold symmetry is preserved, but otherwise generic, we
find that our bound state is rigid, i.e., it has no massless adjoints.

We also claim that there exists a bound state Fa with the following charge
vector:9

ch(Fa) =
∑

i

ni ch(Fi) = (3, 2H−E1−E2+E4+E5, 0),

�n = {2, 2, 1, 1, 1, 0, 1, 1}. (4.6)

This is very similar to Fb so we do not need to repeat the analysis. The
fractional brane Fa also inherits an Sp projection.

Next we compute the massless fields in the quiver for {2Fa, 3F3, F4, 2Fb,
F7, 3F8}. For a generic superpotential (apart from the conditions men-
tioned above) we found that the spectrum is completely chiral, as shown
in figure 15. This quiver is a Higgsed version of the original Del Pezzo
quiver. It inherits the following orientifold projection:

XiT
a3 γa = Xi

8a, XiT
a4 γa = Xi

7a, γ−1
b XiT

3b = Xi
b8,

γ−1
b XiT

4b = Xi
b7, i = 1, 2, 3. (4.7)

Moreover, we expect to be able to get a generic superpotential for this quiver
provided we included sufficiently many higher order terms in the original Del
Pezzo quiver. Checking we can get generic fourth and eighth-order terms is
computationally too intensive, so we will assume it from now on.

This is almost what we want. After orientifolding we get all the chiral
fields of the MSSM. However, we also want some non-chiral matter: the
conventional Higgses Hu, Hd and the additional Higgs fields which break
Sp(2)R × U(1)L → U(1). This cannot be obtained by tuning the original
bound state/superpotential, because the candidate non-chiral fields are in
fact eaten by gauge bosons. So we create a new quiver with the same chiral

9This charge vector is probably not the Chern character of a sheaf; instead it should
be interpreted as a bound state of branes and ghost branes in the large volume limit [20].
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Figure 15: Intermediate quiver.

matter content, but with more candidate non-chiral fields.10 To do this we
replace Fb by the bound state Fd with charge vector

ch(Fd) = ch(Fa) + ch(F3) + 2 ch(Fb) + ch(F8)

= −(3, 2H + E1 − E2 − E3 + E5,−4). (4.8)

This can be done for instance by turning on VEVs of the following form:

X1
a4 = (s1), X1

4b = (s2 0), X2
4b = (0 s3) (4.9)

and the remaining non-zero VEVs fixed by the orientifold conditions. We
can satisfy the D-terms by setting

1
5
s1 =

1
4
s2 =

1
3
s3 =

(
φ 0
0 φ

)
. (4.10)

In order for this to satisfy the F-term equations, and to get the desired
massless non-chiral matter, we have to impose some restrictions on the
superpotential. If we use both quartic and octic terms, one can lift all the
non-chiral matter and the quiver generated by {2Fa, 3F3, F4, 2Fd, F7, 3F8}
is the same as in figure 15 again. However, now there are two non-chiral
pairs between Fa and Fd and two non-chiral pairs between Fd and F4/F7.
We have checked that the superpotential can be tuned so that one of each
of these pairs becomes light, and so we end up with the required quiver in
figure 6A.

10Alternatively, we could use more complicated bound states from the beginning, but
then we would have to work with superpotential terms of order 12 or higher in order to
lift the excess non-chiral matter.
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4.2 Pati–Salam

The quiver we have obtained above also gives a three-generation SUSY Pati–
Salam model, by changing the ranks of the gauge groups (U(3) → U(0), and
U(1) → U(4)).

Very similar tricks may also be applied to the P1 × P1 quiver to construct
Pati–Salam models, though in that case the number of generations will be
even. Let us show how we can obtain a four-generation Pati-Salam model.
We define the gamma matrices as

γ1 =
(

0 1
−1 0

)
, γ3 =

(
0 13×3

−13×3 0

)
. (4.11)

Then we construct a bound state Fb with charge vector

ch(Fb) = ch(F1) + 2ch(F2) + 3ch(F3) + 2ch(F4) = −(2, H2−H1, 3) (4.12)

by turning on the following VEVs:

X12 =
(

a1 0 0 0
0 0 a1 0

)
, Y12 =

(
0 a1 0 0
0 0 0 a1

)
, (4.13)

X23 =

⎛
⎜⎜⎝

a2 0 0 0 0 0
0 0 a3 0 0 0
0 0 0 a2 0 0
0 0 0 0 0 a3

⎞
⎟⎟⎠ , Y23 =

⎛
⎜⎜⎝

0 0 0 0 0 0
0 a4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 a4 0

⎞
⎟⎟⎠ (4.14)

with the remaining VEVs determined by the orientifold symmetry. The
D-terms are satisfied if we pick

a1 = a2 = 5ψ, a3 = 4ψ, a4 = 3ψ. (4.15)

Similarly, we construct a bound state Fa with charge vector

ch(Fa) = 3ch(F1) + 2ch(F2) + ch(F3) + 2ch(F4) = (2, H2−H1,−1). (4.16)

Then by orientifolding the quiver generated by {2Fa, 4F2, 2Fb, 4F4} we get
the Pati–Salam quiver with four generations in figure 16. It is expected all
excess non-chiral matter can be lifted by an induced superpotential, but we
did not try very hard to do it explicitly in this case. The total configuration
has net wrapping number (0, 4H2 − 4H1,−8).
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Figure 16: A four-generation Pati-Salam model from P1 × P1.

4.3 Model II

We now consider an alternative construction, in which U(1)B−L can get a
mass through the Stückelberg mechanism (depending on the UV completion
[31]).

The orientifold projection is as in (3.21). We would like to form the
following bound states:

ch(Fa) =
∑

i

ni ch(Fi) = (3, 2H−2E1+E2−E3+E4+E5, 1),

�na = {4, 1, 2, 2, 1, 1, 2, 2},

ch(Fb) =
∑

i

ni ch(Fi) = −(3,−E1−2E2+3E3+3E4+3E5, 6),

�nb = {2, 1, 3, 3, 0, 6, 3, 3},

ch(Fb′) =
∑

i

ni ch(Fi) = −(3, 6H−E1−2E2−3E3−3E4−3E5, 0),

�nb′ = {2, 1, 3, 3, 6, 0, 3, 3}. (4.17)

For 2Fa we suggest the following VEVs:

X13 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0
0 a2 0 0
0 0 0 0
0 0 0 0
0 0 a1 0
0 0 0 a2
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X14 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
a2 0 0 0
0 a1 0 0
0 0 0 0
0 0 0 0
0 0 a2 0
0 0 0 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.18)
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X23 =
(

a3 0 0 0
0 0 a3 0

)
, X24 =

(
0 a3 0 0
0 0 0 a3

)
, (4.19)

X35 =

⎛
⎜⎜⎝

a4 0
0 0
0 a4
0 0

⎞
⎟⎟⎠ , X36 =

⎛
⎜⎜⎝

0 0
0 a5
0 0
a5 0

⎞
⎟⎟⎠ ,

X45 =

⎛
⎜⎜⎝

0 0
a5 0
0 0
0 a5

⎞
⎟⎟⎠ , X46 =

⎛
⎜⎜⎝

a4 0
0 0
0 a4
0 0

⎞
⎟⎟⎠ . (4.20)

The remaining fields are determined by the orientifold conditions (3.22). We
took the gamma matrices to be

γ1 =
(

0 14×4
−14×4 0

)
, γ2 =

(
0 1

−1 0

)
. (4.21)

The D-term equations reduce to

|a1|2 + |a3|2 = |a4|2, |a2|2 = |a5|2, (4.22)

which is easily satisfied. By computing the gauge generators that are pre-
served, one can check that this bound state indeed inherits an Sp-projection.

For Fb + Fb′ we consider the following VEVs:

X13 = X14 =

⎛
⎜⎜⎝

e1 0 0 0 0 0
0 e1 0 0 0 0
0 0 0 e1 0 0
0 0 0 0 e1 0

⎞
⎟⎟⎠ ,

X23 = X24 =
(

0 0 e1 0 0 0
0 0 0 0 0 e1

)
, (4.23)

X35 =

⎛
⎜⎜⎜⎜⎜⎜⎝

e1 0 0 0 0 0
0 e1 0 0 0 0
0 0 e1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, X45 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 e1 0 0
0 0 0 0 e1 0
0 0 0 0 0 e1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.24)
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X36 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 e1
0 0 0 e1 0 0
0 0 0 0 e1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, X46 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 e1 0 0 0
e1 0 0 0 0 0
0 e1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.25)

with the remaining VEVs determined by (3.22). Here we took the gamma
matrices to be

γ1 =
(

0 12×2
−12×2 0

)
, γ2 =

(
0 1

−1 0

)
. (4.26)

The D-terms are satisfied. Note that we have used the notation Fb + Fb′ to
indicate that this representation has two unbroken U(1)’s. They get mapped
into each other under the orientifolding.

After orientifolding the quiver generated by {2Fa, 3F3, F4, Fb + Fb′ , F7,
3F8} we get a quiver with the expected chiral matter content of the MSSM,
with three generations, and Higgs fields. These are some of the most com-
plicated bound states in this paper, and we have not been able to check that
all excess non-chiral matter can be lifted by an induced superpotential.

We can also argue that all the remaining U(1)’s couple to an independent
Stückelberg field. This is not automatically true but can be checked in
this case. To see this, before Higgsing and orientifolding the Stückelberg
couplings are of the form

∑
nodes i

∫
C(i) ∧ Tr(F(i)), (4.27)

where C(i), F(i) are the Stückelberg 2-form field and gauge field for the ith
node. After Higgsing we get

∑
i,j

nj
i

∫
C(i) ∧ Tr(F̃(j)), (4.28)

where nj
i is the number of original fractional branes of type i contained in

the bound state j, j ∈ {a, 3, 4, b, b′, 7, 8}, and F̃(j) is the corresponding gauge
field. Now it is easy to check that for our MSSM configuration the rank of
nj

i is maximal, so that all the U(1)’s couple to an independent Stückelberg
field. We conclude that the U(1)B−L gauge boson can be lifted through the
Stückelberg mechanism.



976 MARTIJN WIJNHOLT

5 Dynamical SUSY breaking

Since Del Pezzo quivers are chiral, one may expect to find examples of local
models with dynamical supersymmetry breaking. However, it was typically
found in examples that if SUSY breaking occurred there was some runaway
mode which invalidated the model [32–36]. Some effort has gone in to finding
a way to stabilize such runaway modes [37–39].

We have seen that orientifolding eliminates Kähler moduli, so one may
revisit this issue by looking for simple models where the runaway mode is
projected out. In fact, the new techniques allow us to engineer many familiar
models which are known to break SUSY dynamically. Examples include:

5.1 A non-calculable model

Let us consider the C3/Z3 × Z3 orbifold. This is the Calabi–Yau three-fold
defined by the equation

xyz = t3, (5.1)

i.e., it is a cone over a DP6 surface which itself has three A2 singularities.
The quiver in shown in figure 17A. For completeness, let us also mention an
exceptional collection:

1. (1, E4,−1
2), 4. − (2, H, −1

2), 7. (1, H−E1, 0),

2. (1, E5,−1
2), 5. − (2, 2H−E1−E2−E3,−1

2), 8. (1, H−E2, 0),

3. (1, E6,−1
2), 6. − (2, E4+E5+E6,−3

2), 9. (1, H−E3, 0),

(5.2)

Figure 17: (A) The quiver for C3/Z3 × Z3, an orbifold limit of DP6. (B)
Orientifold of a fractional brane of (A).
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Figure 18: The dimer for the C3/Z3 × Z3 orbifold. The orientifold acts by
a 180◦ rotation centered at the cross.

Now we are interested in the canonical orientifold action on the nodes,
which exchanges oppositely twisted sectors:11

1 → 1∗, 2 → 3∗, 4 → 9∗, 5 → 8∗, 6 → 7∗. (5.3)

This is a symmetry of the dimer diagram, as indicated in figure 18. Let
us take the fractional brane which only uses nodes {1, 5, 8}, as shown in
figure 17. This is a model with two gauge groups, U(5) and O(1) = {±1}.
The U(1) ⊂ U(5) gets a mass through the Stückelberg mechanism, so we
are left only with the SU(5), with matter in the 10 + 5̄. Since there are
no gauge invariant baryonic operators we can write down, integrating out
the massive U(1) leads to a D-term potential for the dynamical FI-term
(a normalizable closed string mode), stabilizing it. Thus what we are left
over with is precisely the model considered by [40]. This model has no
classical flat directions and a non-anomalous R-symmetry that was argued
to be broken, and therefore supersymmetry is broken dynamically.

An important property of this gauge theory is that it has very few param-
eters, so there is little room for a runaway of the parameters after coupling
to 4D gravity. Moreover, coming from such a simple singularity, the model
should not be so hard to embed in a compact CY. For instance, we can easily
embed the singularity in the quintic, by taking an equation of the form

0 = s2(xyz − t3) + x5 + x4s + · · · (5.4)

11This is the orientifold action we intended to use in version 1 of this paper, by anal-
ogy with the C3/Z3 orientifold of Section 3.2, but the picture in v1 showed a different
orientifold action. It is not hard to see that with the latter action, with an antisymmetric
projection of the rank 2 tensors and an orthogonal projection on fixed nodes, the orbifold
superpotential would not be invariant, though we are of course allowed to deform the
superpotential.
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or we could try to use T 6/Z3 × Z3. To complete the analysis we would need
to check that the orientifold can be extended globally and tadpoles can be
cancelled.

It would be nice to see the supersymmetry breaking from a dual gravity
perspective. There is presumably an enhançon type of effect at work, similar
to [41,42].

5.2 The 3-2 model

Our next model is a little harder to produce, so we start by drawing the
quiver diagram in figure 19A, and its oriented cover in figure 19B. This is
known as the 3-2 model [43]. The stringy version has an additional anoma-
lous U(1), which does not affect the low-energy dynamics as in the previous
example. There are various large N generalizations which appear to have
no classical flat directions and a spontaneously broken R-symmetry, and so
should also break supersymmetry.

The covering quiver has a certain similarity with DP5. So we take the
DP5 quiver with the projections (3.19) and a = b = −1, with Sp-projections
on nodes 1 and 5, and SO-projections on nodes 2 and 6. We take

γ2 = 13×3, γ6 = 15×5 (5.5)

and consider a bound state Fa with charge vector

ch(Fa) =
∑

i

ni ch(Fi), �n = {0, 3, 2, 3, 0, 5, 3, 2}. (5.6)

Figure 19: (A) The 3-2 model, with an extra massive U(1). (B) Oriented
cover of the quiver in (A).
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Concretely, the VEVs are given by

X23 =

⎛
⎝a1 0

0 a2
0 0

⎞
⎠ , X24 =

⎛
⎝a1 0 0

0 a2 0
0 0 a2

⎞
⎠ , (5.7)

X36 =
(

a3 0 a4 0 a5
0 a6 0 a7 0

)
, X46 =

⎛
⎝0 a8 0 0 0

0 0 a9 0 0
0 0 0 0 a10

⎞
⎠ , (5.8)

with the remaining VEVs either zero or determined by (3.19). The D-terms
then imply

|a1|2 = |a3|2 + |a4|2 + |a5|2 = |a8|2, |a2|2 = |a6|2 + |a7|2 = |a9|2 = |a10|2,
(5.9)

which is easily satisfied.

The quiver generated by {2 F1, 3 F3, Fa, 3 F8} is of the required form in
figure 19, up to non-chiral matter. The lepton doublets can get masses only
in pairs. Our orientifolded quiver has five lepton doublets, and in principle
we may turn on mass terms for four of them, leaving one massless.

5.3 ISS meta-stable models

A number of realizations of ISS vacua [44] from quivers have already been
considered [45, 46]. We would like to suggest an alternative realization, in
which the quark masses are obtained in a more straightforward way.

As we discussed in Section 2 we can take the conifold quiver and turn on
mass terms:

W = mij Tr(AiBj) + λ Tr(A1B1A2B2 − A1B2A2B1). (5.10)

We introduce the dimensionless parameters a = m/E, b = λE and consider
the regime a � b so that we can ignore the quartic term. The non-trivial
U(1) gauge group is taken to decouple from the low-energy physics, either
by working on the infinite cone or by coupling to a Stückelberg field in
compactified settings. We also set the gauge coupling of SU(n2) to be
very weak. Finally, we take n1/2 < n2 < 3n1/4. Then the SU(n1) flows to
strong coupling and we apply a Seiberg duality. The dual theory has gauge
group SU(2n2 − n1) × SU(n2), with two pairs of bifundamentals of opposite
charges, and four adjoints for SU(n2). In particular, both gauge groups are
now IR free.
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Thus now we are in the situation of ISS, except that we have gauged a
slightly different subgroup of the global symmetry group when the gauge
coupling for SU(n2) is finite. In this theory SUSY is broken by the rank
condition, and there are meta-stable vacua for zero adjoint VEVs with pseu-
domoduli lifted by a one-loop potential. Actually if we would have kept the
quartic terms of the conifold quiver then we get mass terms for the mesons
and we can solve the F-terms, but because we took a � b these SUSY vacua
are very far out in meson field space and do not affect the analysis near the
origin.

In the meta-stable vacua, the gauge group SU(2n2 − n1) × SU(n2) is bro-
ken to SU(2n2 − n1) × SU(n1 − n2). If the SU(n2) gauge coupling is small
enough, then both the gauge couplings of the remaining SU(2n2 − n1) ×
SU(n1 − n2) are also very small. There are also some massless Goldstone
bosons left from the broken global symmetries, and some light fermions. The
Goldstone bosons parametrize a compact coset G/H and are not charged
under the remaining gauge groups. Thus the remaining gauge groups may
eventually become strong in the deep IR and generate some vacuum energy.
But since the strong coupling scale is arbitrarily small, this means there
must still be long-lived meta-stable vacua close to those found by ISS.

6 Topological criteria for unification

From the bottom-up perspective, there is no a priori relation between the
MSSM couplings. For instance the differences between the (inverse squared)
gauge couplings depend on complexified Kähler moduli. If such moduli
extend to the UV completion, we will have to find a suitable potential to
stabilize them, and it seems there is no natural reason to expect any relation
between them.

On the other hand, we clearly do not live at a random point on the
parameter space. There are many relations among the couplings that we
believe to be a reflection of new physics. So one may ask if these relations
have a special significance in our set-up.

Recently, it has been argued that moduli corresponding to non-
normalizable closed string modes may be trivializable, in the sense that
they appear to exist locally but may not be extended to the UV comple-
tion [31]. (A similar scheme for the 6-volume was proposed in [47]). This
is really a rephrasing of the obvious fact that the most interesting UV com-
pletions are those which are as rigid as possible, consistent with observed
low-energy physics, because they give a topological explanation of the tree
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level relations between certain couplings, as opposed to a dynamical one due
to moduli stabilization. It also reduces the number of global tadpoles to be
cancelled.

Let us review some aspects of this trivialization for Kähler moduli. Sup-
pose that two fractional branes wrap vanishing cycles a and b, giving rise
to a gauge group U(na) × U(nb), embedded in some orientifold compactifi-
cation. Locally the homology class a − b has an even lift and an odd lift,
where even and odd refer to the eigenvalue of the homology classes under
the orientifold action. Let us further assume that a − b is the class of a
2-cycle that does not intersect a vanishing 4-cycle. Then if the odd lift is
trivializable, we have the tree level relation

4π

g2
a

− i
ϑa

2π
=

4π

g2
b

− i
ϑb

2π
(6.1)

and if the even lift is trivializable we have

ζa + ica = ζb + icb, (6.2)

where ζ couples as an FI-term and c is its axion partner. A certain linear
relation between the axions is needed to keep hypercharge massless.

Now suppose for ease of discussion that both lifts are trivializable, so that
a and b are the same cycle homologically. We can model this by considering
a single fractional brane with an adjoint scalar field whose superpotential
has two critical points. Thus, morally the vacuum where the two branes sit
apart is a Higgsed vacuum of a unified theory with gauge group U(na + nb),
in particular the tree level gauge couplings of U(na) and U(nb) are related
as above. Integrating out the massive adjoint we generate certain higher
order superpotential couplings suppressed by the mass of the adjoint field,
which should correspond to the subleading complex structure deformations
discussed in [31].

This also explains the origin of the monopoles discovered in [48]: they are
D-branes stretched between the gauge branes, i.e., they are the monopoles
in the Higgsed phase expected by a Pati–Salam like unification in the model
of [2]. The unified model is actually one of the standard quivers for P2, with
gauge group U(4) × U(2) × U(2) and (3, 6, 3) arrows between them.

Let us discuss how these ideas can be applied to the MSSM models that
we have constructed from Del Pezzo 5. For the quivers and labelling of
the nodes we refer to the figures in Section 1.2. The moduli controlling the
difference between the gauge couplings of U(3) node and the U(1)L node are
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trivialisable, so we can give a topological explanation of the relation g−2
3 =

g−2
1 . We can achieve this by making sure that E4 − E5 or H − E1 − E2 − E3

is globally trivial. If we assume that both are globally trivial, then we can
morally think of the U(3) and U(1) as being unified in the Pati–Salam group
U(4) (i.e., we have baryon–lepton unification). In fact, with only a small
change in interpretation this situation was already proposed in [49,50].

The further relations12 g2 = g0 = g3 look quite natural because they cor-
respond to the branes having equal tension, and they also give precisely the
standard tree level relations from SU(5) unification for the strong, weak
and hypercharge couplings [49]. But they cannot be imposed by topologi-
cal means, because the intersection numbers of the corresponding cycles are
different. However we can do the following. The tree level gauge coupling
g3 corresponds to

2
g2
3

=
N

gs�2
s

∫
α

B2, α = E4 − E3, (6.3)

which is a non-normalizable mode in the local geometry. Here N is a numer-
ical factor which depends on the periodicity of B2. Similarly13

1
g2
2

+
1
g2
0

=
N

gs�2
s

∫
β

B2 (6.4)

is a non-normalizable mode, where β is some degree zero linear combination
of the 2-cycles which depends on how we exactly constructed the bound
states.14 So any linear combination of these quantities is the integral of
the B-field over some degree zero homology class, and therefore potentially
trivializable. Together with g3 = g1 this then leads to a tree level relation
between the observed gauge couplings

1
g2
Y

+
1

g2
W

=
[
2n1

n2
+

2
3

]
1
g2
S

, (6.5)

where we have assumed that n1α − n2β is trivialized. This is compatible
with the relations from SU(5) unification, g−2

S = g−2
W = 3

5g−2
Y if we take β =

α in homology.

12Due to different normalizations of abelian and non-abelian charges, for model II equal
tension of the branes corresponds to g2 =

√
2g0 = g3.

13For model II this would read 1
2g−2

0 + g−2
2 = Ng−1

s �−2
s

∫
β

B2.
14Actually this relation is not quite true with the bound states we constructed earlier.

However, it would have been true had we avoided the fractional brane F6 in our bound
states, at the cost of making the bound states slightly more complicated, and changing
the orientifold projection in the case of model II. Alternatively we could replace nodes 1
and 3 by bound states which include F6.
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Since
∫
α B2 −

∫
β B2 =

∫
γ H3, where ∂γ = α − β, one might wonder if these

tree level relations are not affected if we turn on background fluxes.15 This
seems unlikely for the following reason. As long as no background fields are
turned on we should expand the B-field in harmonic forms and the above cri-
terion is sufficient to guarantee that the gauge couplings are related. When
we turn on general closed string deformations it is not necessarily true that
the B-field must be expanded in harmonic forms; however, it is unlikely that
we gain additional zero modes and so the relation between the couplings,
which is due to a lack of zero modes, should not be affected.

7 Final thoughts

It should be clear by now that the set of quiver gauge theories that can be
obtained from branes at singularities is rather large. It is our impression
that virtually any quiver can be constructed locally, and we believe this is
really the main message of this paper. It will probably not be possible to
couple every such model to 4D gravity, but given a local model it will be
very hard to argue that it cannot be consistently coupled to gravity.

One would like to understand if the local D-brane scenario has something
to add to discussions of beyond the SM physics. On the one hand it seems
premature. After many years of work, the field theory community has not
been able to come up with a single model that adresses all concerns. String
phenomenology is going to have to address the same issues, and barring
a miraculous discovery of the correct UV completion it would be naive to
expect that doing string phenomenology would magically improve on this
situation. On the other hand, string phenomenology has traditionally been
more a source of new ideas and intuition than a source of accurate models.

One way to proceed is to try and isolate desirable features and translate
them into geometrical or even topological terms. We have already discussed
a topological explanation for tree level relations between gauge couplings.
Other important issues are flavour problems. For instance we would like
to explain hierarchies among the Yukawa couplings, and we would like to
explain why new physics does not generate large flavour-changing neutral
currents (FCNCs). Can we translate these criteria into geometric terms,
and perhaps guarantee them through topological mechanisms similar to
Section 6? Such rigidity requirements may eliminate the majority of UV
completions in the string landscape.

15We would like to thank Angel Uranga for pointing out this possibility.
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Another important criterion will be stability. The apparent long-lived
nature of our universe suggests that we are in a vacuum which does not have
too many vacua in its neighbourhood with a large cumulative probability
to decay away to.16 This makes stability a very acute issue with possible
predictive power, and we might expect string theory to have something to
say about this.

The bottom-up perspective also allows us to take a step back and see
if top-down approaches could benefit from new ingredients. It seems that
non-commutative internal geometries play an important role. Thus perhaps
we should be paying more attention to backgrounds of the type recently
constructed in [52].

7.1 On soft SUSY breaking

In this paper we have repeatedly used the technique of deforming the gauge
theory to get rid off undesirable particles. By the same logic we can proceed
to turn on masses for all the superpartners of the Standard Model fields
and recover the non-SUSY Standard Model itself. This must be possible,
but it is not terribly helpful. Although the dictionary between the local
geometry and the superpotential deformations used in this paper are fairly
well understood and can in principle be solved exactly, unfortunately the
dictionary for SUSY breaking deformations is more complicated. It requires
understanding Kaehler deformations which can probably only be addressed
numerically, and it requires further generalizing the notion of geometry in
ways that are probably not yet quite understood. Even for simpler theories
like N = 4 Yang–Mills, little is known about the stringy description of non-
supersymmetric deformations. Progress can perhaps be made if one can
identify special points on the parameter space where the stringy description
simplifies.

7.2 Composite Higgses?

A rather curious feature of the MSSM quiver is that, if we started without
Higgs fields, we can automatically generate them through Seiberg duality
on U(3)c or U(1)L. For the U(3) node, Seiberg duality has been considered
by Matt Strassler [53], who was looking for a possible embedding into a

16In fact, it has recently been argued [51] in a “bottom-up” approach, quite independent
of string theory, that the landscape of the SM plus quantum gravity may contain vacua
close to ours which correspond to compactification to lower dimensions.
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duality cascade, and also in [54]. A problem in that case is that one needs
to add extra massive matter in order to make the SU(3) coupling grow
strong towards the UV.

In the MSSM quivers we have an alternative: we may consider a “Seiberg
duality” on the U(1)L node (node 1 in the figures of Section 1.2). The dual
group is U(5) or larger and we are automatically have Nf = Nc + 1, so we
do not have to add additional matter to get a consistent picture. Since the
U(1) ⊂ U(5) and the SU(5) ⊂ U(5) run independently, this may even be
consistent with unification, but we have not done the calculation. As the
SU(5) flows to strong coupling towards the IR, the electric “quarks” bind
into mesons which have the same quantum numbers as the Higgses, although
the large number we get is not so desirable. Their number may be reduced
if we also have Higgs fields with appropriate couplings in the electric theory.
Thus perhaps if the supersymmetry breaking scale is significantly lower than
the scale at which we would have to apply a Seiberg duality, the Higgses
may be interpreted as composite fields, and this might be the seed of an
explanation why one pair ends up being relatively light.

7.3 The QCD string as a fundamental string

One may wonder if our set-up gives any insight into the stringy description
of QCD. Let us turn on Higgs VEVs so that the quarks obtain small masses.
Then in the IR we may focus on the U(3) node which gives us pure SU(3)
SUSY QCD. Now note that the U(3) brane (together with its orientifold
image) has wrapping numbers (0, E4 − E3, 0). So as the theory flows to
strong coupling what most likely happens is that the Del Pezzo undergoes a
conifold transition, where a small 2-sphere in the class E4 − E3 gets replaced
by a 3-sphere. After the transition, the U(3) brane has been replaced by flux,
and thus the open strings ending on this brane are confined. The glueball
condensate is described by a closed string mode, as envisaged in [55].

Thus in our picture the graviton and the QCD string can be described as
different modes of the same fundamental string, the IIB string. As we discuss
momentarily though, in some situations the graviton is better described as
a mode of the heterotic string.

7.4 Weakly coupled Planck brane?

As we reach the Planck brane, we will start to see other ingredients
of the compactification: D7’s and orientifold planes (which split up
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non-perturbatively as mutually non-local D7-branes). Generically the IIb
string coupling cannot be kept small, and the IIB description may be less
than useful. However there may exist a large class of UV completions where
the Planck brane has a dual description in terms of weakly coupled heterotic
strings.

The fractional brane configuration only has net D3 and D5 charge, so
it should get mapped to a small (possibly constrained) instanton in the
heterotic string. As the instanton shrinks to zero, it generates a throat and
thus potentially a large hierarchy. This is the heterotic manifestation of
the decoupling limit. The heterotic dilaton grows down the throat, so the
MSSM is non-perturbative from this point of view.

In the perturbative heterotic description we cannot see the enhanced
gauge symmetry due to fractionation, since the individual fractional branes
have D7-brane charges. Thus the fractional branes should have merged into
a single NS5-brane when the heterotic coupling is small. This by itself does
not mean that the gauge couplings should unify at the cross-over scale,
although it seems like a natural boundary condition.
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