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Abstract

We elaborate on the proposed general boundary formulation as an
extension of standard quantum mechanics to arbitrary (or no) back-
grounds. Temporal transition amplitudes are generalized to amplitudes
for arbitrary space-time regions. State spaces are associated to general
(not necessarily spacelike) hypersurfaces.

We give a detailed foundational exposition of this approach, includ-
ing its probability interpretation and a list of core axioms. We explain
how standard quantum mechanics arises as a special case. We include a
discussion of probability conservation and unitarity, showing how these
concepts are generalized in the present framework. We formulate vacuum
axioms and incorporate space-time symmetries into the framework. We
show how the Schrödinger–Feynman approach is a suitable starting point
for casting quantum field theories into the general boundary form. We
discuss the role of operators.
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1 Introduction

A key idea behind the present work is that a quantum theory really has
more structure than the standard formalism would tell us. Notably, we
suppose that transition amplitudes between instants of time or spacelike
hypersurfaces are only a special case of what kind of amplitudes might be
considered. Rather, it should be possible to associate amplitudes with more
general regions of space-time. At the same time, instead of a single state
space, we should have a state space associated to each boundary hyper-
surface of such a region. The single state space in the standard formalism
is then only a consequence of the restriction to spacelike hypersurfaces in
connection with a time translation symmetry.

Mathematically, this idea may be more or less obviously motivated from
the Feynman path integral approach [1] to quantum field theory: Transition
amplitudes might be represented as path integrals. But a path integral on a
region of space-time (should) have the property that it can be written as a
product of path integrals over parts of this region (together with path inte-
grals over arising boundaries). Indeed, this was the starting point for the
development of topological quantum field theory. This mathematical frame-
work incorporates many of the features of path integrals in an abstracted
and idealized way. Atiyah gave an axiomatic formulation in [2]. Topological
quantum field theory (and its variants) have since played an important role
in quantum field theory, conformal field theory and approaches to quantum
gravity. These applications, however, have generally not touched upon the
nature of quantum mechanics itself.

The proposal we elaborate on here is of an entirely different nature.
Namely, we contend that a particular variant of the mathematical framework
of topological quantum field theory provides a suitable context to formulate
the foundations of quantum mechanics in a generalized way. The concrete
form of this formulation including both its formal mathematical as well as
its interpretational physical aspects is what we will call the general boundary
formulation.

Since the general boundary formulation is supposed to be an extension
rather than just a modification of the standard formulation of quantum
mechanics, it should recover standard results in standard situations. One
might thus legitimately ask what it might be good for, given that we are
seemingly getting along very well with the standard formulation of quantum
mechanics. This is indeed true in non-relativistic quantum mechanics as
well as in quantum field theory in Minkowski space. However, quantum
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field theory in curved space-time and, even more seriously, attempts at a
quantum theory of gravity are plagued with severe problems.

It is precisely (some of) these latter problems which motivated the present
approach. Indeed, the idea of the general boundary formulation was pro-
posed first in [3], motivated by the quantum mechanical measurement prob-
lem in the background independent context of quantum gravity. Briefly, if
we want to consider a transition amplitude in quantum gravity, we cannot
interpret it naively as an evolution between instances of time, since a clas-
sical background time is missing. This is the famous problem of time in
(background independent) quantum gravity [4]. If, on the other hand, we
can meaningfully assign amplitudes to regions of space-time having a con-
nected boundary, we can avoid this problem as follows. The state on which
the amplitude is evaluated is associated with the boundary of the region. If
it is semiclassical (as we need to assume to recover a notion of space and
time), it contains spatial and temporal information about all events on the
boundary. Only if the boundary consists of several disconnected components
(as in the case of ordinary transition amplitudes), a relation between events
on different components is lost.

Another motivation for the general boundary formulation comes from its
locality. Amplitudes may be associated to space-time regions of any size.
Thus, if a quantum mechanical process is localized in space-time, states and
amplitudes associated with a suitable region containing it are sufficient to
describe the process. In particular, we do not need to know about physics
that happens far away such as, for example, the asymptotic structure of
space-time at “infinity.” In contrast, the standard formulation in principle
implies that we need to “know about everything in the universe,” since a
state contains the information about an entire spacelike hypersurface. Of
course, in non-relativistic quantum mechanics and in quantum field theory
on Minkowski space, we have suitable ways of treating isolated systems
separately. However, this is a priori not so in quantum field theory on
curved space-time. The situation is even worse in quantum gravity due to
the role of diffeomorphisms as gauge symmetries.

It seems that there are good reasons why a general boundary formulation
should not be feasible. On the technical side these come from the standard
quantization methods. They usually rely on a form of the initial value
problem which necessitates data on spacelike hypersurfaces. At the same
time, they encode dynamics in a 1-parameter form, requiring something like
a foliation. This appears to be incompatible with the general boundary
idea. However, we contend that this is indeed merely a technical problem
that can be overcome. Indeed, the discussion above of the motivation from
path integrals clearly points in this direction. Also note that turning this
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point around yields a certain notion of predictivity. Clearly, the general
boundary formulation is more restrictive than the standard formulation.
That is, there will be theories that are well defined theories within standard
quantum mechanics, but do not admit an extension to the general boundary
formulation. The contention is that those theories are not physically viable,
at least not as fundamental theories.

A more fundamental reason comes from the standard interpretation of
quantum mechanics. The consistent assignment of probabilities and their
conservation seem to require a special role of time and to single out spacelike
hypersurfaces due to causality. This appears to be in jeopardy once we try
to dispense with the special role of time. Indeed, one is usually inclined
(and this includes quantum mechanics) to think of probabilities in terms of
something having a certain probability given that something else was the
case before. However, a probability in general need not have such a temporal
connotation. Rather, specifying a conditional probability that something
is the case given that something else is the case can be perfectly sensible
without the presence of a definite temporal relation between the facts in
question. This is indeed the principle on which the probability interpretation
proposed in this work rests. The standard probability interpretation arises
merely as a special case of this.

Apart from its mathematical motivation there is also a good physical
reason to believe that a general boundary interpretation should exist [3].
This comes from quantum field theory in the guise of crossing symmetry.
When deriving the S-matrix in perturbative quantum field, one finds that
the resulting amplitude puts the incoming and outgoing particles practically
on the same footing. This suggests that it is sensible to think about them
as being part of the same single state space associated with the initial and
final hypersurface together. What is more, it suggests that the S-matrix
may be derived as the asymptotic limit of the amplitude associated with a
space-time region with connected boundary. A possible context for this is
discussed in the companion paper [5].

A first step to elaborate on the idea of the general boundary formulation
was taken in [6], with the proposal of a list of core axioms. These were
formulated in such a way as to be applicable to a variety of background
structures, including the possibility of no (metric) background at all. At the
same time, a tentative analysis of its application to non-relativistic quantum
mechanics, quantum field theory and 3-dimensional quantum gravity was
performed. Unsurprisingly, the general boundary formulation much more
naturally applies to quantum field theory rather than to non-relativistic
quantum mechanics. This is because it is based on space-time notions,
while in non-relativistic quantum mechanics the notion of space is secondary
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to that of time. This motivated the choice of the name general boundary
quantum field theory in the title. Unfortunately, this also means that the in
other circumstances good idea of “trying out” non-relativistic theories with
finitely many degrees of freedom first is not particularly useful here.

An important step in demonstrating the feasibility of the general bound-
ary formulation was performed in [7]: It was shown that states on timelike
hypersurfaces in quantum field theory are sensible. The example discussed
was that of timelike hyperplanes in the Klein–Gordon theory. This exam-
ple is considerably extended in the companion paper [5], where a further
type of timelike hypersurfaces is considered (the hypercylinder). In particu-
lar, this provides the first example of amplitudes associated to regions with
connected boundaries. All properties of the framework are tested there,
including composition of amplitudes, the vacuum state, particles and the
probability interpretation.

Based on these experiences, we present here a considerably deeper and
more extensive treatment of the general boundary formulation, turning it
from an idea into a definite framework. This includes, firstly, a refined
and extended list of axioms (Section 2). The main additional structure
compared to the treatment in [6] is an inner product on state spaces. This
is instrumental for what we consider the most important part of the present
work, namely the probability interpretation (Section 4). (Section 3 covers
the recovery of the standard formulation.) Thereby, we hope to provide a
physically fully satisfactory interpretation of general boundaries, which thus
far has been missing.

Further subjects covered are a proposal for an axiomatic characterization
of a vacuum state (Section 5), a discussion of various background structures
and the incorporation of their space-time symmetries in axiomatic form
(Section 6). We then proceed to elaborate on how the Feynman path integral
together with the Schrödinger representation may provide a viable approach
to cast quantum field theories into general boundary form (Section 7). We
also discuss to exactly which types of space-time regions it is (or should be)
permissible to associate amplitudes (Sections 8 and 9). Finally, we make
some remarks on the role of operators in the formalism (Section 10). We
end with some conclusions (Section 11).

2 Core axioms

The core idea of the general boundary formulation might be summarized
very briefly as follows: We may think of quantum mechanical processes
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as taking place in regions of space-time with the data to describe them
associated with the regions’ boundaries. To make this precise we formulate
a list of axioms, referred to in the following as the core axioms. These extend
and refine the axioms suggested in [6]. We preserve the numbering from that
paper denoting additional axioms with a “b.” The main addition consists
of inner product structures. As one might suspect, these are instrumental
in a probability interpretation which is the subject of Section 4.

The space-time objects to appear in the axioms are of two kinds: regions
M and hypersurfaces Σ. What these are exactly depends on the background
structure of the theory in question. We will discuss this in Section 6. If we
are interested in standard quantum field theory, space-time is Minkowski
space. The regions M are then 4-dimensional submanifolds of Minkowski
space and the boundaries Σ are oriented hypersurfaces (closed 3-dimensional
submanifolds) in Minkowski space. Orientation here means that we choose
a “side” of the hypersurface. Given a region M , its boundary is naturally
oriented.1 To be specific, we think of this orientation as choosing the “outer
side” of the boundary. Furthermore, not all 4-dimensional submanifolds are
admissible as regions. However, this restriction is of secondary importance
for the moment and we postpone its discussion to Section 8.

Given an oriented hypersurface Σ we denote the same hypersurface with
opposite orientation by Σ̄, i.e., using an over-bar. For brevity, we use the
term hypersurface to mean oriented hypersurface.

(T1) Associated to each hypersurface Σ is a complex vector space HΣ, called
the state space of Σ.

(T1b) Associated to each hypersurface Σ is an antilinear map ιΣ : HΣ → HΣ̄.
This map is an involution in the sense that ιΣ̄ ◦ ιΣ = idΣ is the identity
on HΣ.

(T2) Suppose the hypersurface Σ is a disjoint union of hypersurfaces, Σ =
Σ1 ∪ · · · ∪ Σn. Then, the state space of Σ decomposes into a tensor
product of state spaces, HΣ = HΣ1 ⊗ · · · ⊗ HΣn .

(T2b) The involution ι is compatible with the above decomposition. That is,
under the assumption of (T2), ιΣ = ιΣ1 ⊗ · · · ⊗ ιΣn .2

1To be more explicit, any 4-dimensional submanifold of Minkowski space inherits a
globally chosen orientation of Minkowski space. It is this orientation that induces the
orientation of the boundary. If we are in a situation of not having a globally oriented
space-time background, we need to explicitly specify an orientation of the region to induce
an orientation on its boundary.

2Here as in the following we commit a slight abuse of notation by using the tensor
product symbol even when considering maps that are not C-linear, but rather C-antilinear
in one or more components. However, the meaning should always be clear from the context.
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(T3) For any hypersurface Σ, there is a non-degenerate bilinear pairing
(·, ·)Σ : HΣ̄ ⊗ HΣ → C. This pairing is symmetric in the sense that
(a, b)Σ = (b, a)Σ̄. Furthermore, the pairing is such that it induces a
positive definite hermitian inner product 〈·, ·〉Σ := (ιΣ(·), ·)Σ on HΣ
and turns HΣ into a Hilbert space.

(T3b) The bilinear form of (T3) is compatible with the decomposition of (T2).
Thus, for a hypersurface Σ decomposing into disconnected hypersur-
faces Σ1 and Σ2 we have (a1 ⊗ a2, b1 ⊗ b2)Σ = (a1, b1)Σ1(a2, b2)Σ2 .

(T4) Associated with each region M is a linear map from the state space of
its boundary Σ to the complex numbers, ρM : HΣ → C. This is called
the amplitude map.

(T4b) Suppose M is a region with boundary Σ, consisting of two discon-
nected components, Σ = Σ1 ∪ Σ2. Suppose the amplitude map ρM :
HΣ1 ⊗ HΣ2 → C gives rise to an isomorphism of vector spaces ρ̃M :
HΣ1 → HΣ̄2

. Then we require ρ̃M to preserve the inner product, i.e.,
be unitary.

(T5) Let M1 and M2 be two regions such that the union M1 ∪ M2 is again a
region and the intersection is a hypersurface Σ. Suppose that M1 has a
boundary with disconnected components Σ1 ∪ Σ and M2 has a bound-
ary with disconnected components Σ̄ ∪ Σ2. Suppose amplitude maps
on M1, M2 and M1 ∪ M2 induce maps ρ̃M1 : HΣ1 → HΣ̄, ρ̃M2 : HΣ̄ →
HΣ̄2

and ρ̃M1∪M2 : HΣ1 → HΣ̄2
. We require then ρ̃M1∪M2 = ρ̃M2 ◦ ρ̃M1 .

Before coming to the physics let us make some mathematical remarks. In
contrast to [6] we are here much more careful about the expected infinite
dimensional nature of the state spaces. This is the reason, for example, for
the reformulation of axiom (T3). In [6] it is simply stated that the state
space of an oppositely oriented hypersurface be identified with the dual of
the state space of the original hypersurface. Thus, for consistency the bidual
space must be identified with the original one. For an infinite dimensional
space, this is not the case for the naively defined dual. Here, we use the
involution ι and require that a Hilbert space structure is induced on the
state spaces. Note that this implies that HΣ̄ is the Hilbert space dual of HΣ
and consequently, the bidual is canonically isomorphic to the original space,
as required.

The tensor product in (T2) is to be understood to be the tensor product
of Hilbert spaces and not merely the algebraic one. To make this more clear,
(T3) might have been moved before (T2), but we decided to conserve the
numbering of [6].

Note that for the amplitude map of axiom (T4) we may “dualize” bound-
aries (as stated explicitly in the version of [6]). This means that if the
boundary Σ of a region M decomposes into disconnected components
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Σ1 ∪ · · · ∪ Σn, the amplitude map ρM gives rise to a map ρ̃M : HΣ1 ⊗ · · · ⊗
HΣk

→ HΣ̄k+1
⊗ · · · ⊗ HΣ̄n

. This is simply obtained by dualizing the tensor
components HΣk+1 , . . . ,HΣn . Actually, it is not guaranteed that ρ̃M exists,
the obstruction being that the image of a state might not be normalizable.
Such an induced map (if it exists) is used in axioms (T4b) and (T5). Note
that we could formulate (T5) also with the original amplitude maps by
inserting in the pair of Hilbert spaces for the common boundary a Hilbert
basis times its dual.

We now turn to the physical meaning of the axioms. The state spaces
of axiom (T1) are supposed to represent in some way spaces of physical
situations. In contrast to the standard formalism, a state is not in general
supposed to encode “the situation of the whole world.” Rather, (as we shall
see in more detail in the probability interpretation) it may be thought of as
encoding some “knowledge” about a physical situation or more concretely,
an experiment. Furthermore, the localization in space-time of the hypersur-
face to which it is associated has the connotation of localization of knowledge
about a process or measurement. Another possible connotation is that of
information (encoded in states) “flowing” through the hypersurface.

The axiom (T1b) serves to enable us to identify a state on a hypersurface
with the state on the “other side” of that hypersurface that has the same
physical meaning. Axiom (T2) tells us that the physical situations (or infor-
mation) associated to disconnected hypersurfaces is a priori “independent.”
(Recall that the Hilbert space of a system of two independent components
in the standard formulation is the tensor product of the individual Hilbert
spaces.) Axiom (T3) establishes the inner product and thus lets us decide
when states (e.g., experimental circumstances) are mutually exclusive.

Axiom (T4) postulates an amplitude map. The name “amplitude” is
chosen to reflect the fact that this amplitude map serves to generalize the
concept of transition amplitude in the standard formulation. An amplitude
here is associated to a region of space-time. This generalizes the time interval
determining a transition amplitude. The idea is that the process we are
trying to describe takes place in this space-time region. At the same time
the knowledge or information we use in its description resides on the (state
spaces of the) boundary.

Axiom (T4b) says roughly the following: If we take a state on Σ1, evolve
it along M to Σ̄2, conjugate it via ι to Σ2, evolve it back along M to Σ̄1,
conjugate again via ι to Σ1, then we get back the original state. As we
shall see, this axiom is responsible for a notion of probability conservation,
generalizing the corresponding notion of temporal probability conservation
in the standard formulation. Axiom (T5) may be described as follows: Given
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a state on Σ1, evolving it first along M1 to Σ̄ and then along M2 to Σ̄2
yields the same result as evolving it directly from Σ1 to Σ̄2 along M1 ∪
M2. This axiom describes the composition of processes and generalizes the
composition of time evolutions of the standard formulation.

3 Recovering the standard formulation

The explanation of the physical meaning of the axioms so far has been rather
vague. We proceed in the following to make it concrete. The first step in this
is to show how exactly the standard formulation is recovered. This clarifies,
in particular, in which sense the proposed formulation is an extension of the
standard one, rather than a modification of it.

Suppose we are interested in a quantum process, which in the standard
formalism is described through a transition amplitude from a time t1 to a
time t2. The space-time region M associated with the process is the time
interval [t1, t2] times all of space. The boundary ∂M of M consists of two
disconnected components Σ1 and Σ̄2, which are equal-time hyperplanes at
t1 and t2, respectively. Note that they have opposite orientation. Σ1 is
oriented towards the past and Σ̄2 towards the future. This is illustrated in
figure 1. Using axiom (T2) the total state space H∂M [postulated by (T1)]
decomposes into the tensor product HΣ1 ⊗ HΣ̄2

of state spaces associated
with these hyperplanes. Thus, a state in H∂M is a linear combination of
states obtained as tensor products of states in HΣ1 and HΣ̄2

.

Figure 1: The standard setup of a pair of equal-time hyperplanes enclosing
a time interval.
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Now consider a state ψΣ1 on Σ1 and a state ηΣ̄2
on Σ̄2. We will make

use of axiom (T1b) to convert ηΣ̄2
to a state ηΣ2 := ιΣ̄2

(ηΣ̄2
) on the same

hyperplane, but with the opposite orientation (i.e., oriented as Σ1). Consider
the amplitude ρM : HΣ1 ⊗ HΣ̄2

→ C postulated by axiom (T4). It induces a
linear map ρ̃M : HΣ1 → HΣ2 in the manner described above. We may thus
rewrite the amplitude as

ρM (ψΣ1 ⊗ ηΣ̄2
) = (ηΣ̄2

, ρ̃M (ψΣ1))Σ2

= (ιΣ2(ηΣ2), ρ̃M (ψΣ1))Σ2 = 〈ηΣ2 , ρ̃M (ψΣ1)〉Σ2 ,

where (·, ·)Σ2 is the bilinear pairing of axiom (T3) and 〈·, ·〉Σ2 is the induced
inner product.

The final expression represents the transition amplitude from a state ψΣ1

at time t1 to a state ηΣ̄2
at time t2. What appears to be different from the

standard formulation is that the two states live in different spaces (apart
from the fact that one would be a ket-state and the other a bra-state).
However, as we shall see later (Section 6.2), we may use time-translation
symmetry to identify all state spaces associated to (past-oriented say) equal-
time hypersurfaces. This is then the state space H of the standard formalism.
Consequently, the linear map ρ̃M is then an operator on H, namely the
time-evolution operator. Given that ρ̃M is invertible (as it should be, see the
discussion in Section 6.3) axiom (T4b) ensures its unitarity. Note that axiom
(T5) ensures in this context the composition property of time-evolutions.
Namely, evolving from time t1 to time t2 and then from time t2 to time t3
is the same as evolving directly from time t1 to time t3.

Thus, we have seen how to recover standard transition amplitudes and
time-evolution from the present formalism. Indeed, we could restrict the
allowed hypersurfaces to equal-time hyperplanes and the allowed regions to
time interval times all of space. Then, the proposed formulation would be
essentially equivalent to the standard one. Of course, the whole point is that
we propose to admit more general hypersurfaces and more general regions.

Starting from a theory in the standard formulation the challenge is
twofold. Firstly, we need to show that the extended structures (state spaces,
amplitudes, etc.) exist, are coherent (satisfy the axioms), and reduce to the
standard ones as described above. This is obviously non-trivial, i.e., a given
theory may or may not admit such an extension. We have argued elsewhere
[3] that crossing symmetry of the S-matrix (as manifest, for example, in
the LSZ reduction scheme) is a very strong hint that generic quantum field
theories do admit such an extension.

Secondly, we need to give a physical interpretation to these new struc-
tures. A key element of the physical interpretation in the standard formalism
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is the possibility to interpret the modulus square of the transition ampli-
tude as a probability. In the context above its is clear that |ρM (ψΣ1 ⊗ ηΣ̄2

)|2
denotes the probability of observing the state ηΣ̄2

given that the state ψΣ1

was prepared. Indeed, the modulus square of the amplitude function gen-
erally plays the role of an (unnormalized) probability. The details of the
probability interpretation in the general boundary formulation, constituting
perhaps the most significant aspect of the present work, are discussed in the
following section.

4 Probability interpretation

4.1 Examples from the standard formulation

To discuss the probability interpretation, we start with a review of it in
the standard formulation. Let ψ ∈ H1 be the (normalized) ket-state of a
quantum system at time t1, η ∈ H2̄ a (normalized) bra-state at time t2.3

The associated transition amplitude A is given by A = 〈η|U |ψ〉, where U :
H1 → H2 is the time-evolution operator of the system, evolving from time
t1 to time t2. The associated probability P is the modulus square of A, i.e.,
P = |A|2. What is the physical meaning of P? The simplest interpretation
of this quantity is as expressing the probability of finding the state η at time
t2 given that the state ψ was prepared at time t1. Thus, we are dealing
with a conditional probability. To make this more explicit let us write it
as P (η|ψ) (read: the probability of η conditional on ψ). An important
ingredient of this interpretation is that the cumulative probability of all
exclusive alternatives is 1. The meaning of the latter is specified with the
help of the inner product. Thus, let {ηi}i∈I be an orthonormal basis of H2̄,
representing a complete set of mutually exclusive measurement outcomes.
Then,

∑
i∈I P (ηi|ψ) =

∑
i∈I〈ηi|U |ψ〉 = 1.

This interpretation might be extended in obvious ways. Suppose, for
example, that we know a priori that only certain measurement outcomes
might occur. (We might select a suitable subset of performed measure-
ments.) A way to formalize this is to say that the possible measurement
outcomes lie in a (closed) subspace S2̄ of H2̄. Suppose {ηi}i∈J is an orthonor-
mal basis of S2̄. We are now interested in the probability of a given outcome
specified by a state ηk conditional both on the prepared state being ψ and

3H2̄ indicates a space of bra-states, i.e., the Hilbert dual of the space H2 of ket-states.
Usually of course one considers only one state space, i.e., H1 and H2 are canonically
identified. We distinguish them here formally to aid the later comparison with the general
boundary formulation.



GENERAL BOUNDARY QUANTUM FIELD THEORY 331

knowing that the outcome must lie in S2̄. Denote this conditional probabil-
ity by P (ηk|ψ, S2̄). To obtain it we must divide the conditional probabil-
ity P (ηk|ψ) by the probability P (S2̄|ψ) that the outcome of the measure-
ment lies in S2̄ given the prepared state is ψ. This is simply P (S2̄|ψ) =∑

i∈J P (ηi|ψ) =
∑

i∈J |〈ηi|U |ψ〉|2. Supposing the result is not zero (which
would imply the impossibility of obtaining any measurement outcome in S2̄
and thus the meaninglessness of the quantity P (ηk|ψ, S2̄)),

P (ηk|ψ, S2̄) =
P (ηk|ψ)
P (S2̄|ψ)

=
|〈ηk|U |ψ〉|2

∑
i∈J |〈ηi|U |ψ〉|2 .

We can further modify this example by testing not against a single state,
but a closed subspace A2̄ ⊆ S2̄, denoting the associated conditional proba-
bility by P (A2̄|ψ, S2̄). This is obviously the sum of conditional probabilities
P (ηk|ψ, S2̄) for an orthonormal basis {ηi}i∈K of A2̄ (we suppose here that
the orthonormal basis of S2̄ is chosen such that it restricts to one of A2̄).
That is,

P (A2̄|ψ, S2̄) =
∑

i∈K |〈ηi|U |ψ〉|2
∑

i∈J |〈ηi|U |ψ〉|2 .

A conceptually different extension is the following. Suppose {ψi}i∈I is
an orthonormal basis of H1. Then, the quantity P (ψk|η) = |〈η|U |ψk〉|2
describes the conditional probability of the prepared state having been ψk

given that η was measured. This may be understood in the following sense.
Suppose somebody prepared a large sample of measurements with random
choices of initial states ψi.4 We then perform measurements as to whether
the final state is η or not (the latter meaning that it is orthogonal to η).
The probability distribution of the initial states ψk in the sample of mea-
surements resulting in η is then given by P (ψk|η).

These examples are supposed to illustrate two points. Firstly, the modulus
square of a transition amplitude might be interpreted as a conditional prob-
ability in various different ways. Secondly, there are different alternatives as
to which part of the measurement process may be considered conditional on
which other one. In particular, the interpretation is not restricted to “final
state conditional on initial state.”

4Here as elsewhere in the elementary discussion of probabilities we may assume for
simplicity that state spaces are finite dimensional. This avoids difficulties of the infinite
dimensional case which might require the introduction of probability densities, etc.
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4.2 Probabilities in the general boundary formulation

These considerations together with the general philosophy of the general
boundary context lead us to the following formulation of the probability
interpretation. Let H be the generalized state space describing a given
physical system or measurement setup (i.e., it is the state space associated
with the boundary of the space-time region where we consider the process to
take place). We suppose that a certain knowledge about the process amounts
to the specification of a closed subspace S ⊂ H. That is, we assume that
we know the state describing the measurement process to be part of that
subspace. Say we are now interested in evaluating whether the measurement
outcome corresponds to a closed subspace A ⊆ S. That is, we are interested
in the conditional probability P (A|S) of the measurement process being
described by A given that it is described by S. Let {ξi}i∈I be an orthonormal
basis of S which reduces to an orthonormal basis {ξi}i∈J⊆I of A. Then,

P (A|S) =
∑

i∈J |ρ(ξi)|2
∑

i∈I |ρ(ξi)|2
.

By construction, 0 ≤ P (A|S) ≤ 1. (Again it is assumed that the denomina-
tor is non-zero. Otherwise, the conditional probability would be physically
meaningless.) One might be tempted to interpret the numerator and the
denominator separately as probabilities. However, that does not appear to
be meaningful in general. As a special case, if A has dimension 1, being
spanned by one normalized vector ξ we also write P (A|S) = P (ξ|S).

Let us see how the above examples of the probability interpretation in the
standard formulation are recovered. Firstly, we have to suppose that the
state space factors into a tensor product of two state spaces, H = H1 ⊗ H2̄.
Select a state ψ ∈ H1 and set Sψ := {ξ ∈ H|∃η ∈ H2̄ : ξ = ψ ⊗ η} ⊂ H. Let
us denote by {ψ ⊗ ηi}i∈I an orthonormal basis of Sψ. Then, the probability
of “observing η ∈ H2̄” subject to the “preparation of ψ ∈ H1” turns out as

P (ψ ⊗ η|Sψ) =
|ρ(ψ ⊗ η)|2

∑
i∈I |ρ(ψ ⊗ ηi)|2

.

Comparing the notation to the standard formalism, i.e., recognizing ρ(ψ ⊗
η) = 〈η|U |ψ〉 shows that we recover the standard result P (η|ψ), up to a
normalization factor, depending as it seems on ψ.

Similarly, the second example is recovered by setting S(ψ,S2̄) := {ξ ∈ H|∃η
∈ S2̄ : ξ = ψ ⊗ η} ⊂ H. Taking an orthonormal basis {ψ ⊗ ηi}i∈J , we get
agreement of P (ψ ⊗ ηk|S(ψ,S2̄)) with P (ηk|ψ, S2̄) (with correct normaliza-
tion). The modified example is recovered with A(ψ,A2̄) := {ξ ∈ H|∃η ∈ A2̄ :
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ξ = ψ ⊗ η} ⊂ H via P (A2̄|ψ, S2̄) = P (A(ψ,A2̄)|S(ψ,S2̄)). For the third exam-
ple set Sη := {ξ ∈ H|∃ψ ∈ H1 : ξ = ψ ⊗ η} ⊂ H and let {ψi ⊗ η}i∈I be an
orthonormal basis of H1. Then, P (ψk ⊗ η|Sη) recovers P (ψk ⊗ η) up to a
normalization factor which is the inverse of

∑
i∈I |ρ(ψi ⊗ η)|2.

4.3 Probability conservation

Observe now that the split of the state space H into the components H1 ⊗ H2̄
in the standard geometry of parallel spacelike hyperplanes is of a rather
special nature. Firstly, each of the tensor components separately has an
inner product and these are such that they are compatible with the inner
product on H in the sense that

〈ψ ⊗ η, ψ′ ⊗ η′〉H = 〈ψ, ψ′〉H1〈η, η′〉H2̄
,

as guaranteed by axioms (T2b) and (T3b). Thus, in the first example we
may choose ψ to be normalized and {ηi}i∈I becomes an orthonormal basis
of H2̄. Secondly, the induced map ρ̃ : H1 → H2 should be an isomorphism
(again, we refer to a discussion of this later). Thus, by axiom (T4b) it must
conserve the inner product. This implies in the example that

∑
i∈I |ρ(ψ ⊗

ηi)|2 equals unity since it may be written as
∑

i∈I |〈ι2(ηi), ρ̃(ψ)〉H2 |2. By
similar reasoning, the normalization factor in the third example equals unity.

The splitting of the boundary state space into a tensor product in the
way just described may serve as a global way of determining some part
of the measurement process as conditional on another one. This includes
automatic normalizations. The map ρ̃ may then be seen as describing an
“evolution.” Its compatibility with the inner products (usually called uni-
tarity) leads to what is known as “conservation of probability,” ensuring in
this context the consistency of the interpretation. This is the deeper mean-
ing of axiom (T4b). Note that it only applies if ρ̃ is invertible, otherwise it
makes no sense to talk about “conservation.” As shown in a concrete exam-
ple in the companion paper [5], such a splitting of the state space can also
occur in cases where the boundary does not decompose into disconnected
components. Of course it is then not axiomatically enforced, but part of the
given theory.

The most general way of expressing “probability conservation” in the
present formalism [as ensured by axiom (T4b)] may be described as follows.
Let M and N be manifolds with disjoint interiors. Let Σ be the boundary of
the union M ∪ N and Σ′ be the boundary of M . Denote the associated state
spaces with H and H′. Then ρN gives rise to a map ρ̃N : H → H′. Suppose
that this map is invertible. Let A ⊆ S ⊂ H be closed subspaces. Denote
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Figure 2: A region M with an adjacent smaller region N , “deforming” it.

their images under ρ̃N by A′ ⊆ S ′ ⊂ H′. Then, the following equality of
conditional probabilities holds,

P (A|S) = P (A′|S ′).

To provide an intuitive context of application for the above consider the
following. Let M be some space-time region. Now consider a “small” region
N , adjacent to M such that M ∪ N may be considered a “deformation” of
M , see figure 2 for an illustration. Then, as described above, the ampli-
tude map for N gives rise to the map ρ̃N interpolating between the state
spaces associated with the boundary of M and its deformation M ∪ N . Since
we are dealing with a “small” deformation this map should be an isomor-
phism and consequently preserve the inner product. Then, we may say that
probabilities are “conserved under the deformation.”

5 Vacuum axioms

The main property of the vacuum state in standard quantum field theory
is its invariance under time-evolution. In the present context, we expect a
family of vacuum states, namely one for each oriented hypersurface. How-
ever, we will continue to talk about “the” vacuum state, since the members
of this family should be related to each other through certain coherence con-
ditions. It is quite straightforward to formulate these coherence conditions
in axiomatic form.

(V1) For each hypersurface Σ there is a distinguished state ψΣ,0 ∈ HΣ, called
the vacuum state.

(V2) The vacuum state is compatible with the involution. That is, for any
hypersurface Σ, ψΣ̄,0 = ιΣ(ψΣ,0).

(V3) The vacuum state is multiplicative. Suppose the hypersurface Σ decom-
poses into disconnected components Σ1 ∪ Σ2. Then ψΣ,0 = ψΣ1,0 ⊗
ψΣ2,0.
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(V4) The vacuum state is normalized. On any hypersurface Σ, 〈ψΣ,0,
ψΣ,0〉 = 1.

(V5) The amplitude of the vacuum state is unity, ρM (ψ∂M,0) = 1.

An important consequence of these properties in combination with the
core axioms is that they enforce “conservation” of the vacuum under gen-
eralized evolution, generalizing time-translation invariance. Consider the
situation of axiom (T4b). That is, we have a region M with boundary
decomposing into disconnected components Σ1 and Σ2, and the amplitude
gives rise to an isomorphism of vector spaces ρ̃M : HΣ1 → HΣ̄2

. The image
of the vacuum state ψΣ1,0 under ιΣ̄2

◦ ρ̃M obviously may be written as a lin-
ear combination αψΣ2,0 + βψΣ2,1 where α and β are complex numbers and
ψΣ2,1 is a normalized state orthogonal to the vacuum state ψΣ2,0. On the
other hand, by definition of ρ̃M we have the equality ρM (ψΣ1,0 ⊗ ψΣ2,0) =
〈ιΣ̄2

◦ ρ̃M (ψΣ1,0), ψΣ2,0〉Σ2 . Properties (V3) and (V5) of the vacuum then
imply α = 1. On the other hand axiom (T4b) implies preservation of the
norm by ρ̃M and hence by ιΣ̄2

◦ ρ̃M . Since the vacuum is normalized by
axiom (V4) this forces |α|2 + |β|2 = 1. Hence, β = 0.

Conversely, we may use this conservation property to transport the vac-
uum state from one hypersurface to another one. This might lead one to
suggest the following prescription for the vacuum state [2, 8]. Consider a
region M with boundary Σ. The amplitude ρM : HΣ → C gives rise to a
linear map ρ̃M : C → HΣ̄ by dualization and hence to a state ψM ∈ HΣ̄. In
fact, this is “almost” true. Namely, in the general case of infinite dimen-
sional state spaces we should expect this state ψM not to be normalizable
and hence not to exist in the strict sense. Let us ignore this problem. It is
easy to see that by its very definition this state is automatically conserved
via axiom (T5) in the way described above. Nevertheless, it is not a good
candidate for a vacuum state in the sense of “ground state” or “no-particle
state.” Namely, given such a vacuum state ψΣ̄,0 ∈ HΣ̄ there should be some
“excited state” ψs ∈ HΣ̄ that is orthogonal to it and produces a non-zero
amplitude via ρM (ιΣ̄(ψs)) �= 0. However, by construction of ψM , we have
〈ψs, ψM 〉Σ̄ = ρM (ιΣ̄(ψs)) �= 0. Hence ψM cannot be (a multiple of) the vac-
uum state ψΣ̄,0. Note that to arrive at this conclusion we have used only
the core axioms, but none of the properties proposed above for the vacuum.

A single, uniquely defined vacuum state per hypersurface represents merely
the simplest possibility for realizing the concept of a vacuum. A rather
obvious generalization would be to a subspace of “vacuum states” per hyper-
surface. Approaches to quantum field theory in curved space-time indeed
indicate that this might be required [9]. We limit ourselves here to the
remark that it is rather straightforward to adapt the above axioms to such
a context.
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6 Backgrounds and space-time symmetries

6.1 Background structures

The general boundary formulation is supposed to be applicable to contexts
where the basic space-time objects entering the formulation, namely regions
and hypersurfaces, may have a variety of meanings. In Section 2 we already
mentioned the context corresponding to standard quantum field theory.
Namely, space-time is Minkowski space, regions are 4-dimensional subman-
ifolds and hypersurfaces are closed oriented 3-dimensional submanifolds.

The context with a minimal amount of structure is that of topological
manifolds with a given dimension d. Thus, regions would be d+1-dimensional
topological manifolds and hypersurfaces would be closed oriented
d-dimensional topological manifolds. This is the context where the axioms
are most closely related to topological quantum field theory [2]. An addi-
tional layer of structure is given by considering differentiable manifolds, i.e.,
we add a differentiable structure. Another layer of structure that is crucial
in ordinary quantum field theory is the (usually pseudo-Riemannian) met-
ric structure. There are a variety of other structures of potential interest in
various contexts such as complex structure, spin structure, volume form, etc.

Any structure additional to the topological or differentiable one is usually
referred to as a background. (Sometimes this terminology includes the topo-
logical structure as well.) In addition to considering the core axioms within
different types of backgrounds, we can make a further choice. Namely, we
might regard the regions and hypersurfaces as manifolds in their own right,
each equipped with its prescribed background structure. Then, boundaries
inherit the background structure from the region they bound, and the glu-
ing of regions must happen in such a way that the background structure is
respected. On the other hand, we might prescribe a global space-time in
which regions and hypersurfaces appear as submanifolds of codimension 0
and 1, respectively. In this case, the space-time manifold carries the back-
ground structure which is inherited by the regions and hypersurfaces. To dis-
tinguish the two situations we will refer to the former as a local background
and to the latter as a global background. For example, in the standard
quantum field theoretic context we choose a global Minkowski background.

Let us briefly discuss various background structures appropriate in a
few situations of interest. As already mentioned, the natural choice for
standard quantum field theory is that of a global Minkowski space-time
background. If we are interested in quantum field theory on curved space-
time we might simply replace Minkowski space with another global metric
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background space-time. However, if we wish to describe quantum field the-
ory on curved spacetimes in general, we might want to use local metric
backgrounds. This would implement a locality idea inherent in the general
boundary formulation, namely that processes happening in a given region of
space-time are not dependent on the structure of space-time somewhere else.
In conformal field theory we would have d = 1 and local complex background
structures. Indeed, Segal’s axiomatization of conformal field theory along
such lines at the end of the 1980s [10, 11] had a seminal influence on the
mathematical framework of topological quantum field theory as expressed
in Atiya’s formalization [2].

Finally, in a hypothetical quantum theory of general relativity there would
be no metric background. Due to the background differential structure
inherent in classical general relativity one might expect the same choice of
background in the quantum theory, i.e., merely a local differentiable struc-
ture. It is also conceivable that one has to be more general and consider
merely topological manifolds. A relevant discussion can be found in [12].
Even more exotic “sums over topologies” may be considered, going back to
a proposal of Wheeler [13]. Implementing these would require a modification
of the present framework.

6.2 Symmetries

Spacetime transformations act on regions and hypersurfaces. It is natural
to suppose that these induce algebraic transformations on state spaces and
amplitude functions. In topological quantum field theory such transforma-
tions indeed usually form an integral part of the framework [2]. On the other
hand, we are all familiar with the importance of the Poincaré group and its
representations for quantum field theory.

Spacetime transformations are intimately related to the background struc-
ture. We may consider rather general transformations (e.g., homeomor-
phisms or diffeomorphisms) or only such transformations that leave a back-
ground structure invariant. Furthermore, a crucial difference arises depend-
ing on whether the background is global or local. In the former case, we
consider transformations of the given space-time as a whole. These then
induce transformations of or between regions and hypersurfaces considered
as submanifolds. In the latter case, we consider transformations of a region
or hypersurface considered as a manifold with background structure in its
own right. In particular, each region or hypersurface a priori comes equipped
with its own transformation group.
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In standard quantum field theory, we consider only transformations that
leave the global Minkowski background invariant. That is, the group of
space-time transformations is the group of isometries of Minkowski space,
the Poincaré group. If we consider quantum field theory on another global
metric background we might equally restrict space-time transformations to
isometries. More general transformations would make sense if we wish to
consider an ensemble of backgrounds. Alternatively, if we are interested
in quantum field theory in general curved space-time utilizing local back-
grounds we would use general transformations, too, probably diffeomor-
phisms. But these would be local diffeomorphisms of the regions and hyper-
surfaces themselves and not global ones, of a whole space-time. The latter
transformations seem also the most natural ones for a quantum theory with-
out metric background (such as quantum general relativity). Of course, in
that case there is no metric background which they modify.

Since the natural transformation properties of state spaces and amplitude
functions take a somewhat different form depending on whether we are deal-
ing with a global or a local background, we will separate the two cases. We
start with the case of a global background.

6.2.1 Global backgrounds

Let G be a group of transformations acting on space-time. We demand
that this group maps regions to regions and hypersurfaces to hypersurfaces.
(Recall that there are generally restrictions as to what d+1-submanifold
qualifies as a region and what closed oriented d-manifold qualifies as a hyper-
surface, see Section 9.) Let g ∈ G. We denote the image of a hypersurface
Σ under g by g 
 Σ. Similarly we denote the image of a region M under g
as g 
 M . We postulate the following axioms.

(Sg1) The action of G on hypersurfaces induces an action on the ensemble of
associated state spaces. That is, g ∈ G induces a linear isomorphism
HΣ → Hg�Σ, which we denote on elements as ψ �→ g 
 ψ. It has the
properties of a (generalized) action, i.e., g 
 (h 
 ψ) = (gh) 
 ψ and
e 
 ψ = ψ, where e is the identity of G.5

(Sg2) The action of G on state spaces is compatible with the involution.
That is, ιg�Σ(g 
 ψ) = g 
 ιΣ(ψ) for any g ∈ G and any hypersurface Σ.

(Sg3) The action of G on state spaces is compatible with the decomposition
of hypersurfaces into disconnected components. Suppose Σ = Σ1 ∪ Σ2

5Note that in spite of the suggestive notation this is not an action in the usual sense.
Indeed, a group element here generally maps a state from one space to a state in a different
state space. Nevertheless we will use the word “action” for simplicity.
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is such a decomposition, then we require g 
 (ψ1 ⊗ ψ2) = g 
 ψ1 ⊗ g 

ψ2 for any g ∈ G, ψ1 ∈ HΣ1 , ψ2 ∈ HΣ2 .

(Sg4) The action of G on state spaces is compatible with the bilinear form.
That is, (g 
 ψ1, g 
 ψ2)g�Σ = (ψ1, ψ2)Σ.

(Sg5) The action of G on regions leave the amplitudes invariant, i.e., ρg�M (g 

ψ) = ρM (ψ) where M is any region, ψ any vector in the state space
associated to its boundary.

(SgV) The vacuum state is invariant under G, i.e., g 
 ψΣ,0 = ψg�Σ,0.

6.2.2 Local backgrounds

We now turn to the case of local backgrounds. In this case we associate
with each region M its own transformation group GM that maps M to
itself (but with possibly modified background). In particular, GM preserves
boundaries. Similarly, each hypersurface Σ carries its own transformation
group GΣ, mapping Σ to itself (again with possibly modified background).
Furthermore, we demand that for any region M with boundary Σ there
is a group homomorphism GM → GΣ that describes the induced action
of GM on the boundary. We denote the image of Σ under g ∈ GΣ by
g 
 Σ. Similarly, we denote the image of the region M under the action
of GM by g 
 M . We use the same notation for the induced action on the
boundary Σ of M .

(Sl1) The action of GΣ on Σ induces an action on the ensemble of state
spaces associated with the different background structures of Σ. That
is, g ∈ GΣ induces a linear isomorphism HΣ → Hg�Σ, which we denote
on elements as ψ �→ g 
 ψ. It has the properties of a (generalized)
action, i.e., g 
 (h 
 ψ) = (gh) 
 ψ and e 
 ψ = ψ, where e is the identity
of GΣ.

(Sl2) GΣ is compatible with the involution. That is, GΣ̄ = GΣ are canon-
ically identified, with ιg�Σ(g 
 ψ) = g 
 ιΣ(ψ) for any g ∈ GΣ and any
hypersurface Σ.

(Sl3) GΣ is compatible with the decomposition of hypersurfaces into dis-
connected components. Suppose Σ = Σ1 ∪ Σ2 is such a decomposi-
tion. Consider the subgroup G′

Σ ⊆ GΣ that maps the components to
themselves. Then, G′

Σ = GΣ1 × GΣ2 such that (g1, g2) 
 (ψ1 ⊗ ψ2) =
g1 
 ψ1 ⊗ g2 
 ψ2 for any g1 ∈ GΣ1 , g2 ∈ GΣ2 , ψ1 ∈ HΣ1 ,d ψ2 ∈ HΣ2 .

(Sl4) GΣ is compatible with the bilinear form. That is, (g 
 ψ1, g 
 ψ2)g�Σ =
(ψ1, ψ2)Σ.

(Sl5) GM leaves the amplitude ρM invariant, i.e., ρg�M (g 
 ψ) = ρM (ψ) where
M is any region, ψ any vector in the state space associated to its
boundary.

(SlV) The vacuum state is invariant under GΣ, i.e., g 
 ψΣ,0 = ψg�Σ,0.
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These axioms, both in the global as well as in the local case are supposed
to describe only the most simple situation. It might be necessary to modify
them, for example, introducing phases, cocycles, etc.

6.3 Invertible evolution

Let us return to a question that has arisen in Section 3 in the context
of recovering the standard formulation of quantum mechanics. Consider a
time interval [t1, t2] giving rise to a corresponding region M of space-time.
Denote the two components of the bounding hypersurface by Σ1 and Σ̄2,
respectively, see figure 1. Firstly, the core axioms do not tell us that there is
a (natural) isomorphism between the state spaces HΣ1 and HΣ2 . However,
it is clear that this is related to time translations. Indeed, we are in the
context of a global metric background and suppose that its isometry group
G includes time translations. A time translation gΔ ∈ G by the amount
Δ = t2 − t1 maps Σ1 to Σ2. Thus, by axiom (Sg1) the state spaces HΣ1 and
HΣ2 are identified through the induced action. Indeed, we may use time
translations to identify all equal-time hypersurfaces in this way, arriving at
the state space of quantum mechanics.

A second point noted in Section 3 is that even given natural isomorphisms
between the state spaces, it does not follow from the core axioms that the
amplitude function ρM : HΣ1 ⊗ HΣ2 → C yields an isomorphism of vector
spaces ρ̃M : HΣ1 → HΣ2 . It should also be clear why we cannot simply
enforce this on the level of the core axioms. Namely, intuitively, we only
expect an isomorphism if M connects in a suitable way Σ1 and Σ2 and if Σ1
and Σ2 have the “same size.” We will come back to the discussion of “sizes”
of state spaces in Section 8.

Enforcing the existence of an isomorphism ρ̃M in suitable situations
may be achieved along the lines of the following procedure using an
isotopy. Let G by the transformation group of the global background B
in question. Suppose there is a smooth map α : I → G from the unit
interval to G such that α(0) = e, (e the neutral element of G) and α(1) 

Σ1 = Σ2. Furthermore, assume that the induced map I × Σ → B has
image M and is a diffeomorphism (or just homeomorphism in the
absence of differentiable structure) onto its image. Then, require that the
amplitude map induces an isomorphism of vector spaces (and by
axiom (T4b) thus of Hilbert spaces) ρ̃M : HΣ1 → HΣ̄2

. This prescription
would apply in particular to the standard formulation, enforcing an invert-
ible (and by axiom (T4b) thus unitary) time-evolution operator as
required.
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7 Schrödinger representation and Feynman integral

The Schrödinger representation, i.e., the representation of states in terms
of wave functions, together with the Feynman path integral, provides a
natural context for the realization of the general boundary formulation [6, 8].
The former facilitates an intuitive implementation of the axioms relating to
states, while the latter (seems to) automatically satisfy the composition
axiom (T5). Let us give a rough sketch of this approach in the following.

We suppose that there is a configuration space KΣ associated to every
hypersurface Σ. We define the state space HΣ to be the space of (suitable)
complex valued functions on KΣ, called wave functions, providing (T1).
(This was denoted (Q1) in [6].) We suppose that KΣ is independent of the
orientation of Σ. Thus, the state spaces on Σ and its oppositely oriented
version Σ̄ are the same, HΣ = HΣ̄. The antilinear involution ιΣ : HΣ → HΣ̄
is given by the complex conjugation of functions. That is, for any wave
function ψ ∈ HΣ and any configuration ϕ ∈ KΣ, we have (ιΣ(ψ))(ϕ) = ψ(ϕ),
satisfying (T1b).

We suppose that the configuration space on a hypersurface Σ consisting
of disconnected components Σ1 and Σ2 is the product of the individual
configuration spaces, KΣ = KΣ1 × KΣ2 . This implies, HΣ = HΣ1 ⊗ HΣ2 ,
i.e., (T2). Since the complex conjugate of a product is the product of the
complex conjugates of the individual terms (T2b) follows.

Given a measure on the configuration spaces, a bilinear form HΣ̄ ⊗ HΣ →
C is defined via

(ψ, ψ′)Σ =
∫

KΣ

Dϕ ψ(ϕ)ψ′(ϕ). (7.1)

This induces the inner product

〈ψ, ψ′〉Σ =
∫

KΣ

Dϕ ψ(ϕ)ψ′(ϕ). (7.2)

This yields (T3). Since the integral over a product of spaces is the product
of the integrals over the individual spaces we have (T3b).

Let M be a region with boundary Σ. The amplitude of a wave
function ψ ∈ HΣ is given by the following heuristic path integral formula,
providing (T4),

ρM (ψ) =
∫

KΣ

Dϕ ψ(ϕ)ZM (ϕ), with ZM (ϕ) =
∫

KM ,φ|Σ=ϕ
Dφ e(i/�)SM (φ).

(7.3)
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(This was denoted (Q2) in [6].) The second integral is over “all field con-
figurations” φ in the region M that reduce to ϕ on the boundary. SM is
the action integral over the region M . The quantity ZM (ϕ) is also called
the field propagator. It formally looks like a wave function and thus like a
state. Indeed, this is precisely the state ψM briefly discussed at the end of
Section 5. As already mentioned there, ψM is in general not normalizable
and thus not a state in the strict sense.6

Consider a region M with boundary Σ decomposing into two disconnected
components Σ1 and Σ2. Then, we can immediately write down the formal
map ρ̃M : HΣ1 → HΣ̄2

induced by the amplitude map ρM . Namely,

(ρ̃M (ψ))(ϕ′) =
∫

KΣ1

Dϕ ψ(ϕ)ZM (ϕ, ϕ′), (7.4)

where ϕ′ ∈ KΣ̄2
. Of course, the strict existence of the resulting state depends

on its normalizability. Suppose that it does exist and that ρ̃M provides an
isomorphism of vector spaces. It is then easy to see that the validity of
axiom (T4b), i.e., the preservation of the inner product (7.2) or unitarity
would follow from the formal equality

∫

KΣ2

Dϕ2 ZM (ϕ1, ϕ2)ZM (ϕ′
1, ϕ2) = δ(ϕ1, ϕ

′
1), (7.5)

for ϕ1, ϕ
′
1 ∈ KΣ1 . This basically says that the conjugate of the propagator

describes the inverse of the original propagator.

Finally, in the context of axiom (T5) the condition ρ̃M1∪M2 = ρ̃M2 ◦ ρ̃M1

translates to the following condition on propagators,
∫

KΣ̄

Dϕ ZM1(ϕ1, ϕ)ZM2(ϕ, ϕ2) = ZM1∪M2(ϕ1, ϕ2), (7.6)

with ϕ1 ∈ KΣ1 and ϕ2 ∈ KΣ̄2
. If we write the propagator in terms of the

path integral (7.3) the validity of (7.6) becomes obvious. Namely, it just
says that we may choose a slice in a region and split a path integral over the
region as follows: One integral over configurations in the slice and an integral
over the whole region restricted to configurations matching the given one on
the slice. Thus, (T5) holds.

6In [8] the field propagator Z was denoted by W . Furthermore, the word “vacuum”
was used for the state ψM . However, as explained at the end of Section 5 such a state has
nothing to do with the more usual notion of vacuum considered there. We thus discourage
the use of the term “vacuum” for this state.
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In fact, the picture presented so far, while being rather compelling, turns
out to be somewhat too naive. For example, it was shown in [7] (in the con-
text of the Klein–Gordon theory) that the configuration space on a time-
like hyperplane is not simply the space of “all” field configurations, but
a smaller space of physical configurations. Remarkably, the composition
rule (7.6) works with this restricted configuration space on the intermedi-
ate slice rather than the “full” configurations space one would obtain by
naively slicing the space-time path integral. Other non-trivial issues include
normalization factors, which as one might expect turn out to be generically
infinite. Nevertheless, [7] and even more so the companion article [5] show
(for the Klein–Gordon theory) that the Schrödinger–Feynman approach to
the implementation of the general boundary formulation is a viable one.

8 The shape of regions and the size of state spaces

So far we have been rather vague about what kind of regions and what
kind of hypersurfaces are actually admissible. For simplicity, let us discuss
this question in the context of a global Minkowski background. It is then
clear that regions are 4-dimensional submanifolds and hypersurfaces are 3-
dimensional closed oriented submanifolds. In fact, given that we know which
regions are admissible, we can easily say which hypersurfaces are admissible.
Namely, any hypersurface is admissible that arises as the boundary of an
admissible region or a connected component thereof. So, which regions are
admissible?

Unfortunately, at this stage we do not have a complete answer to this ques-
tion. In the following we give some partial answers that are mainly obtained
through experience with the application of this framework to quantum field
theory in general (along the lines of Section 7) and the Klein–Gordon theory
[7, 5] in particular. As should be clear from Section 4, a region must be such
that we can associate with it a “complete measurement process.” In terms
of the standard formulation this means preparation plus observation. Thus,
in that formulation the type of region of main interest is a time interval
times all of space (figure 3(b)).

On the other hand, consider a region consisting of the past (or future)
half of Minkowski space. In this situation the standard formulation applies
as well. Indeed, it tells us that no complete measurement process can be
associated with just one equal-time hyperplane (figure 3(a)). This gives us
two examples: A time-interval defines an admissible region while a (tem-
poral) half-space does not define an admissible region. How can this be
generalized?
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Figure 3: Examples of admissible and inadmissible regions (regions are hat-
ched, hypersurfaces shaded). Inadmissible: (a) the half-space. Admissible:
(b) parallel hyperplanes, (c) solid hypercylinder, (d) nested hypercylinders.

It turns out that a useful way to think about admissible regions is that the
configuration data on the boundary is essentially in one-to-one correspon-
dence to classical solutions. (Recall that we use the context of Section 7.)
Indeed, this correspondence is used in [6, 5] to calculate the field propagator
(7.3). This qualifies the time-interval as admissible (knowing the field con-
figuration at two times essentially determines a solution) while it disqualifies
the half-space as inadmissible (there are many solutions restricting to the
same field configuration at a given time).

In [6] the explicit examples of admissible regions were extended to regions
enclosed between any two parallel hyperplanes (spacelike or timelike). In the
companion paper [5] further examples are considered, in particular, a full
hypercylinder. More precisely, this is a ball in space times the time axis.
Again, its boundary data is in correspondence to classical solutions. Note
that such a situation is impossible in a traditional context of only spacelike
hypersurfaces. We have here an example where a connected boundary car-
ries states describing a complete measurement process. In particular, this
implies that there is no a priori distinction between the “prepared” and the
“observed” part of the measurement process. Hence it goes beyond the appli-
cability of the standard probability interpretation, highlighting the necessity
for and meaning of a generalized interpretation as outlined in Section 4.

Since the configuration data on the hypercylinder as well as on two par-
allel hyperplanes correspond to classical solutions, one might say that the
associated state spaces have “equal size.” Let us call these state spaces of
size 1. A single hyperplane carries half the data and we say the associated
state space has size 1

2 . In this way the size of state spaces is additive with
respect to the disjoint union of the underlying hypersurfaces.

Another valid way to obtain admissible regions should be by forming a
disjoint union of admissible regions. Physically, that means that we are
performing several concurrent and independent measurements. (The word
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“concurrent” should be understood here in a logical rather than a temporal
sense here.) We can reconcile this with the idea of a correspondence between
boundary data and a classical solution if we restrict the solution to the region
itself, rather than it being defined globally. Indeed, this intuition receives
independent confirmation from the second new example of [5]. This is a
region formed by a thick spherical shell in spacetimes the time axis. Its
boundary consists of two concentric hypercylinders. It turns out that the
data on the boundary is in correspondence to classical solutions defined on
the region, but generically containing singularities outside. Furthermore,
following this principle of correspondence yields the correct field propagator
consistent with the other results. In terms of the terminology introduced
above, the state space associated with the boundary of this region has size 2.

It thus appears that a region should be admissible if the configuration
data on its boundary is essentially in correspondence to classical solutions
defined inside the region. Note also that the size of the boundary state
space of an admissible region seems to be necessarily an integer. Of course
we expect the heuristic arguments put forward here, even if based on limited
examples, to be substantially modified or generalized in a fully worked out
theory.

Finally, our discussion was largely oriented at quantum field theory with
metric backgrounds. It [3] it was argued (motivated by the problem of time)
that in the context of a quantum theory of space-time, valid measurements
should correspond to regions with a connected boundary only. Thus, we
might expect such a further limitation on the admissibility of regions in
that context.

9 Corners and empty regions

There is another aspect concerning the shape of regions that merits attention
and points to some remaining deficiencies of the treatment so far. Most
experiments are constrained in space and time and so it seems most natural
to describe them using finite regions of space-time. Indeed, as it was argued
in [3], the region of generic interest is that of a topological 4-ball.

The most elementary composition we might think of in this context is that
of two 4-balls to another 4-ball. However, this raises an immediate problem:
To merge two 4-balls into one, we would need to glue them at parts of their
boundaries only. Thus, we would need to distinguish between different parts
of a connected hypersurface and glue only some of them. This is clearly not
covered by the composition axiom (T5) as it stands.
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Figure 4: The region N of figure 2 has corners.

If the regions have not only topological, but also differentiable structure
(as in almost every theory of conceivable physical interest) the problem is
even more serious. Namely, we need to allow corners in the boundaries of
regions to glue them consistently. One way to think about corners is as
“boundaries of boundaries.” Somewhat more precisely, the places on the
boundary where the normal vector changes its direction discontinuously, are
the corners. A simple example of a region with corners is a 4-cube (which is
topologically a 4-ball of course). It has the important property that gluing
two 4-cubes in the obvious way yields another 4-cube shaped region.

We now recognize that the region N in figure 2 actually contains corners
and thus, strictly speaking, falls outside of axiom (T5). See figure 4. In any
case, what we need is a further extension of the core axioms to accommodate
corners. Probably, we need to allow a splitting of state spaces along corners.
This could be subtle, though, possibly involving extra data on the corner
relating the two state spaces, etc. In topological quantum field theory, the
subject of corners already has received some attention, see, e.g., [14]. How-
ever, at this point we will not speculate on how they may be implemented
into the present framework.

It is interesting to note that in some situations corners can be avoided by a
different generalization of regions which is rather natural in our framework.
This generalization consists in allowing regions to consist partly or even
entirely purely of boundaries. These regions are partly or entirely “empty.”
Note that in this context an empty part should be thought of as having
two distinct (and disconnected) boundary hypersurfaces, namely one for
each orientation. A “completely empty” region is determined simply by one
given hypersurface Σ. The “boundary” of this region is the hypersurface Σ
together with its opposite Σ̄, to be thought of as disconnected in the sense
of axiom (T2).

Indeed, reconsider the example of figure 2. If we allow N to be partly
empty, we can avoid the need for corners. This is shown in figure 5. Indeed,
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Figure 5: An alternative version of the region N with “empty” parts, but
without corners.

recall the example at the end of Section 4. The map ρ̃N is the map induced
by the amplitude map of N , extended by an identity. At least this is the case
in the context with corners. In the context where N is the region shown
in figure 5 the map ρ̃N is simply induced by the amplitude, without any
extension.

The extension to “empty” regions does not require any changes in the
axioms. To the contrary, it actually simplifies some axioms and makes their
meaning more transparent. Of the core axioms, the main example is (T3).
The bilinear form postulated for a hypersurface Σ is nothing but the ampli-
tude map for the empty region defined by Σ. The symmetry of this bilinear
form is then automatic (since Σ̄ defines the same empty region). Thus,
axiom (T3) becomes almost entirely redundant, except for the requirement
that it induces (together with the involution) a Hilbert space structure. This
is simply a suitable non-degeneracy condition. This also explains why we
have formulated (T3) in such a way that the bilinear form is fundamental
and the inner product derived, rather than the other way round.

Axiom (T3b) is then also redundant as it arises as a special case of axiom
(T5) when the intermediate hypersurface Σ is empty. Furthermore, axiom
(T4b) is automatic for the completely empty regions, being guaranteed by
what remains of axiom (T3).

Not only the core axioms are simplified. The vacuum normalization axiom
(V4) becomes an automatic consequence of the unit amplitude axiom (V5).
Similarly, the symmetry axiom (Sg4) now follows from (Sg5) with (Sg3) and
(Sl4) follows from (Sl5) with (Sl3).

10 What about operators?

We seem to have avoided so far a subject of some prominence in quan-
tum mechanics: operators. This has several reasons. Firstly, the dynamics
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of a quantum theory may be entirely expressed in terms of its transition
amplitudes. Indeed, in quantum field theory it is (an idealization of) these
which yield the S-matrix and hence the experimental predictions in terms of
scattering cross sections. Secondly, all principal topics discussed so far (prob-
ability interpretation, vacuum, space-time symmetries, etc.) can indeed be
formulated purely in a state/amplitude language. Thirdly, since there are
now many state spaces, there are also many operator spaces. What is more,
an operator in the standard picture might correspond to something that is
not an operator in the present formulation.

There is one (type of) operator that we actually have discussed: The time-
evolution operator. Indeed, in the present formulation it is most naturally
expressed as a function rather than an operator. Note that we can do a
similar reformulation with any operator of the standard formalism. It may
be expressed as a function on the standard state space times its dual. This
in turn might be identified (via a time translation symmetry) with the total
state space of a time interval region. However, for a general operator the
resulting function might not be of particular physical relevance.

Consider, for example, creation and annihilation operators in a Fock
space context. It appears much more natural to have such operators also
on tensor product spaces rather then turning them into functions there. In
the example of the Klein–Gordon theory [7, 5] such operators can indeed
be constructed on state spaces of size larger than 1

2 . (This will be shown
elsewhere.)

To describe the probability interpretation (Section 4) we might as well
have used orthogonal projection operators instead of subsets. Indeed, using
projection operators is more useful in expressing consecutive measurements.
Note that the word “consecutive” here is not restricted to a temporal context
alone. Indeed, we may sandwich projection operators (or any operators for
that matter) between regions by inserting them into the composition of
induced maps described in axiom (T5).

Note also that it makes perfect sense to talk about expectation
values of operators in a given state. Namely, let O be an operator
on the Hilbert space HΣ associated with some hypersurface Σ, then its
expectation value with respect to a state ψ ∈ HΣ may be defined in the
obvious way,

〈O〉 := 〈ψ, Oψ〉Σ.

Clearly, this reduces to the standard definition in the standard circum-
stances.
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Let us make some general remarks concerning operators in relation to the
axioms. The involution of axiom (T1b) induces for any hypersurface Σ a
canonical isomorphism between operators on the space HΣ and operators
on the space HΣ̄ via O �→ ι ◦ O ◦ ι. In the context of axiom (T4b) the
amplitude provides an isomorphism between operator spaces induced by the
isomorphism of state spaces. Spacetime symmetries acting on state spaces
induce actions on operator spaces in the obvious way.

Finally, we come back to the time-evolution operator. Its infinitesimal
form, the Hamiltonian, plays a rather important role in the standard for-
mulation. Obviously, it is of much less importance here, as it is related
to a rather particular 1-parameter deformation of particular hypersurfaces.
Attempts have been made already in the 1940s to find a generalized “Hamil-
tonian” related to local infinitesimal deformations of spacelike hypersurfaces
[15, 16]. More recently, steps have been taken to generalize this to the gen-
eral boundary formulation [8, 17, 18].

11 Conclusions and outlook

We hope to have presented in this work a compelling picture which puts
the idea of a general boundary formulation of quantum mechanics on a
solid foundation. In particular, we hope to have shown convincingly, how
the probability interpretation of standard quantum mechanics extends in a
consistent way, including generalizations of the notions of probability con-
servation and unitarity. A concrete example of its application in a situation
outside of the range of applicability the standard formulation can be found
in the companion paper [5].

Nevertheless, we wish to emphasize that the present proposal is still ten-
tative and should not be regarded as definitive. An obvious remaining defi-
ciency was elaborated on in Section 9. This is the need for corners of regions
and hypersurfaces. This will certainly require a further refinement of the
core axioms.

Another open issue of significant importance is that of quantization.
Although we have outlined in Section 7 how a combined Schrödinger–
Feynman approach provides an ansatz here, it is clearly incomplete. In
particular, one would like to have a generalization of canonical quantization
to the present framework. A difficulty is the lack of a simple parametrizabil-
ity of “evolution,” making an infinitesimal approach through a (generalized)
Hamiltonian difficult. Perhaps the “local” Hamiltonian approach mentioned
at the end of Section 10 can help here, although it is not clear that it would
not be plagued by ordering ambiguities.
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As mentioned in the introduction, a main motivation for the general
boundary formulation has been its potential ability of rendering the problem
of quantization of gravity more accessible. Indeed, in the context of a mere
differentiable background, one may think of it as providing a “general rel-
ativistic” version of quantum mechanics (or rather quantum field theory).
Steps to apply (some form) of this framework to quantum gravity have
indeed been taken, notably in the context of the loop approach to quantum
gravity [8, 19, 20, 21]. The general boundary idea has also been advocated
by Rovelli in his excellent book on loop quantum gravity [22]. In any case,
this direction of research is still at its beginning, but we hope to have set it
on a more solid foundation.

Of course, the general boundary formulation might be useful in other
approaches to quantum gravity as well, such as string theory. Indeed, a
hope could be that the possibility to define local amplitudes would remove
the necessity to rely exclusively on the asymptotic S-matrix with its well-
known limitations (e.g, problems with de Sitter space-time, etc.). Of course,
the technical task of implementing this might be rather challenging.

We close by pointing out a possible conceptual relation to ’t Hooft’s holo-
graphic principle [23]. As mentioned in Section 2, an intuitive way to think
about states in a quantum process is as encoding the possibly available
data or information about the process. We might also say that the states
encode the “degrees of freedom” of the process. This is reminiscent of the
holographic principle, albeit in one dimension higher. Here the degrees of
freedom of a 4-volume sit on its boundary hyperarea. What is lacking at
this level is of course a numerical relation between the number of degrees
of freedom and (hyper)area. However, one might imagine that the relevant
state space of a quantum theory of gravity can be graded by hyperarea. The
holographic principle would then be a statement about the distribution of
the eigenvalues of the “hyperarea operator.”
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