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Abstract

We present an effective unified theory based on noncommutative geom-
etry for the standard model with neutrino mixing, minimally coupled to
gravity. The unification is based on the symplectic unitary group in
Hilbert space and on the spectral action. It yields all the detailed struc-
ture of the standard model with several predictions at unification scale.
Besides the familiar predictions for the gauge couplings as for GUT theo-
ries, it predicts the Higgs scattering parameter and the sum of the squares
of Yukawa couplings. From these relations, one can extract predictions
at low energy, giving in particular a Higgs mass around 170 GeV and
a top mass compatible with present experimental value. The geometric
picture that emerges is that space–time is the product of an ordinary spin
manifold (for which the theory would deliver Einstein gravity) by a finite
noncommutative geometry F . The discrete space F is of KO-dimension
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6 modulo 8 and of metric dimension 0, and accounts for all the intricacies
of the standard model with its spontaneous symmetry breaking Higgs
sector.
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1 Introduction

In this paper, we present a model based on noncommutative geometry for
the standard model with massive neutrinos, minimally coupled to gravity.
The model can be thought of as a form of unification, based on the sym-
plectic unitary group in Hilbert space, rather than on finite-dimensional Lie
groups. In particular, the parameters of the model are set at unification
scale, and one obtains physical predictions by running them down through
the renormalization group using the Wilsonian approach. For the renormal-
izability of the gravity part of our model, one can follow the renormalization
analysis of higher derivatives gravity as in [12, 19]. Later, we explain in detail
how the gravitational parameters behave.

The input of the model is extremely simple. It consists of the choice of a
finite-dimensional algebra, which is natural in the context of the left–right
symmetric models. It is a direct sum

C ⊕ H ⊕ H ⊕ M3(C), (1.1)

where H is the involutive algebra of quaternions. There is a natural repre-
sentation M for this algebra, which is the sum of the irreducible bimodules
of odd spin. We show that the fermions of the standard model can be iden-
tified with a basis for a sum of N copies of M, with N being the number of
generations. (We will restrict ourselves to N = 3 generations.)

An advantage of working with associative algebras as opposed to Lie alge-
bras is that the representation theory is more constrained. In particular, a
finite-dimensional algebra has only a finite number of irreducible represen-
tations, hence a canonical representation in their sum. The bimodule M
described above is obtained in this way by imposing the odd spin condition.

The model we introduce, however, is not a left–right symmetric model.
In fact, geometric considerations on the form of a Dirac operator for the
algebra (1.1) with the representation H = M⊕3 lead to the identification of
a subalgebra of (1.1) of the form

C ⊕ H ⊕ M3(C) ⊂ C ⊕ H ⊕ H ⊕ M3(C). (1.2)

This will give a model for neutrino mixing which has Majorana mass terms
and a see-saw mechanism.

For this algebra we give a classification of all possible Dirac operators
that give a real spectral triple (A,H, D), with H being the representation
described above. The resulting Dirac operators depend on 31 real param-
eters, which physically correspond to the masses for leptons and quarks
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(including neutrino Yukawa masses), the angles of the CKM and PMNS
matrices, and the Majorana mass matrix.

This gives a family of geometries F = (A,H, D) that are metrically zero-
dimensional, but that are of dimension 6 mod 8 from the point of view of
real K-theory.

We consider the product geometry of such a finite-dimensional spectral
triple with the spectral triple associated to a 4-dimensional compact Rie-
mannian spin manifold. The bosons of the standard model, including the
Higgs, are obtained as the inner fluctuations of the Dirac operator of this
product geometry. In particular, this gives a geometric interpretation of
the Higgs fields which generate the masses of elementary particles through
spontaneous symmetry breaking. The corresponding mass scale specifies the
inverse size of the discrete geometry F . This is in marked contrast with the
grand unified theories, where the Higgs fields are then added by hand to
break the GUT symmetry. In our case, the symmetry is broken by a specific
choice of the finite geometry, in the same way as the choice of a specific
space–time geometry breaks the general relativistic invariance group to the
much smaller group of isometries of a given background.

Then we apply to this product geometry a general formalism for spectral
triples, namely the spectral action principle. This is a universal action func-
tional on spectral triples, which is “spectral”, in the sense that it depends
only on the spectrum of the Dirac operator and is of the form

Tr(f(D/Λ)), (1.3)

where Λ fixes the energy scale and f is a test function. The function f only
plays a role through its momenta f0, f2, and f4, where fk =

∫∞
0 f(v)vk−1dv

for k > 0 and f0 = f(0). (cf. Remark A.5 below for the relation with the
notations of [8]). These give three additional real parameters in the model.
Physically, these are related to the coupling constants at unification, the
gravitational constant, and the cosmological constant.

The action functional (1.3), applied to inner fluctuations, only accounts
for the bosonic part of the model. In particular, in the case of classical
Riemannian manifolds, where no inner fluctuations are present, one obtains
from (1.3) the Einstein–Hilbert action of pure gravity. This is why gravity
is naturally present in the model, while the other gauge bosons arise as a
consequence of the noncommutativity of the algebra of the spectral triple.

The coupling with fermions is obtained by including an additional term

Tr(f(D/Λ)) +
1
2
〈Jψ, Dψ〉, (1.4)
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where J is the real structure on the spectral triple, and ψ is an element in
the space H, viewed as a classical fermion, i.e., as a Grassman variable. The
fermionic part of the Euclidean functional integral is given by the Pfaffian
of the antisymmetric bilinear form 〈Jψ′, Dψ〉. This, in particular, gives a
substitute for Majorana fermions in Euclidean signature (cf., e.g., [27, 34]).

We show that the gauge symmetries of the standard model, with the cor-
rect hypercharge assignment, are obtained as a subgroup of the symplectic
unitary group of Hilbert space given by the adjoint representation of the
unimodular unitary group of the algebra.

We prove that the full Lagrangian (in Euclidean signature) of the standard
model minimally coupled to gravity, with neutrino mixing and Majorana
mass terms, is the result of the computation of the asymptotic formula for
the spectral action functional (1.4).

The positivity of the test function f in (1.3) ensures the positivity of the
action functional before taking the asymptotic expansion. In general, this
does not suffice to control the sign of the terms in the asymptotic expansion.
In our case, however, this determines the positivity of the momenta f0, f2,
and f4. The explicit calculation then shows that this implies that the signs
of all the terms are the expected physical ones.

We obtain the usual Einstein–Hilbert action with a cosmological term
and, in addition, the square of the Weyl curvature and a pairing of the
scalar curvature with the square of the Higgs field. The Weyl curvature term
does not affect gravity at low energies, due to the smallness of the Planck
length. The coupling of the Higgs to the scalar curvature was discussed by
Feynman in [21].

We show that the general form of the Dirac operator for the finite geome-
try gives a see-saw mechanism for the neutrinos (cf. [33]). The large masses
in the Majorana mass matrix are obtained in our model as a consequence
of the equations of motion.

Our model makes three predictions, under the assumption of the “big
desert”, in running down the energy scale from unification.

The first prediction is the relation g2 = g3 =
√

5/3 g1 between the cou-
pling constants at unification scale, exactly as in the GUT models (cf.,
e.g., [33, § 9.1] for SU(5) and [11] for SO(10)). In our model this comes
directly from the computation of the terms in the asymptotic formula for
the spectral action. In fact, this result is a feature of any model that
unifies the gauge interactions, without altering the fermionic content of the
model.
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The second prediction is the Higgs scattering parameter αh at unification
scale. From this condition, One obtains a prediction for the Higgs mass as a
function of the W mass, after running it down through the renormalization
group equations. This gives a Higgs mass of the order of 170 GeV and agrees
with the “big desert” prediction of the minimal standard model (cf. [41]).

The third prediction is a mass relation between the Yukawa masses of
fermions and the W boson mass, again valid at unification scale. This is of
the form

∑

generations

m2
e + m2

ν + 3m2
d + 3m2

u = 8M2
W . (1.5)

After applying the renormalization group to the Yukawa couplings, assuming
that the Yukawa coupling for the ντ is comparable to the one for the top
quark, one obtains good agreement with the measured value.

Moreover, we can extract from the model predictions for the gravitational
constant involving the parameter f2/f0. The reasonable assumption that the
parameters f0 and f2 are of the same order of magnitude yields a realistic
value for the Newton constant.

In addition to these predictions, a main advantage of the model is that
it gives a geometric interpretation for all the parameters in the standard
model. In particular, this leaves room for predictions about the Yukawa
couplings, through the geometry of the Dirac operator.

The properties of the finite geometries described in this paper suggest
possible approaches.

For instance, there are examples of spectral triples of metric dimension
zero with a different KO-homology dimension, realized by homogeneous
spaces over quantum groups [18].

Moreover, the data parameterizing the Dirac operators of our finite geome-
tries can be described in terms of some classical moduli spaces related to
double coset spaces of the form K\(G × G)/(K × K) for G a reductive group
and K the maximal compact acting diagonally on the left. The renormal-
ization group defines a flow on the moduli space.

Finally, the product geometry is 10-dimensional from the KO-homology
point of view and may perhaps be realized as a low-energy truncation,
using the type of compact fibers that are considered in string theory models
(cf. e.g., [23]).
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Naturally, one does not really expect the “big desert” hypothesis to be
satisfied. The fact that the experimental values show that the coupling con-
stants do not exactly meet at unification scale is an indication of the pres-
ence of new physics. A good test for the validity of the above approach will
be whether a fine tuning of the finite geometry can incorporate additional
experimental data at higher energies. The present paper shows that the
modification of the standard model required by the phenomenon of neutrino
mixing in fact resulted in several improvements on the previous descriptions
of the standard model via noncommutative geometry.

In summary, we have shown that the intricate Lagrangian of the standard
model coupled with gravity can be obtained from a very simple modification
of space–time geometry, provided one uses the formalism of noncommuta-
tive geometry. The model contains several predictions and the corresponding
Section 5 of the paper can be read directly, skipping the previous sections.
The detailed comparison in Section 4 of the spectral action with the stan-
dard model contains several steps that are familiar to high energy particle
physicists but less to mathematicians. Sections 2 and 3 are more mathemat-
ical but, for instance, the relation between classical moduli spaces and the
CKM matrices can be of interest to both physicists and mathematicians.

The results of this paper are a development of the preliminary announce-
ment of [17].

2 The finite geometry

2.1 The left–right symmetric algebra

The main input for the model we are going to describe is the choice of a
finite-dimensional involutive algebra of the form

ALR = C ⊕ HL ⊕ HR ⊕ M3(C). (2.1)

This is the direct sum of the matrix algebras MN (C) for N = 1, 3 with two
copies of the algebra H of quaternions, where the indices L, R are just for
book-keeping. We refer to (2.1) as the “left–right symmetric algebra” [10].

By construction, ALR is an involutive algebra, with involution

(λ, qL, qR, m)∗ = (λ̄, q̄L, q̄R, m∗), (2.2)

where q �→ q̄ denotes the involution of the algebra of quaternions. The alge-
bra ALR admits a natural subalgebra C ⊕ M3(C), corresponding to integer
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spin, which is an algebra over C. The subalgebra HL ⊕ HR, corresponding
to half-integer spin, is an algebra over R.

2.2 The bimodule MF

Let M be a bimodule over an involutive algebra A. For u ∈ A unitary, i.e.,
such that uu∗ = u∗u = 1, one defines Ad(u) by Ad(u)ξ = uξu∗,∀ξ ∈ M.

Definition 2.1. Let M be an ALR-bimodule. Then M is odd iff the adjoint
action of s = (1,−1,−1, 1) fulfills Ad(s) = −1.

Let A0
LR denote the opposite algebra of ALR.

Lemma 2.2. An odd bimodule M is a representation of the reduction B =
(ALR ⊗R A0

LR)p of ALR ⊗R A0
LR by the projection p = 1/2 (1 − s ⊗ s0). This

subalgebra is an algebra over C.

Proof. The result follows directly from the action of s = (1,−1,−1, 1) in
Definition 2.1. �

Since B = (ALR ⊗R A0
LR)p is an algebra over C, we restrict to consider

complex representations.

Definition 2.3. One defines the contragredient bimodule of a bimodule M
as the complex conjugate space

M0 = {ξ̄ ; ξ ∈ M}, a ξ̄ b = b∗ξ a∗, ∀ a, b ∈ ALR. (2.3)

The algebras MN (C) and H are isomorphic to their opposite algebras (by
m �→ mt for matrices and q �→ q̄ for quaternions. We use this anti-
isomorphism to obtain a representation π0 of the opposite algebra from
a representation π.

We follow the physicists convention to denote an irreducible represen-
tation by its dimension in boldface. So, for instance, 30 denotes the 3-
dimensional irreducible representation of the opposite algebra M3(C).

Proposition 2.4. Let MF be the direct sum of all inequivalent irreducible
odd ALR-bimodules.

• The dimension of the complex vector space MF is 32.
• The ALR-bimodule MF = E ⊕ E0 is the direct sum of the bimodule

E = 2L ⊗ 10 ⊕ 2R ⊗ 10 ⊕ 2L ⊗ 30 ⊕ 2R ⊗ 30 (2.4)

with its contragredient E0.
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• The ALR-bimodule MF is isomorphic to the contragredient bimodule
M0

F by the antilinear isometry JF given by

JF (ξ, η̄) = (η, ξ̄), ∀ ξ, η ∈ E (2.5)

• One has

J2 = 1, ξ b = Jb∗J ξ, ∀ ξ ∈ MF , b ∈ ALR (2.6)

Proof. The first two statements follow from the structure of the algebra B
described in the following lemma.

Lemma 2.5. The algebra B = (ALR ⊗R A0
LR)p is the direct sum of four

copies of the algebra M2(C) ⊕ M6(C).

The sum of irreducible representations of B has dimension 32 and is
given by

2L ⊗ 10 ⊕ 2R ⊗ 10 ⊕ 2L ⊗ 30 ⊕ 2R ⊗ 30 ⊕ 1 ⊗ 20
L ⊕ 1

⊗ 20
R ⊕ 3 ⊗ 20

L ⊕ 3 ⊗ 20
R (2.7)

Proof. By construction one has

B = (HL ⊕ HR) ⊗R (C ⊕ M3(C))0 ⊕ (C ⊕ M3(C)) ⊗R (HL ⊕ HR)0.

Thus the first result follows from the isomorphism:

H ⊗R C = M2(C), H ⊗R M3(C) = M6(C).

The complex algebra MN (C) admits only one irreducible representation and
the latter has dimension N . Thus the sum of the irreducible representations
of B is given by (2.7). The dimension of the sum of irreducible representa-
tions is 4 × 2 + 4 × 6 = 32. �

To end the proof of Proposition 2.4, notice that by construction MF is
the direct sum E ⊕ E0 of the bimodule (2.4) with its contragredient, and
that the map (2.5) gives the required antilinear isometry. Note, moreover,
that one has (2.6) using (2.3). �

2.3 Real spectral triples

A noncommutative geometry is given by a representation theoretic datum
of spectral nature. More precisely, we have the following notion.

Definition 2.6. A spectral triple (A,H, D) is given by an involutive unital
algebra A represented as operators in a Hilbert space H and a self-adjoint



STANDARD MODEL WITH NEUTRINO MIXING 1001

operator D with compact resolvent such that all commutators [D, a] are
bounded for a ∈ A.

A spectral triple is even if the Hilbert space H is endowed with a Z/2-
grading γ which commutes with any a ∈ A and anticommutes with D.

The notion of real structure (cf. [15]) on a spectral triple (A,H, D), is
intimately related to real K-homology (cf. [2]) and the properties of the
charge conjugation operator.

Definition 2.7. A real structure of KO-dimension n ∈ Z/8 on a spectral
triple (A,H, D) is an antilinear isometry J : H → H, with the property that

J2 = ε, JD = ε′DJ, and Jγ = ε′′γJ (even case). (2.8)

The numbers ε, ε′, ε′′ ∈ {−1, 1} are a function of n mod 8 given by

n 0 1 2 3 4 5 6 7
ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

Moreover, the action of A satisfies the commutation rule

[a, b0] = 0 ∀ a, b ∈ A, (2.9)

where

b0 = Jb∗J−1 ∀b ∈ A, (2.10)

and the operator D satisfies the order-one condition:

[[D, a], b0] = 0 ∀ a, b ∈ A. (2.11)

A spectral triple endowed with a real structure is called a real spectral triple.

A key role of the real structure J is in defining the adjoint action of the
unitary group U of the algebra A on the Hilbert space H. In fact, one defines
a right A-module structure on H by

ξ b = b0 ξ, ∀ ξ ∈ H, b ∈ A. (2.12)

The unitary group of the algebra A then acts by the “adjoint representation”
on H in the form

H � ξ �→ Ad(u) ξ = u ξ u∗, ∀ ξ ∈ H, u ∈ A, u u∗ = u∗ u = 1. (2.13)
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Definition 2.8. Let Ω1
D denote the A-bimodule

Ω1
D =

⎧
⎨

⎩

∑

j

aj [D, bj ] | aj , bj ∈ A

⎫
⎬

⎭
. (2.14)

Definition 2.9. The inner fluctuations of the metric are given by

D → DA = D + A + ε′ J A J−1, (2.15)

where A ∈ Ω1
D, A = A∗ is a self-adjoint operator of the form

A =
∑

j

aj [D, bj ], aj , bj ∈ A. (2.16)

For any gauge potential A ∈ Ω1
D, A = A∗ and any unitary u ∈ A, one has

Ad(u)(D + A + ε′ J A J−1)Ad(u∗) = D + γu(A) + ε′ J γu(A) J−1,

where γu(A) = u [D, u∗] + u A u∗ (cf. [16]).

2.4 The subalgebra and the order-one condition

We let HF be the sum of N = 3 copies of the ALR-bimodule MF of Propo-
sition 2.4, that is,

HF = M⊕3
F . (2.17)

Remark 2.10. The multiplicity N = 3 here is an input, and it corresponds
to the number of particle generations in the standard model. The number
of generations is not predicted by our model in its present form and has to
be taken as an input datum.

We define the Z/2-grading γF by

γF = c − JF c JF , c = (0, 1,−1, 0) ∈ ALR. (2.18)

One then checks that

J2
F = 1, JF γF = −γF JF . (2.19)

The relation (2.19), together with the commutation of JF with the Dirac
operators, is characteristic of KO-dimension equal to 6 modulo 8
(cf. Definition 2.7).
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By Proposition 2.4 one can write HF as the direct sum

HF = Hf ⊕ Hf̄ (2.20)

of N = 3 copies of E of (2.4) with the contragredient bimodule, namely

Hf = E ⊕ E ⊕ E , Hf̄ = E0 ⊕ E0 ⊕ E0. (2.21)

The left action of ALR splits as the sum of a representation π on Hf and a
representation π′ on Hf̄ .

These representations of ALR are disjoint (i.e., they have no equivalent
subrepresentations). As shown in Lemma 2.12 below, this precludes the
existence of operators D in HF that fulfill the order-one condition (2.11)
and intertwine the subspaces Hf and Hf̄ .

We now show that the existence of such intertwining of Hf and Hf̄ is
restored by passing to a unique subalgebra of maximal dimension in ALR.

Proposition 2.11. Up to an automorphism of ALR, there exists a unique
subalgebra AF ⊂ ALR of maximal dimension admitting off-diagonal Dirac
operators, namely operators that intertwine the subspaces Hf and Hf̄ of
HF . The subalgebra is given by

AF = {(λ, qL, λ, m) | λ ∈ C, qL ∈ H, m ∈ M3(C)} ∼ C ⊕ H ⊕ M3(C).
(2.22)

Proof. For any operator T : Hf → Hf̄ , we let

A(T ) = {b ∈ ALR | π′(b)T = Tπ(b), π′(b∗)T = Tπ(b∗)}. (2.23)

It is by construction an involutive unital subalgebra of ALR.

We prove the following preliminary result.

Lemma 2.12. Let A ⊂ ALR be an involutive unital subalgebra of ALR. Then
the following properties hold.

(1) If the restriction of π and π′ to A are disjoint, then there is no
off-diagonal Dirac operator for A.

(2) If there exists an off-diagonal Dirac for A, then there exists a pair e,
e′ of minimal projections in the commutants of π(ALR) and π′(ALR)
and an operator T such that e′Te = T �= 0 and A ⊂ A(T ).

Proof. (1) First the order-one condition shows that [D, a0] cannot have
an off-diagonal part since it is in the commutant of A. Conjugating
by J shows that [D, a] cannot have an off-diagonal part. Thus the
off-diagonal part Doff of D commutes with A, i.e., [Doff , a] = 0, and
Doff = 0 since there are no intertwining operators.
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(2) By (1) the restrictions of π and π′ to A are not disjoint and there
exists a non-zero operator T such that A ⊂ A(T ). For any elements
x, x′ of the commutants of π and π′, one has

A(T ) ⊂ A(x′Tx)

since π′(b)T = Tπ(b) implies π′(b)x′Tx = x′Txπ(b). Taking a partition
of unity by minimal projections there exists a pair e, e′ of minimal
projections in the commutants of π and π′ such that e′Te �= 0 so that
one can assume e′Te = T �= 0. �

We now return to the proof of Proposition 2.11.

Let A ⊂ ALR be an involutive unital subalgebra. If it admits an
off-diagonal Dirac, then by Lemma 2.12 it is contained in a subalgebra A(T )
with the support of T contained in a minimal projection of the commutant
of π(ALR) and the range of T contained in the range of a minimal projection
of the commutant of π′(ALR).

This reduces the argument to two cases, where the representation π is the
irreducible representation of H on C

2 and π′ is either the representation of
C in C or the irreducible representation of M3(C) on C

3.

In the first case the support E of T is 1-dimensional. The commutation
relation (2.23) defines the subalgebra A(T ) from the condition λTξ = Tqξ,
for all ξ ∈ E, which implies λξ − qξ = 0. Thus, in this case the algebra A(T )
is the pullback of

{(λ, q) ∈ C ⊕ H | q ξ = λ ξ, ∀ ξ ∈ E} (2.24)

under the projection on C ⊕ H from ALR. The algebra (2.24) is the graph
of an embedding of C in H. Such an embedding is unique up to inner
automorphisms of H. In fact, the embedding is determined by the image of
i ∈ C, and all elements in H satisfying x2 = −1 are conjugate.

The corresponding subalgebra AF ⊂ ALR is of real codimension 4. Up to
the exchange of the two copies of H it is given by (2.22).

In the second case, the operator T has at most 2-dimensional range R(T ).
This range is invariant under the action π′ of the subalgebra A and so is its
orthogonal since A is involutive.

Thus, in all cases the M3(C)-part of the subalgebra is contained in the
algebra of 2 ⊕ 1 block diagonal 3 × 3 matrices which is of real codimension
8 in M3(C). Hence A is of codimension at least 8 > 4 in ALR.
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It remains to show that the subalgebra (2.22) admits off-diagonal Dirac
operators. This follows from Theorem 2.21 below. �

2.5 Unimodularity and hypercharges

The unitary group of an involutive algebra A is given by

U(A) = {u ∈ A | uu∗ = u∗u = 1}.

In our context we define the special unitary group SU(A) ⊂ U(A) as
follows.

Definition 2.13. We let SU(AF ) be the subgroup of U(AF ) defined by

SU(AF ) = {u ∈ U(AF ) : det(u) = 1},

where det(u) is the determinant of the action of u in HF .

We now describe the group SU(AF ) and its adjoint action.

As before, we denote by 2 the 2-dimensional irreducible representation of
H of the form

(
α β

−β̄ ᾱ

)

, (2.25)

with α, β ∈ C.

Definition 2.14. We let | ↑〉 and | ↓〉 be the basis of the irreducible rep-
resentation 2 of H of (2.25) for which the action of λ ∈ C ⊂ H is diagonal
with eigenvalues λ on | ↑〉 and λ̄ on | ↓〉.

In the following, to simplify notation, we write ↑ and ↓ for the vectors
| ↑〉 and | ↓〉.

Remark 2.15. The notation ↑ and ↓ is meant to be suggestive of “up”
and “down” as in the first generation of quarks, rather than refer to spin
states. In fact, we will see in Remark 2.18 below that the basis of HF can
be naturally identified with the fermions of the standard model, with the
result of the following proposition giving the corresponding hypercharges.

Proposition 2.16. (1) Up to a finite abelian group, the group SU(AF ) is
of the form

SU(AF ) ∼ U(1) × SU(2) × SU(3). (2.26)
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(2) The adjoint action of the U(1) factor is given by multiplication of the
basis vectors in Hf by the following powers of λ ∈ U(1):

↑ ⊗10 ↓ ⊗10 ↑ ⊗30 ↓ ⊗30

2L −1 −1 1
3

1
3

2R 0 −2 4
3 −2

3

(2.27)

Proof. (1) Let u = (λ, q, m) ∈ U(AF ). The determinant of the action of
u on the subspace Hf is equal to 1 by construction, since a unitary
quaternion has determinant 1. Thus det(u) is the determinant of the
action π′(u) on Hf̄ . This representation is given by 4 × 3 = 12 copies
of the irreducible representations 1 of C and 3 of M3(C). (The 4 is
from 20

L ⊕ 20
R and the 3 is the additional overall multiplicity of the

representation given by the number N = 3 of generations.)
Thus, we have

det(u) = λ12 det(m)12.

Thus, SU(AF ) is the product of the group SU(2), which is the unitary
group of H, by the fibered product G = U(1) ×12 U(3) of pairs (λ, m) ∈
U(1) × U(3) such that λ12 det(m)12 = 1.

One has an exact sequence

1 → μ3 → U(1) × SU(3) → G
μ→ μ12 → 1, (2.28)

where μN is the group of roots of unity of order N and the maps are as
follows. The last map μ is given by μ(λ, m) = λ det(m). By definition
of G, the image of the map μ is the group μ12 of 12th roots of unity.
The kernel of μ is the subgroup G0 ⊂ G of pairs (λ, m) ∈ U(1) × U(3)
such that λ det(m) = 1.

The map U(1) × SU(3) → G is given by (λ, m) �→ (λ3, λ−1 m). Its
image is G0. Its kernel is the subgroup of U(1) × SU(3) of pairs
(λ, λ 13), where λ ∈ μ3 is a cubic root of 1 and 13 is the unit 3 × 3
matrix.

Thus we obtain an exact sequence of the form

1 → μ3 → U(1) × SU(2) × SU(3) → SU(AF ) → μ12 → 1. (2.29)

(2) Up to a finite abelian group, the U(1) factor of SU(AF ) is the subgroup
of elements of SU(AF ) of the form u(λ) = (λ, 1, λ−1/313), where λ ∈ C,
with |λ| = 1. We ignore the ambiguity in the cubic root.

Let us compute the action of Ad(u(λ)). One has Ad(u) = u (u∗)0 =
u b0 with b = (λ̄, 1, λ1/313).
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This gives the required table as in (2.27) for the restriction to the
multiples of the left action 2L. In fact, the left action of u is trivial
there.

The right action of b = (λ̄, 1, λ1/313) is by λ̄ on the multiples of 10

and by λ1/31t
3 on multiples of 30.

For the restriction to the multiples of the left action 2R, one needs
to take into account the left action of u. This acts by λ on ↑ and
λ̄ on ↓. This adds a ±1 according to whether the arrow points up
or down. �

Remark 2.17. Notice how the finite groups μ3 and μ12 in the exact sequence
(2.29) are of different nature from the physical viewpoint, the first arising
from the center of the color U(3), while the latter depends upon the presence
of three generations.

We consider the linear basis for the finite-dimensional Hilbert space HF

obtained as follows. We denote by fκ
↑,3,L the basis of ↑L ⊗30, by fκ

↑,3,R
the basis of ↑R ⊗30, by fκ

↓,3,L the basis of ↓L ⊗30, and by fκ
↓,3,R the basis

of ↓R ⊗30. Similarly, we denote by fκ
↑,1,L the basis of ↑L ⊗10, by fκ

↑,1,R
the basis of ↑R ⊗10, by fκ

↓,1,L the basis of ↓L ⊗10, and by fκ
↓,1,R the basis

of ↓R ⊗10. Here each ↑L, ↑R, ↓L, ↓R refers to an N = 3-dimensional space
corresponding to the number of generations. Thus, the elements listed above
form a basis of Hf , with κ = 1, 2, 3 the flavor index. We denote by f̄κ

↑,3,L,
etc. the corresponding basis of Hf̄ .

Remark 2.18. The result of Proposition 2.16 shows that we can identify
the basis elements fκ

↑,3,L, fκ
↑,3,R and fκ

↓,3,L and fκ
↓,3,R of the linear basis of

HF with the quarks, where κ is the flavor index. Thus, after suppressing
the chirality index L,R for simplicity, we identify f1

↑,3, f
2
↑,3, f

3
↑,3 with the up,

charm, and top quarks and f1
↓,3, f

2
↓,3, f

3
↓,3 are the down, strange, and bottom

quarks. Similarly, the basis elements fκ
↑,1 and fκ

↓,1 are identified with the
leptons. Thus, f1

↑,1, f
2
↑,1, f

3
↑,1 are identified with the neutrinos νe, νμ, and

ντ , and the f1
↓,1, f

2
↓,1, f

3
↓,1 are identified with the charged leptons e, μ, τ .

The identification is dictated by the values of (2.16), which agree with the
hypercharges of the basic fermions of the standard model. Notice that,
in choosing the basis of fermions, there is an ambiguity on whether one
multiplies by the mixing matrix for the down particles. This point will be
discussed more explicitly in § 4 below, see (4.20).
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2.6 The classification of Dirac operators

We now characterize all operators DF which qualify as Dirac operators and
moreover commute with the subalgebra

CF ⊂ AF , CF = {(λ, λ, 0), λ ∈ C}. (2.30)

Remark 2.19. The physical meaning of the commutation relation of the
Dirac operator with the subalgebra of (2.30) is to ensure that the photon
will remain massless.

We have the following general notion of Dirac operator for the finite non-
commutative geometry with algebra AF and Hilbert space HF .

Definition 2.20. A Dirac operator is a self-adjoint operator D in HF com-
muting with JF , CF , anticommuting with γF and fulfilling the order one
condition [[D, a], b0] = 0 for any a, b ∈ AF .

In order to state the classification of such Dirac operators, we introduce
the following notation. Let Y(↓1), Y(↑1), Y(↓3), Y(↑3) and YR be 3 × 3 matrices.
We then let D(Y ) be the operator in HF given by

D(Y ) =
[
S T ∗

T S̄

]

, (2.31)

where
S = S1 ⊕ (S3 ⊗ 13). (2.32)

In the decomposition (↑R, ↓R, ↑L, ↓L) we have

S1 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 Y ∗
(↑1) 0

0 0 0 Y ∗
(↓1)

Y(↑1) 0 0 0
0 Y(↓1) 0 0

⎤

⎥
⎥
⎥
⎥
⎦

S3 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 Y ∗
(↑3) 0

0 0 0 Y ∗
(↓3)

Y(↑3) 0 0 0
0 Y(↓3) 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

(2.33)

The operator T maps the subspace ER =↑R ⊗10 ⊂ HF to the conjugate
JF ER by the matrix YR, and is zero elsewhere. Namely,

T |ER : ER → JF ER, T |ERf = YR JF f, T |HF �ER = 0. (2.34)

We then obtain the classification of Dirac operators as follows.

Theorem 2.21. (1) Let D be a Dirac operator. There exist 3 × 3 matri-
ces Y(↓1), Y(↑1), Y(↓3), Y(↑3), and YR, with YR symmetric, such that
D = D(Y ).

(2) All operators D(Y ) (with YR symmetric) are Dirac operators.



STANDARD MODEL WITH NEUTRINO MIXING 1009

(3) The operators D(Y ) and D(Y ′) are conjugate by a unitary operator
commuting with AF , γF and JF iff there exist unitary matrices Vj and
Wj such that

Y ′
(↓1) = V1 Y(↓1)V

∗
3 , Y ′

(↑1) = V2 Y(↑1) V ∗
3 , Y ′

(↓3) = W1 Y(↓3) W ∗
3 , Y ′

(↑3)

= W2 Y(↑3) W ∗
3 , Y ′

R = V2 YR V̄ ∗
2 .

Proof. The proof relies on the following lemma, which determines the com-
mutant A′

F of AF in HF .

Lemma 2.22. Let P =
[
P11 P12
P21 P22

]

be an operator in HF = Hf ⊕ Hf̄ . Then

P ∈ A′
F iff the following hold:

• P11 is block diagonal with three blocks in M12(C), M12(C), and 12 ⊗
M12(C) corresponding to the subspaces where the action of (λ, q, m) is
by λ, λ̄ and q.

• P12 has support in 1 ⊗ 20
L ⊕ 1 ⊗ 20

R and range in ↑R ⊗10⊕ ↑R ⊗30.
• P21 has support in ↑R ⊗10⊕ ↑R ⊗30 and range in 1 ⊗ 20

L ⊕ 1 ⊗ 20
R.

• P22 is of the form

P22 = T1 ⊕ (T2 ⊗ 13). (2.35)

Proof. The action of AF on HF = Hf ⊕ Hf̄ is of the form
[
π(λ, q, m) 0

0 π′(λ, q, m)

]

. (2.36)

On the subspace Hf and in the decomposition (↑R, ↓R, ↑L, ↓L), one has

π(λ, q, m) =

⎡

⎢
⎢
⎣

λ 0 0 0
0 λ 0 0
0 0 α β

0 0 −β α

⎤

⎥
⎥
⎦⊗ 112, (2.37)

where the 12 corresponds to (10 ⊕ 30) × 3. Since (2.36) is diagonal, the
condition P ∈ A′

F is expressed independently on the matrix elements Pij .

First, let us consider the case of the element P11. This must commute
with operators of the form π(λ, q, m) ⊗ 112 with π as in (2.37), and 112 the
unit matrix in a 12-dimensional space. This means that the matrix of P11
is block diagonal with three blocks in M12(C), M12(C), and 12 ⊗ M12(C),
corresponding to the subspaces where the action of (λ, q, m) is by λ, λ̄ and q.

We consider next the case of P22. The action of (λ, q, m) ∈ AF in the
subspace Hf̄ is given by multiplication by λ or by m; thus the only condition
on P22 is that it is an operator of the form (2.35).
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The off-diagonal terms P12 and P21 must intertwine the actions of
(λ, q, m) ∈ AF in Hf and Hf̄ . However, the actions of q or m are disjoint in
these two spaces, while only the action by λ occurs in both. The subspace
of Hf on which (λ, q, m) acts by λ is ↑R ⊗10⊕ ↑R ⊗30. The subspace of Hf̄

on which (λ, q, m) acts by λ is 1 ⊗ 20
L ⊕ 1 ⊗ 20

R. Thus the conclusion follows
from the intertwining condition. �

Let us now continue with the proof of Theorem 2.21.

(1) Let us first consider the off-diagonal part of D(Y ) in (2.31), which

is of the form
[

0 Y ∗
R

YR 0

]

. Anticommutation with γF holds since the

operator γF restricted to ER ⊕ JF ER is of the form
[
−1 0
0 1

]

. Moreover

the off-diagonal part of D(Y ) commutes with JF iff (YRξ) = Y ∗
R ξ̄ for

all ξ, i.e., iff YR is a symmetric matrix. The order-one condition is
automatic since, in fact, the commutator with elements of AF vanishes
exactly.

We can now consider the diagonal part
[
S 0
0 S̄

]

of D(Y ). It com-

mutes with J and anticommutes with γF by construction. It is enough
to check the commutation with CF ⊂ AF and the order-one condition
on the subspace Hf . Since S exactly commutes with the action of A0

F
the order-one condition follows. In fact for any b ∈ AF , the action of
b0 commutes with any operator of the form (2.35) and this makes it
possible to check the order-one condition since P = [S, π(a)] is of this
form. The action of AF on the subspace HF is given by (2.37), and
one checks that π(λ, λ, 0) commutes with S since the matrix of S has
no non-zero element between the ↑ and ↓ subspaces.

(2) Let D be a Dirac operator. Since D is self-adjoint and commutes with
JF , it is of the form

D =
[
S T ∗

T S̄

]

,

where T = T t is symmetric.
Let v = (−1, 1, 1) ∈ AF . One has

γF ξ = v ξ, ∀ ξ ∈ Hf . (2.38)

Notice that this equality fails on Hf̄ .
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The anticommutation of D with γF implies that D = −1/2 γF

[D, γF ]. Notice that γF is given by a diagonal matrix of the form

γF =
[
g 0
0 −ḡ

]

.

Thus, we get

S = −1
2

g [S, g] = −1
2

v [S, v]

using (2.38).
The action of v in HF is given by a diagonal matrix (2.36), hence

v [S, v] coincides with the A11 block of the matrix of A = v[D, v].
Thus, the order-one condition implies that S commutes with all

operators b0, hence that it is of the form (2.32).
The anticommutation with γF and the commutation with CF then

imply that the self-adjoint matrix S can be written in the form (2.33).
It remains to determine the form of the matrix T . The conditions

on the off-diagonal elements of a matrix

P =
[
P11 P12
P21 P22

]

,

which ensure that P belongs to the commutant of A0
F = JF AF JF , are

• P12 has support in 1 ⊗ ↑0
R ⊕ 3 ⊗ ↑0

R and range in 2L ⊗ 10 ⊕ 2R ⊗ 10.
• P21 has support in 2L ⊗ 10 ⊕ 2R ⊗ 10 and range in 1 ⊗ ↑0

R ⊕ 3 ⊗ ↑0
R.

This follows from Lemma 2.22, using JF .
Let then e = (0, 1, 0). One has π′(e) = 0 and π(e) is the projection

on the eigenspace γF = 1 in HF . Thus, since [D, e] belongs to the
commutant of A0

F = JF AF JF by the order-one condition, one gets
that π′(e)T − Tπ(e) = −Tπ(e) has support in 2L ⊗ 10 ⊕ 2R ⊗ 10 and
range in 1 ⊗ ↑0

R ⊕ 3 ⊗ ↑0
R. In particular γF = 1 on the range.

Thus, the anticommutation with γF shows that the support of Tπ(e)
is in the eigenspace γF = −1, so that Tπ(e) = 0.

Let e3 = (0, 0, 1) ∈ AF . Let us show that T e0
3 = 0. By Defini-

tion 2.20, T commutes with the actions of v(λ) = (λ, λ, 0) ∈ AF and
of Jv(λ)J−1 = v(λ)0. Thus, it commutes with e0

3. The action of e0
3 on

Hf is the projection on the subspace • ⊗ 30. The action of e0
3 on Hf̄ is

zero. Thus, [T, e0
3] = T e0

3 is the restriction of T to the subspace • ⊗ 30.
Since [T, e0

3] = 0 we get T e0
3 = 0. We have shown that the support of

T is contained in 2R ⊗ 10. Since T is symmetric, i.e., T = T̄ ∗ the range
of T is contained in 1 ⊗ 20

R.
The left and right actions of (λ, q, m) on these two subspaces coincide

with the left and right actions of v(λ). Thus, we get that T commutes
with AF and A0

F . Thus, by Lemma 2.22, it has support in ↑R ⊗10 and
range in 1⊗ ↑0

R.
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This means that T is given by a symmetric 3 × 3 matrix YR and the
operator D is of the form D = D(Y ).

(3) By Lemma 2.22, the commutant of the algebra generated by AF and
A0

F is the algebra of matrices

P =
[
P11 P12
P21 P22

]

such that
• P12 has support in 1⊗ ↑0

R and range in ↑R ⊗10.
• P21 has support in ↑R ⊗10 and range in 1⊗ ↑0

R.
• Pjj is of the form

Pjj = P 1
jj ⊕ (P 3

jj ⊗ 13),

where

P a
jj =

⎡

⎣
P a

j (1) 0 0
0 P a

j (2) 0
0 0 12 ⊗ P a

j (3)

⎤

⎦ a = 1, 3, j = 1, 2.

A unitary operator U acting in HF commuting with AF and J is in the
commutant of the algebra generated by AF and A0

F . If it commutes
with γF , then the off-diagonal elements Uij vanish, since γF = −1 on
↑R ⊗10 and γF = 1 on 1⊗ ↑0

R. Thus U is determined by the six 3 × 3
matrices Ua

1 (k) since it commutes with J so that Ua
2 (k) = Ūa

1 (k) . One
checks that conjugating by U gives relation (3) of Theorem 2.21. �

Remark 2.23. It is a consequence of the classification of Dirac operators
obtained in this section that color is unbroken in our model, as is physically
expected. In fact, this follows from the fact that Dirac operators are of the
form (2.31), with the S term of the form (2.32).

2.7 The moduli space of Dirac operators and the Yukawa
parameters

Let us start by considering the moduli space C3 of pairs of invertible 3 × 3
matrices (Y(↓3), Y(↑3)) modulo the equivalence relation

Y ′
(↓3) = W1 Y(↓3) W ∗

3 , Y ′
(↑3) = W2 Y(↑3) W ∗

3 , (2.39)

where the Wj are unitary matrices.

Proposition 2.24. The moduli space C3 is the double-coset space

C3 ∼= (U(3) × U(3))\(GL3(C) × GL3(C))/U(3) (2.40)

of real dimension 10.
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Proof. This follows from the explicit form of the equivalence relation (2.39).
The group U(3) acts diagonally on the right. �
Remark 2.25. Notice that the 3 in C3 corresponds to the color charge for
quarks (like the 1 in C1 below will correspond to leptons), while in the right-
hand side of (2.40) the 3 of GL3(C) and U(3) corresponds to the number of
generations.

Each equivalence class under (2.39) contains a pair (Y(↓3), Y(↑3)), where
Y(↑3) is diagonal (in the given basis) and with positive entries, while Y(↓3) is
positive.

Indeed, the freedom to chose W2 and W3 makes it possible to take Y(↑3)
positive and diagonal and the freedom in W1 then makes it possible to take
Y(↓3) positive.

The eigenvalues are the characteristic values (i.e., the eigenvalues of the
absolute value in the polar decomposition) of Y(↑3) and Y(↓3) and are invari-
ants of the pair.

Thus, we can find diagonal matrices δ↑ and δ↓ and a unitary matrix C
such that

Y(↑3) = δ↑, Y(↓3) = C δ↓ C∗.

Since multiplying C by a scalar does not affect the result, we can assume
that det(C) = 1. Thus, C ∈ SU(3) depends a priori upon 8 real parameters.
However, only the double coset of C modulo the diagonal subgroup N ⊂
SU(3) matters, by the following result.

Lemma 2.26. Suppose diagonal matrices δ↑ and δ↓ with positive and dis-
tinct eigenvalues are given. Two pairs of the form (δ↑, C δ↓ C∗) are equiva-
lent iff there exist diagonal unitary matrices A, B ∈ N such that

A C = C ′ B.

Proof. For A C = C ′ B one has

A Y(↑3) A∗ = Y ′
(↑3), A Y(↓3) A∗ = Y ′

(↓3)

and the two pairs are equivalent. Conversely, with Wj as in (2.39) one gets
W1 = W3 from the uniqueness of the polar decomposition

δ↓ = (W1W
∗
3 ) (W3δ↓W

∗
3 ).

Similarly, one obtains W2 = W3. Thus, W3 = W is diagonal and we get

W C δ↓ C∗ W ∗ = C ′ δ↓ C ′∗,

so that W C = C ′ B for some diagonal matrix B. Since W and B have the
same determinant one can assume that they both belong to N . �
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The dimension of the moduli space is thus 3 + 3 + 4 = 10, where the 3 + 3
comes from the eigenvalues and the 4 = 8 − 4 from the above double-coset
space of Cs. One way to parameterize the representatives of the double
cosets of the matrix C is by means of three angles θi and a phase δ,

C =

⎡

⎣
c1 −s1c3 −s1s3

s1c2 c1c2c3 − s2s3eδ c1c2s3 + s2c3eδ

s1s2 c1s2c3 + c2s3eδ c1s2s3 − c2c3eδ

⎤

⎦ , (2.41)

for ci = cos θi, si = sin θi, and eδ = exp(iδ). One has by construction the
factorization

C = R23(θ2) d(δ) R12(θ1) R23(−θ3), (2.42)
where Rij(θ) is the rotation of angle θ in the ij-plane and d(δ) the diagonal
matrix

d(δ) =

⎡

⎣
1 0 0
0 1 0
0 0 −eiδ

⎤

⎦ .

Let us now consider the moduli space C1 of triplets (Y(↓1), Y(↑1), YR), with
YR symmetric, modulo the equivalence relation

Y ′
(↓1) = V1 Y(↓1)V

∗
3 Y ′

(↑1) = V2 Y(↑1) V ∗
3 (2.43)

Y ′
R = V2 YR V̄ ∗

2 . (2.44)

Lemma 2.27. The moduli space C1 is given by the quotient

C1 ∼= (U(3) × U(3))\(GL3(C) × GL3(C) × S)/U(3), (2.45)

where S is the space of symmetric complex 3 × 3 matrices and

• the action of U(3) × U(3) on the left is given by left multiplication on
GL3(C) × GL3(C) and by (2.44) on S;

• the action of U(3) on the right is trivial on S and by diagonal right
multiplication on GL3(C) × GL3(C).

It is of real dimension 21 and fibers over C3, with generic fiber the quotient
of symmetric complex 3 × 3 matrices by U(1).

Proof. By construction, one has a natural surjective map

π : C1 −→ C3,

just forgetting about YR. The generic fiber of π is the space of symmetric
complex 3 × 3 matrices modulo the action of a complex scalar λ of absolute
value one by

YR �−→ λ2 YR.

The (real) dimension of the fiber is 12 − 1 = 11. The total real dimension
of the moduli space C1 is then 21. �
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The total 31-dimensional moduli space of Dirac operators is given by the
product

C1 × C3. (2.46)

Remark 2.28. The 31 real parameters of (2.46) correspond to the Yukawa
parameters in the standard model with neutrino mixing and Majorana mass
terms. In fact, the parameters in C3 correspond to the masses of the quarks
and the quark mixing angles of the CKM matrix, while the additional param-
eters of C1 give the lepton masses, the angles of the PMNS mixing matrix
and the Majorana mass terms.

2.8 Dimension, KO-theory, and Poincaré duality

In [14], Chapter 6, § 4, the notion of manifold in noncommutative geome-
try was discussed in terms of Poincaré duality in KO-homology. In [16] this
Poincaré duality was shown to hold rationally for the finite noncommutative
geometry used there. We now investigate how the new finite noncommuta-
tive geometry F considered here behaves with respect to this duality. We
first notice that now, the dimension being equal to 6 modulo 8, the inter-
section pairing is skew symmetric. It is given explicitly as follows.

Proposition 2.29. The expression

〈e, f 〉 = Tr(γ e JfJ−1) (2.47)

defines an antisymmetric bilinear pairing on K0 × K0. The group K0(AF ) is
the free-abelian group generated by the classes of e1 = (1, 0, 0), e2 = (0, 1, 0),
and f3 = (0, 0, f), where f ∈ M3(C) a minimal idempotent.

Proof. The pairing (2.47) is obtained from the composition of the natural
map

K0(AF ) × K0(AF ) −→ K0(AF ⊗ A0
F )

with the graded trace Tr(γ ·). Since J anticommutes with γ, one checks that

〈f, e 〉 = Tr(γ f JeJ−1) = −Tr(γ J−1f J e) = −Tr(γ e JfJ−1) = −〈e, f 〉,
so that the pairing is antisymmetric.

By construction, AF is the direct sum of the fields C, H and of the algebra
M3(C) ∼ C (up to Morita equivalence). The projections e1 = (1, 0, 0), e2 =
(0, 1, 0), and f3 = (0, 0, f) are the three minimal idempotents in AF . �

By construction the KO-homology class given by the representation in
HF with the Z/2-grading γ and the real structure JF splits as a direct sum
of two pieces, one for the leptons and one for the quarks.
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Proposition 2.30. (1) The representation of the algebra generated by
(AF , DF , JF , γF ) in HF splits as a direct sum of two subrepresenta-
tions

HF = H(1)
F ⊕ H(3)

F .

(2) In the generic case (i.e., when the matrices in DF have distinct eigen-
values) each of these subrepresentations is irreducible.

(3) In the basis (e1, e2, f3), the pairing (2.47) is (up to an overall multi-
plicity three corresponding to the number of generations) given by

〈·, ·〉|H(1)
F

=

⎡

⎣
0 2 0

−2 0 0
0 0 0

⎤

⎦ 〈·, ·〉|H(3)
F

=

⎡

⎣
0 0 2
0 0 −2

−2 2 0

⎤

⎦ (2.48)

Proof. (1) Let H(1)
F correspond to

2L ⊗ 10 ⊕ 2R ⊗ 10 ⊕ 1 ⊗ 20
L ⊕ 1 ⊗ 20

R (2.49)

and H(3)
F to

2L ⊗ 30 ⊕ 2R ⊗ 30 ⊕ 3 ⊗ 20
L ⊕ 3 ⊗ 20

R. (2.50)

By construction, the action of AF in HF is block diagonal in the
decomposition HF = H(1)

F ⊕ H(3)
F . Both the actions of JF and of γF

are also block diagonal. Theorem 2.21 shows that DF is also block
diagonal, since it is of the form D = D(Y ).

(2) It is enough to show that a unitary operator that commutes with AF ,
γF , JF , and DF is a scalar. Let us start with H(3)

F . By Theorem 2.21
(3), such a unitary is given by three unitary matrices Wj ∈ M3(C) such
that

Y(↓3) = W1 Y(↓3) W ∗
3 , Y(↑3) = W2 Y(↑3) W ∗

3 .

We can assume that both Y(↑3) and Y(↓3) are positive. Assume also
that Y(↑3) is diagonal. The uniqueness of the polar decomposition
shows that

Y(↓3) = (W1 W ∗
3 ) (W3 Y(↓3) W ∗

3 ) ⇒ W1 W ∗
3 = 1, W3 Y(↓3) W ∗

3 = Y(↓3)

Thus, we get W1 = W2 = W3. Since generically all the eigenvalues of
Y(↑3) or Y(↓3) are distinct, we get that the matrices Wj are diagonal
in the basis of eigenvectors of the matrices Y(↑3) and Y(↓3). However,
generically these bases are distinct, hence we conclude that Wj = 1 for
all j. The same result holds “a fortiori” for H(1)

F where the conditions
imposed by Theorem 2.21(3) are in fact stronger.

(3) One computes the pairing directly using the definition of γF . On H(1)
F ,

the subalgebra M3(C) acts by zero which explains why the last line
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and columns of the pairing matrix vanish. By antisymmetry, one just
needs to evaluate

〈e, eL〉 = −〈eL, e〉 = −Tr(γ eL JeJ−1) = −Tr(γ eL) = 2 × 3,

where 3 is the number of generations. On H(3)
F the same pair gives

〈e, eL〉 = 0, since now the right action of e is zero on Hf . In the same
way one gets 〈f3, eL〉 = 2 × 3. Finally one has

〈e, f3〉 = Tr(γ e Jf3J
−1) = 2 × 3.

�

Of course an antisymmetric 3 × 3 matrix is automatically degenerate since
its determinant vanishes. Thus it is not possible to obtain a nondegener-
ate Poincaré duality pairing with a single KO-homology class. One checks
however that the above pair of KO-homology classes suffices to obtain a
nondegenerate pairing in the following way.

Corollary 2.31. The pairing K0(AF ) ⊕ K0(AF ) → R ⊕ R given by

〈·, ·〉HF
:= 〈·, ·〉|H(1)

F

⊕ 〈·, ·〉|H(3)
F

(2.51)

is nondegenerate.

Proof. We need to check that, for any e in K0(AF ) there exists an f ∈
K0(AF ) such that 〈e, f〉HF

�= (0, 0). This can be seen by the explicit form
of 〈·, ·〉|H(1)

F

and 〈·, ·〉|H(3)
F

in (2.48). �

Remark 2.32. The result of Corollary 2.31 can be reinterpreted as the fact
that in our case KO-homology is not singly generated as a module over K0
but it is generated by two elements.

3 The spectral action and the standard model

In this section and in the one that follows we show that the full Lagrangian
of the standard model with neutrino mixing and Majorana mass terms,
minimally coupled to gravity, is obtained as the asymptotic expansion of
the spectral action for the product of the finite geometry (AF ,HF , DF )
described above and a spectral triple associated to 4-dimensional space-time.

3.1 Riemannian geometry and spectral triples

A spin Riemannian manifold M gives rise in a canonical manner to a spec-
tral triple. The Hilbert space H is the Hilbert space L2(M, S) of square



1018 ALI H. CHAMSEDDINE ET AL.

integrable spinors on M and the algebra A = C∞(M) of smooth functions
on M acts in H by multiplication operators:

(f ξ)(x) = f(x) ξ(x), ∀x ∈ M. (3.1)

The operator D is the Dirac operator

∂/M =
√

−1 γμ ∇s
μ, (3.2)

where ∇s is the spin connection which we express in a vierbein e so that

γμ = γaeμ
a ,

∇s
μ = ∂μ +

1
4
ω ab

μ (e) γab. (3.3)

The grading γ is given by the chirality operator which we denote by γ5 in
the 4-dimensional case. The operator J is the charge conjugation operator
and we refer to [22] for a thorough treatment of the above notions.

3.2 The product geometry

We now consider a 4-dimensional smooth compact Riemannian manifold M
with a fixed spin structure. We consider its product with the finite geometry
(AF ,HF , DF ) described above.

With (Aj ,Hj , γj) of KO-dimensions 4 for j = 1 and 6 for j = 2, the prod-
uct geometry is given by the rules

A = A1 ⊗ A2, H = H1 ⊗ H2, D = D1 ⊗ 1 + γ1 ⊗ D2, γ = γ1 ⊗ γ2,

J = J1 ⊗ J2.

Notice that it matters here that J1 commutes with γ1, in order to check that
J commutes with D. One checks that the order-one condition is fulfilled by
D if it is fulfilled by the Dj .

For the product of the manifold M by the finite geometry F , we then have
A = C∞(M) ⊗ AF = C∞(M, AF ), H = L2(M, S) ⊗ HF = L2(M, S ⊗ HF ),
and D = ∂/M ⊗ 1 + γ5 ⊗ DF , where ∂/M is the Dirac operator on M . It is
given by equations (3.2) and (3.3).



STANDARD MODEL WITH NEUTRINO MIXING 1019

3.3 The real part of the product geometry

The next proposition shows that a noncommutative geometry automatically
gives rise to a commutative one playing in essence the role of its center (cf.
Remark 3.3 below).

Proposition 3.1. Let (A,H, D) be a real spectral triple in the sense of
Definition 2.7. Then the following hold.

(1) The equality AJ = {x ∈ A ; x J = J x} defines an involutive commu-
tative real subalgebra of the center of A.

(2) (AJ ,H, D) is a real spectral triple.
(3) Any a ∈ AJ commutes with the algebra generated by the sums∑

ai[D, bi] for ai, bi in A.

Proof. (1) By construction AJ is a real subalgebra of A. Since J is iso-
metric, one has (JaJ−1)∗ = Ja∗J−1 for all a. Thus if x ∈ AJ , one has
JxJ−1 = x and Jx∗J−1 = x∗, so that x∗ ∈ AJ . Let us show that AJ is
contained in the center of A. For x ∈ AJ and b ∈ A one has [b, x0] = 0
from (2.9). But x0 = Jx∗J−1 = x∗ and thus we get [b, x∗] = 0.

(2) This is automatic since we are just dealing with a subalgebra. Notice
that it continues to hold for the complex algebra AJ ⊗R C generated
by AJ .

(3) The order-one condition (2.11) shows that [D, b] commutes with (a∗)0

and hence with a since (a∗)0 = a as we saw above. �

While the real part AJ is contained in the center Z(A) of A, it can be much
smaller as one sees in the example of the finite geometry F . Indeed, one has
the following result.

Lemma 3.2. Let F be the finite noncommutative geometry.

• The real part of AF is R = {(λ, λ, λ), λ ∈ R} ⊂ AF .
• The real part of C∞(M, AF ) for the product geometry M × F is

C∞(M, R).

Proof. Let x = (λ, q, m) ∈ AF . Then if x commutes with JF , its action in
Hf ⊂ HF coincides with the right action of x∗. Looking at the action on
H(1)

F , it follows that λ = λ̄ and that the action of the quaternion q coincides
with that of λ. Thus λ ∈ R and q = λ. Then looking at the action on H(3)

F
gives m = λ. The same proof applies to C∞(M, AF ). �
Remark 3.3. The notion of real part AJ can be thought of as a refinement
of the center of the algebra in this geometric context. For instance, even
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though the center of AF is non-trivial, this geometry can still be regarded
as “central” in this perspecive, since the real part of AF is reduced to just
the scalars R.

3.4 The adjoint representation and the gauge symmetries

In this section we display the role of the gauge group C∞(M, SU(AF )) of
smooth maps from the manifold M to the group SU(AF ).

Proposition 3.4. Let (A,H, D) be the real spectral triple associated to
M × F .

• Let U be a unitary in H commuting with γ and J and such that
U A U∗ = A. Then there exists a unique diffeomorphism ϕ ∈ Diff(M)
such that

U f U∗ = f ◦ ϕ ∀f ∈ AJ . (3.4)

• Let U be as above and such that ϕ = id. Then, possibly after passing to
a finite abelian cover of M , there exists a unitary u ∈ C∞(M, SU(AF ))
such that U Ad(u)∗ ∈ C, where C is the commutant of the algebra of
operators in H generated by A and JAJ−1.

We refer to [31] for finer points concerning the lifting of diffeomorphisms
preserving the given spin structure.

Proof. The first statement follows from the functoriality of the construc-
tion of the subalgebra AJ and the classical result that automorphisms of
the algebra C∞(M, R) are given by composition with a diffeomorphism
of M .

Let us prove the second statement. One has H = L2(M, S) ⊗ HF = L2

(M, S ⊗ HF ). Since ϕ = id, we know by (3.4) that U commutes with the
algebra AJ = C∞(M, R). This shows that U is given by an endomorphism
x �→ U(x) of the vector bundle S ⊗ HF on M . Since U commutes with J ,
the unitary U(x) commutes with Jx ⊗ JF .

The equality U A U∗ = A shows that, for all x ∈ M , one has

U(x) (id ⊗ AF ) U∗(x) = id ⊗ AF . (3.5)

Here we identify AF with a subalgebra of operators on S ⊗ HF , through the
algebra homomorphism T �→ id ⊗ T .
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Let α be an arbitrary automorphism of AF . The center of AF con-
tains three minimal idempotents, and the corresponding reduced algebras
C, H, M3(C) are pairwise non-isomorphic. Thus α preserves these three
idempotents and is determined by its restriction to the corresponding red-
uced algebras C, H, M3(C). In particular, such an automorphism will act
on the subalgebra C either as the identity or as complex conjugation.

Now consider the automorphism αx of AF determined by (3.5). It is
unitarily implemented by (3.5). The action of C ⊂ AF on S ⊗ HF is not
unitarily equivalent to its composition with complex conjugation. This can
be seen from the fact that, in this representation, the dimension of the space
on which C acts by λ is larger than the one of the space on which it acts
by λ̄. It then follows that the restriction of αx to C ⊂ AF has to be the
identity automorphism.

Similarly, the restriction of αx to M3(C) ⊂ AF is given by an inner auto-
morphism of the form f → vx f v∗

x, where vx ∈ SU(3) is only determined
modulo the center Z3 ∼ μ3 of SU(3). The restriction of αx to H ⊂ AF is
given by an inner automorphism of the form f → qx f q∗

x, where qx ∈ SU(2)
is only determined modulo the center Z2 ∼ μ2 of SU(2). Thus passing to
the finite abelian cover M̃ of M corresponding to the morphism π1(M) →
Z2 × Z3 ∼ μ6, one gets a unitary element u = (1, q, v) ∈ C∞(M, SU(AF ))
such that α(f) = Ad(u)fAd(u)∗ for all f ∈ C∞(M, AF ). Replacing U by
U Ad(u)∗ one can thus assume that U commutes with all f ∈ C∞(M, AF ),
and the commutation with J still holds so that U Ad(u)∗ ∈ C, where C
is the commutant of the algebra of operators in H generated by A and
JAJ−1. �

3.5 Inner fluctuations and bosons

Let us show that the inner fluctuations of the metric give rise to the gauge
bosons of the standard model with their correct quantum numbers. We first
have to compute A = Σ ai[D, a′

i], ai, a
′
i ∈ A. Since D = ∂/M ⊗ 1 + γ5 ⊗ DF

decomposes as a sum of two terms, so does A and we first consider the
discrete part A(0,1) coming from commutators with γ5 ⊗ DF .

3.5.1 The discrete part A(0,1) of the inner fluctuations

Let x ∈ M and let ai(x) = (λi, qi, mi), a′
i(x) = (λ′

i, q
′
i, m

′
i); the computation

of
∑

ai[γ5 ⊗ DF , a′
i] at x on the subspace corresponding to Hf ⊂ HF gives
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γ5 tensored by the matrices A
(0,1)
3 and A

(0,1)
1 defined below. We set

A
(0,1)
3 =

[
0 X
X ′ 0

]

⊗ 13, X =

[
Y ∗

(↑3) ϕ1 Y ∗
(↑3) ϕ2

−Y ∗
(↓3) ϕ̄2 Y ∗

(↓3) ϕ̄1

]

,

X ′ =

[
Y(↑3) ϕ′

1 Y(↓3) ϕ′
2

−Y(↑3) ϕ̄′
2 Y(↓3) ϕ̄′

1

]

(3.6)

for the H(3)
F part, with

ϕ1 =
∑

λi(α′
i − λ′

i), ϕ2 =
∑

λiβ
′
i (3.7)

ϕ′
1 =

∑
αi(λ′

i − α′
i) + βiβ̄

′
i, ϕ′

2 =
∑

(−αiβ
′
i + βi(λ̄′

i − ᾱ′
i)), (3.8)

where we used the notation

q =
[

α β
−β̄ ᾱ

]

for quaternions. For the H(1)
F part one obtains in the same way

A
(0,1)
1 =

[
0 Y
Y ′ 0

]

, Y =

[
Y ∗

(↑1) ϕ1 Y ∗
(↑1) ϕ2

−Y ∗
(↓1) ϕ̄2 Y ∗

(↓1) ϕ̄1

]

,

Y ′ =

[
Y(↑1) ϕ′

1 Y(↓1) ϕ′
2

−Y(↑1) ϕ̄′
2 Y(↓1) ϕ̄′

1

]

. (3.9)

Here the ϕ are given as above by (3.7) and (3.8).

The off-diagonal part of DF , which involves YR, does not contribute to
the inner fluctuations, since it exactly commutes with the algebra AF . Since
the action of AF on Hf̄ exactly commutes with DF , it does not contribute
to A(0,1). One lets

q = ϕ1 + ϕ2 j, q′ = ϕ′
1 + ϕ′

2 j, (3.10)

where j is the quaternion
[

0 1
−1 0

]

.

Proposition 3.5. (1) The discrete part A(0,1) of the inner fluctuations of
the metric is parameterized by an arbitrary quaternion valued function

H ∈ C∞(M, H), H = ϕ1 + ϕ2 j, ϕj ∈ C∞(M, C)

(2) The role of H in the coupling of the ↑-part is related to its role in the
coupling of the ↓-part by the replacement

H �−→ H̃ = j H.
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Proof. (1) First one checks that there are no linear relations between the
four terms (3.7) and (3.8). We consider a single term a[DF , a′]. Taking
a = (λ, 0, 0) and a′ = (λ′, 0, 0) gives

ϕ1 = −λλ′, ϕ2 = ϕ′
1 = ϕ′

2 = 0.

Taking a = (λ, 0, 0) and a′ = (0, j β̄′, 0) gives

ϕ′
1 = λβ′, ϕ1 = ϕ′

1 = ϕ′
2 = 0.

Similarly, taking a = (0, α, 0) and a′ = (λ′, 0, 0) gives

ϕ′
1 = αλ′, ϕ1 = ϕ2 = ϕ′

2 = 0,

while taking a = (0, j β̄, 0) and a′ = (λ′, 0, 0) gives

ϕ′
2 = βλ̄′, ϕ1 = ϕ2 = ϕ′

1 = 0.

This shows that the vector space Ω(0,1)
D of linear combinations∑

i ai[DF , a′
i] is the space of pairs of quaternion valued functions q(x)

and q′(x).
The selfadjointness condition A = A∗ is equivalent to q′ = q∗, and

we see that the discrete part A(0,1) is exactly given by a quaternion
valued function, H(x) ∈ H on M .

(2) The transition is given by (ϕ1, ϕ2) �→ (−ϕ̄2, ϕ̄1), which corresponds to
the multiplication of H = ϕ1 + ϕ2 j by j on the left. �

For later purposes let us compute the trace of powers of (D + A(0,1) +
JA(0,1)J). Let us define

D(0,1) = D + A(0,1) + JA(0,1)J. (3.11)

Lemma 3.6. (1) On H(3)
F ⊂ HF one has

Tr((D(0,1)
3 )2) = 12 |1 + H|2 Tr(Y ∗

(↑3)Y(↑3) + Y ∗
(↓3)Y(↓3))

Tr((D(0,1)
3 )4) = 12 |1 + H|4 Tr((Y ∗

(↑3)Y(↑3))
2 + (Y ∗

(↓3)Y(↓3))
2) (3.12)
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(2) On H(1)
F ⊂ HF one has

Tr((D(0,1)
1 )2) = 4 |1 + H|2 Tr(Y ∗

(↑1)Y(↑1) + Y ∗
(↓1)Y(↓1)) + 2 Tr(Y ∗

RYR)

Tr((D(0,1)
1 )4) = 4 |1 + H|4 Tr((Y ∗

(↑1)Y(↑1))
2 + (Y ∗

(↓1)Y(↓1))
2) + 2 Tr((Y ∗

RYR)2)

+ 8 |1 + H|2 Tr(Y ∗
RYRY ∗

(↑1)Y(↑1)) (3.13)

Proof. (1) The left-hand side of (3.13) is given by 2 Tr((A(0,1)
3 )2), after

replacing H by 1 + H to take into account the operator D3. The
product X X∗ is given by the diagonal matrix

X X∗ =

[
Y ∗

(↑3)Y(↑3) (ϕ1ϕ̄1 + ϕ2ϕ̄2) 0
0 Y ∗

(↓3)Y(↓3) (ϕ1ϕ̄1 + ϕ2ϕ̄2)

]

= |H|2
[
Y ∗

(↑3)Y(↑3) 0
0 Y ∗

(↓3)Y(↓3)

]

One has Tr((A(0,1)
3 )2) = 3 Tr(X X∗ + X∗X) = 6 Tr(X X∗). This gives

the first equality. Similarly, one has Tr((A(0,1)
3 )4) = 3 Tr((X X∗)2 +

(X∗X)2) = 6 Tr((X X∗)2), which gives the second identity.
(2) Let us write the matrix of (D + A(0,1) + JA(0,1)J)1 in the decomposi-

tion (↑R, ↓R, ↑L, ↓L, ↑̄R, ↓̄R, ↑̄L, ↓̄L). We have

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 Y ∗
(↑1) ϕ1 Y ∗

(↑1) ϕ2 Y ∗
R 0

0 0 −Y ∗
(↓1) ϕ̄2 Y ∗

(↓1) ϕ̄1 0 0
Y(↑1)ϕ̄1 −Y(↓1) ϕ2 0 0 0 0
Y(↑1)ϕ̄2 Y(↓1) ϕ1 0 0 0 0

YR 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 Ȳ(↑1)ϕ1 −Ȳ(↓1)ϕ̄2
0 0 0 0 Ȳ(↑1)ϕ2 Ȳ(↓1)ϕ̄1

0 0
0 0
0 0
0 0

Ȳ ∗
(↑1)ϕ̄1 Ȳ ∗

(↑1)ϕ̄2

−Ȳ ∗
(↓1)ϕ2 Ȳ ∗

(↓1)ϕ1

0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The only matrix elements of the square of (D + A(0,1) + JA(0,1)J)1
involving YR or Y ∗

R are
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y ∗
RYR + Y ∗

(↑1)Y(↑1)|H|2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 YRY ∗

(↑1) ϕ1 YRY ∗
(↑1) ϕ2

0 0 0 0
Ȳ(↑1)YRϕ1 0 0 0
Ȳ(↑1)YRϕ2 0 0 0

0 0 Y ∗
RȲ ∗

(↑1)ϕ̄1 Y ∗
RȲ ∗

(↑1)ϕ̄2

0 0 0 0
Y(↑1)Y

∗
Rϕ̄1 0 0 0

Y(↑1)Y
∗
Rϕ̄2 0 0 0

Ȳ ∗
(↑1)Ȳ(↑1)|H|2 + YRY ∗

R 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This shows that one only gets two additional terms involving YR for
Tr((D + A(0,1) + JA(0,1)J)21) and each gives Tr(YRY ∗

R). The trace
Tr((D + A(0,1) + JA(0,1)J)41) is the Hilbert–Schmidt norm square of
(D + A(0,1) + JA(0,1)J)21 and we just need to add to the terms com-
ing from the same computation as (3.12), the contribution of the
terms involving YR. The term Y ∗

RYR + Y ∗
(↑1)Y(↑1)|H|2 contributes (after

replacing H �→ 1 + H) by 2|1 + H|2 Tr(Y ∗
RYRY ∗

(↑1)Y(↑1)) and
Tr((Y ∗

RYR)2). The term Ȳ ∗
(↑1)Ȳ(↑1)|H|2 + YRY ∗

R gives a similar contri-
bution. All the other terms give simple additive contributions. One
gets the result using

Tr(Ȳ(↑1)YRY ∗
RȲ ∗

(↑1)) = Tr(Y ∗
RYRY ∗

(↑1)Y(↑1)),

which follows using complex conjugation from the symmetry of YR,
i.e., ȲR = Y ∗

R . �

Thus, we obtain for the trace of powers of D(0,1) the formulae

Tr((D(0,1))2) = 4 a |1 + H|2 + 2 c (3.14)

and

Tr((D(0,1))4) = 4 b |1 + H|4 + 2 d + 8 e |1 + H|2, (3.15)
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where

a = Tr(Y ∗
(↑1)Y(↑1) + Y ∗

(↓1)Y(↓1) + 3(Y ∗
(↑3)Y(↑3) + Y ∗

(↓3)Y(↓3))),

b = Tr((Y ∗
(↑1)Y(↑1))

2 + (Y ∗
(↓1)Y(↓1))

2 + 3(Y ∗
(↑3)Y(↑3))

2 + 3(Y ∗
(↓3)Y(↓3))

2),

c = Tr(Y ∗
RYR), (3.16)

d = Tr((Y ∗
RYR)2),

e = Tr(Y ∗
RYRY ∗

(↑1)Y(↑1)).

Remark 3.7. The coefficients in (3.16) appear in the physics literature
in the renormalization group equation for the Yukawa parameters. For
instance, one can recognize the coefficients a and b, respectively, as the
Y2(S) and H(S) of [1].

3.5.2 The vector part A(1,0) of inner fluctuations

Let us now determine the other part A(1,0) of A, i.e.,

A(1,0) =
∑

ai[(∂/M ⊗ 1), a′
i]. (3.17)

We let ai = (λi, qi, mi), a′
i = (λ′

i, q
′
i, m

′
i) be elements of A = C∞(M, AF ). We

obtain the following:

(1) a U(1) gauge field
Λ =

∑
λi dλ′

i, (3.18)

(2) an SU(2) gauge field

Q =
∑

qi dq′
i, (3.19)

(3) a U(3) gauge field
V ′ =

∑
mi dm′

i. (3.20)

For (1), notice that we have two expressions to compute since there are two
different actions of λ(x) in L2(M, S) given, respectively, by

ξ(x) �→ λ(x) ξ(x), ξ(x) �→ λ̄(x) ξ(x).

For the first one, using (3.2), the expression Λ =
∑

λj [(∂/M ⊗ 1), λ′
j ] is of

the form
Λ =

√
−1

∑
λj∂μλ′

jγ
μ = Λμ γμ

and it is self-adjoint when the scalar functions

Λμ =
√

−1
∑

λj∂μλ′
j

are real valued. It follows then that the second one is given by
∑

λ̄j [(∂/M ⊗ 1), λ̄′
j ] =

√
−1

∑
λ̄j∂μλ̄′

jγ
μ = −Λμ γμ.
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Thus, we see that, even though we have two representations of the λ(x),
these generate only one U(1) gauge potential. We use the notation

Λμ =
g1

2
Bμ (3.21)

for this U(1) gauge potential, which will play the role of the generator of
hypercharge (not to be confused with the electromagnetic vector potential).

For (2) notice that the action of quaternions H can be represented in the
form

q = f0 +
∑

i fα σα, f0, fα ∈ C∞(M, R),

where σα are the Pauli matrices

σ1 =
[
0 1
1 0

]

, σ2 =
[
0 −i
i 0

]

, σ3 =
[
1 0
0 −1

]

. (3.22)

The Pauli matrices are self-adjoint. Thus the terms of the form

f0 [(∂/M ⊗ 1), i f ′
α σα]

are self-adjoint. The algebra of quaternions admits the basis (1, iσα). Thus,
since the elements of this basis commute with ∂/M , one can rewrite
∑

qi[(∂/M ⊗ 1), q′
i] =

∑
f0 [(∂/M ⊗ 1), f ′

0] +
∑

fα [(∂/M ⊗ 1), i f ′
α σα],

where all f and f ′ are real-valued functions. Thus, the self-adjoint part of
this expression is given by

Q =
∑

fα [(∂/M ⊗ 1), i f ′
α σα],

which is an SU(2) gauge field. We write it in the form

Q = Qμ γμ, Qμ =
g2

2
Wα

μ σα. (3.23)

Using (3.2), we see that its effect is to generate the covariant derivatives

∂μ − i

2
g2 Wα

μ σα. (3.24)

For (3), this follows as a special case of the computation of the expressions
of the form

A =
∑

ai[(∂/M ⊗ 1), a′
i], ai, a′

i ∈ C∞(M, MN (C)).

One obtains Clifford multiplication by all matrix valued 1-forms on M in this
manner. The self-adjointness condition A = A∗ then reduces them to take
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values in the Lie algebra of U(N) through the identifications A = i H and

Lie(U(N)) = {H ∈ MN (C), H∗ = −H}.

We now explain how to reduce V ′ to the Lie subalgebra SU(3) of U(3).
We consider the following analogue of Definition 2.13 of the unimodular
subgroup SU(AF ).

Definition 3.8. A gauge potential A is “unimodular” iff Tr(A) = 0.

We can now parameterize the unimodular gauge potentials and their
adjoint action, i.e., the combination A + J A J−1.

Proposition 3.9. (1) The unimodular gauge potentials are parameterized
by a U(1) gauge field B, an SU(2) gauge field W and an SU(3) gauge
field V .

(2) The adjoint action A + J A J−1 on Hf is obtained by replacing ∂μ by
∂μ + Aμ, where Aμ = (Aq

μ ⊕ A
�
μ) ⊗ 13 (where the 13 is for the three

generations), and

A
q
μ =

⎡

⎢
⎢
⎢
⎢
⎣

−2i

3
g1Bμ ⊗ 13 0 0

0
i

3
g1Bμ ⊗ 13 0

0 0
(

− i

2
g2W

α
μ σα − i

6
g1Bμ ⊗ 12

)

⊗ 13

⎤

⎥
⎥
⎥
⎥
⎦

+ 14 ⊗
(

− i

2
g3V

i
μλi

)

,

A
�
μ =

⎡

⎢
⎢
⎣

0 0 0
0 i g1Bμ 0

0 0
(

− i

2
g2W

α
μ σα +

i

2
g1Bμ ⊗ 12

)

⎤

⎥
⎥
⎦ .

Here the σα are the Pauli matrices (3.22) and λi are the Gell-mann matrices

λ1 =

⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦, λ2 =

⎡

⎣
0 i 0
−i 0 0
0 0 0

⎤

⎦, λ3 =

⎡

⎣
1 0 0
0 −1 0
0 0 0

⎤

⎦, λ4 =

⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦

λ5 =

⎡

⎣
0 0 −i
0 0 0
i 0 0

⎤

⎦, λ6 =

⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦, λ7 =

⎡

⎣
0 0 0
0 0 −i
0 i 0

⎤

⎦, (3.25)
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λ8 =
1√
3

⎡

⎣
1 0 0
0 1 0
0 0 −2

⎤

⎦

which are self-adjoint and satisfy the relation

Tr(λiλj) = 2δij . (3.26)

Proof. (1) The action of A on the subspace Hf is of the form
⎡

⎢
⎢
⎣

Λ 0 0 0
0 −Λ 0 0
0 0 Q11 Q12
0 0 Q21 Q22

⎤

⎥
⎥
⎦

on leptons and quarks. Thus, it is traceless, since Q is traceless as
a linear combination of the Pauli matrices. The action of A on the
subspace Hf̄ is given by Λ on the subspace of leptons and by V ′ on
the space of quarks. One has 4 leptons and 4 quarks per generation
(because of the two possible chiralities) and the color index is taken
care of by V ′. Thus, the unimodularity condition means that we have

3 · 4 · (Λ + Tr(V ′)) = 0.

Thus, we can write V ′ as a sum of the form

V ′ = −V − 1
3

⎡

⎣
Λ 0 0
0 Λ 0
0 0 Λ

⎤

⎦ = −V − 1
3

Λ 13, (3.27)

where V is traceless, i.e., it is an SU(3) gauge potential.
(2) Since the charge conjugation antilinear operator JM commutes with

∂/M , it anticommutes with the γμ and the conjugation by J introduces
an additional minus sign in the gauge potentials. The computation of
A + J A J−1 gives, on quarks and leptons respectively, the matrices

⎡

⎢
⎢
⎣

Λ − V ′ 0 0 0
0 −Λ − V ′ 0 0
0 0 Q11 − V ′ Q12
0 0 Q21 Q22 − V ′

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

0 0 0 0
0 −2Λ 0 0
0 0 Q11 − Λ Q12
0 0 Q21 Q22 − Λ

⎤

⎥
⎥
⎦.
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Thus, using (3.27), we obtain for the (1, 0)-part of the inner fluctuation
A + J A J−1 of the metric the matrices

⎡

⎢
⎢
⎣

4
3 Λ + V 0 0 0

0 −2
3 Λ + V 0 0

0 0 Q11 + 1
3 Λ + V Q12

0 0 Q21 Q22 + 1
3 Λ + V

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

0 0 0 0
0 −2Λ 0 0
0 0 Q11 − Λ Q12
0 0 Q21 Q22 − Λ

⎤

⎥
⎥
⎦.

This completes the proof. �

Remark 3.10. Thus, we have obtained exactly the gauge bosons of the
standard model, coupled with the correct hypercharges YL, YR. They are
such that the electromagnetic charge Qem is determined by 2Qem = YR for
right-handed particles. One also has 2Qem = YL + 2 I3, where I3 is the
third generator of the weak isospin group SU(2). For Qem one gets the same
answer for the left and right components of each particle and 2/3, −1/3
for the u, d quarks, respectively, and 0 and −1 for the ν and the e leptons,
respectively.

3.5.3 Independence

It remains to explain why the fields H = ϕ1 + j ϕ2 of Proposition 3.5 and
B, W, V of Proposition 3.9 are independent of each other.

Proposition 3.11. The unimodular inner fluctuations of the metric are
parameterized by independent fields ϕ1, ϕ2, B, W , V , as in Propositions 3.5
and 3.9.

Proof. Let Z be the real vector bundle over M , with fiber at x

C ⊕ C ⊕ T ∗
xM ⊕ T ∗

xM ⊗ Lie(SU(2)) ⊕ T ∗
xM ⊗ Lie(SU(3)).

By construction the inner fluctuations are sections of the bundle Z.

The space of sections S obtained from inner fluctuations is in fact not just
a linear space over R, but also a module over the algebra C∞(M, R) which
is the real part of C∞(M, AF ) (Lemma 3.2). Indeed, the inner fluctuations
are obtained as expressions of the form A =

∑
aj [D, a′

j ]. One has to check
that left multiplication by f ∈ C∞(M, R) does not alter the self-adjointness
condition A = A∗. This follows from Proposition 3.1, since we are replacing
aj by faj , where f commutes with A and is real so that f = f∗.
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To show that S = C∞(M, Z) it is enough to know that one can find
sections in S that span the full vector space Zx at any given point x ∈ M .
Then C∞(M, R)-linearity shows that the same sections continue to span the
nearby fibers. Using a partition of unity, one can then express any global
section of Z as an element of S.

Choose first the elements ai(y) = (λi, qi, mi), a′
i(y) = (λ′

i, q
′
i, m

′
i) indepen-

dent of y ∈ N(x) in a neighborhood of x. Using Proposition 3.5, one knows
that H(x) can be an arbitrary element of H, while B(x), W (x), V (x) all
vanish because they are differential expressions of the a′

i.

The independence of λ, q and m in the formulae (3.18), (3.19), (3.20)
implies that one can construct arbitrary B(x), W (x), V (x) in the form∑

i ai[D, a′
i]. These, however, will not suffice to give an arbitary value for ϕ1

and ϕ2, but this can be corrected by adding an element of the form described
above, with vanishing B, W , and V . �

3.6 The Dirac operator and its square

The Dirac operator DA that takes the inner fluctuations into account is
given by the sum of two terms

DA = D(1,0) + γ5 ⊗ D(0,1), (3.28)

where D(0,1) is given by (3.11) and D(1,0) is of the form

D(1,0) =
√

−1 γμ(∇s
μ + Aμ), (3.29)

where ∇s is the spin connection (cf. (3.2)).

The gauge potential Aμ splits as a direct sum in the decomposition associ-
ated to HF = Hf ⊕ Hf̄ , and its restriction to Hf is given by Proposition 3.9.

In order to state the next step, i.e., the computation of the square of DA,
we introduce the notations

T (M1, M2, ϕ) =

⎡

⎢
⎢
⎣

0 0 M∗
1 ϕ1 M∗

1 ϕ2
0 0 −M∗

2 ϕ̄2 M∗
2 ϕ̄1

M1ϕ̄1 −M2 ϕ2 0 0
M1ϕ̄2 M2 ϕ1 0 0

⎤

⎥
⎥
⎦ (3.30)

with ϕ = (ϕ1, ϕ2) and Mj a pair of matrices, and

M(ϕ) = T (Y(↑3), Y(↓3), ϕ) ⊗ 13 ⊕ T (Y(↑1), Y(↓1), ϕ) ⊕ T (Y(↑3), Y(↓3), ϕ)

⊗ 13 ⊕ T (Y(↑1), Y(↓1), ϕ) (3.31)
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By construction M(ϕ) is self-adjoint and one has

Tr(M(ϕ)2) = 4 a |ϕ|2, a = Tr(Y ∗
(↑1)Y(↑1) + Y ∗

(↓1)Y(↓1) + 3(Y ∗
(↑3)Y(↑3)

+ Y ∗
(↓3)Y(↓3))) (3.32)

Lemma 3.12. The square of DA is given by

D2
A = ∇∗∇ − E , (3.33)

where ∇∗∇ is the connection Laplacian for the connection

∇ = ∇s + A (3.34)

and the endomorphism E is given, with s = −R the scalar curvature, by

−E =
1
4

s ⊗ id +
∑

μ<ν

γμγν ⊗ Fμν − i γ5 γμ ⊗ M(Dμ ϕ) + 14 ⊗ (D0,1)2

(3.35)
with H = ϕ1 + ϕ2j as above, and ϕ = (ϕ1, ϕ2). Here Fμν is the curvature of
the connection A and ϕ = (ϕ1, ϕ2) is a row vector. The term Dμϕ in (3.35)
is of the form

Dμ ϕ = ∂μ ϕ +
i

2
g2 Wα

μ ϕ σα − i

2
g1 Bμ ϕ. (3.36)

Proof. By construction D1,0 anticommutes with γ5. Thus, one has

D2
A = (D1,0)2 + 14 ⊗ (D0,1)2 − γ5 [D1,0, 14 ⊗ D0,1].

The last term is of the form

[D1,0, 14 ⊗ D0,1] =
√

−1 γμ [(∇s
μ + Aμ), 14 ⊗ D0,1].

Using (3.3), one can replace ∇s
μ by ∂μ without changing the result. In order

to compute the commutator [Aμ, D0,1], notice first that the off-diagonal term
of D0,1 does not contribute, since the corresponding matrix elements of A

�
μ

are zero. Thus, it is enough to compute the commutator of the matrix

W =

⎡

⎢
⎢
⎣

− i
2g1Bμ 0 0 0
0 i

2g1Bμ 0 0
0 0 − i

2g2W
3
μ − i

2g2(W 1
μ − iW 2

μ)
0 0 − i

2g2(W 1
μ + iW 2

μ) i
2g2W

3
μ

⎤

⎥
⎥
⎦ (3.37)

with a matrix of the form

T (M1, M2, ϕ) =

⎡

⎢
⎢
⎣

0 0 M∗
1 ϕ1 M∗

1 ϕ2
0 0 −M∗

2 ϕ̄2 M∗
2 ϕ̄1

M1ϕ̄1 −M2 ϕ2 0 0
M1ϕ̄2 M2 ϕ1 0 0

⎤

⎥
⎥
⎦. (3.38)
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One gets
[W, T (M1, M2, ϕ)] = T (M1, M2, ψ), (3.39)

where

(ψ1, ψ2) = − i

2
g1Bμ(ϕ1, ϕ2) +

i

2
g2W

α
μ (ϕ1, ϕ2) σα. (3.40)

�

3.7 The spectral action and the asymptotic expansion

In this section we compute the spectral action for the inner fluctuations of
the product geometry M × F .

Theorem 3.13. The spectral action is given by

S =
1
π2

(

48 f4 Λ4 − f2 Λ2 c +
f0

4
d

) ∫ √
g d4x

+
96 f2 Λ2 − f0 c

24π2

∫
R

√
g d4x

+
f0

10 π2

∫ (
11
6

R∗R∗ − 3 Cμνρσ Cμνρσ

)
√

g d4x

+
(−2 a f2 Λ2 + e f0)

π2

∫
|ϕ|2 √

g d4x (3.41)

+
f0

2 π2

∫
a |Dμϕ|2 √

g d4x

− f0

12 π2

∫
a R |ϕ|2 √

g d4x

+
f0

2 π2

∫ (

g2
3 Gi

μν Gμνi + g2
2 Fα

μν Fμνα +
5
3

g2
1 Bμν Bμν

)
√

g d4x

+
f0

2 π2

∫
b |ϕ|4 √

g d4x,

where

R∗R∗ =
1
4
εμνρσεαβγδR

αβ
μν Rγδ

ρσ

is the topological term that integrates to the Euler characteristic. The coef-
ficients (a, b, c, d, e) are defined in (3.16) and Dμϕ is defined in (3.36).

Proof. To prove Theorem 3.13 we use (3.33), and we apply Gilkey’s theorem
(see Theorem A.1 below) to compute the spectral action. By Remark A.2



1034 ALI H. CHAMSEDDINE ET AL.

below, the relevant term is −1/6 R + E , which is the sum

E ′ = −R

6
id + E =

(
R

12
id − 14 ⊗ (D0,1)2

)

−
∑

μ<ν

γμγν ⊗ Fμν + i γ5 γμ ⊗ M(Dμ ϕ). (3.42)

We need to compute the sum

Σ =
f2

8 π2 Λ2Tr(E ′) +
f0

32 π2 Tr((E ′)2). (3.43)

Lemma 3.14. The term Σ in (3.43) is given by

Σ =
4 f2

π2 Λ2 R − f2

2 π2 Λ2 Tr((D0,1)2) +
f0

8 π2 Tr(M(Dμ ϕ)2)

+
f0

8 π2 Tr

((
R

12
− (D0,1)2

)2
)

+
f0

16 π2 Tr(FμνF
μν). (3.44)

Proof. The contribution of Tr(E ′) is only coming from the first term of
(3.42), since the trace of the two others vanishes due to the Clifford algebra
terms. The coefficient of (f2 Λ2/π2) R is 1/8 · 1/12 · 4 · 96 = 4. To get the
contribution of Tr((E ′)2), notice that the three terms of the sum (3.42) are
pairwise orthogonal in the Clifford algebra, so that the trace of the square
is just the sum of the three contributions from each of these terms. Again
the factor of 4 comes from the dimension of spinors and the summation on
all indices μν gives a factor of two in the denominator for f0/(16 π2). �

Notice also that the curvature Ωμν of the connection ∇ is independent of
the additional term D(0,1). We now explain the detailed computation of the
various terms of the spectral action.

3.7.1 Λ4-terms

The presence of the additional off-diagonal term in the Dirac operator of the
finite geometry adds two contributions to the cosmological term of [8]. Thus
while the dimension N = 96 contributes by the term

48
π2 f4 Λ4

∫ √
g d4x,

we get the additional coefficients

− f2

π2 Λ2 Tr(Y ∗
RYR) = −c f2

π2 Λ2,
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which are obtained from the second term of (3.44), using (3.14). Finally, we
also get

f0

4 π2 Tr((Y ∗
RYR)2) =

d f0

4 π2 ,

which comes from the fifth term in (3.44). Thus, the cosmological term gives

1
π2 (48 f4 Λ4 − f2 Λ2 Tr(Y ∗

RYR) +
f0

4
Tr((Y ∗

RYR)2))
∫ √

g d4x. (3.45)

3.7.2 Riemannian curvature terms

The computation of the terms that only depend upon the Riemann curvature
tensor is the same as in [8]. It gives the additive contribution

1
π2

∫
(4 f2 Λ2 R − 3

10
f0 Cμνρσ Cμνρσ)

√
g d4x, (3.46)

together with topological terms. Ignoring boundary terms, the latter is of
the form

11 f0

60 π2

∫
R∗R∗ √

g d4x. (3.47)

There is, however, an additional contribution from the fourth term of (3.44).
Using (3.14), this gives

− f0

48 π2 R Tr((D0,1)2) = − f0

12 π2 a R |ϕ|2 − f0

24 π2 c R. (3.48)

Notice the presence of the terms in R |ϕ|2 (cf. [21], equation 10.3.3).

3.7.3 Scalar minimal coupling

These terms are given by

f0

8 π2 Tr(M(Dμ ϕ)2) =
f0

2 π2 a |Dμ ϕ|2 (3.49)

using (3.32) and (3.44).

Notice that there is a slight change of notation with respect to [7] since
we are using the Higgs doublet H̃ instead of H with the notations of [7].
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3.7.4 Scalar mass terms

There are two contributions with opposite signs. The second term in (3.44),
i.e.,

− f2

2 π2 Λ2 Tr((D0,1)2)

gives, using (3.14), a term in

−2 f2

π2 Λ2 a |ϕ|2.

The fourth term in (3.44) gives, using (3.15),

f0

8 π2 8 e |ϕ|2 =
e f0

π2 |ϕ|2.

Thus, the mass term gives

1
π2 (−2 a f2 Λ2 + e f0) |ϕ|2. (3.50)

3.7.5 Scalar quartic potential

The only contribution, in this case, comes from the fourth term in (3.44),
i.e., from the term

f0

8 π2 Tr((D0,1)4).

Using (3.15), this gives
f0

2 π2 b |ϕ|4. (3.51)

3.7.6 Yang–Mills terms

For the Yang–Mills terms the computation is the same as in [8]. Thus,
we get the coefficient f0/24π2 in front of the trace of the square of the
curvature. For the gluons, i.e., the term Gi

μν Gμνi, we get the additional
coefficient 3 · 4 · 2 = 24, since there are three generations, 4 quarks per gen-
eration (uR, dR, uL, dL), and a factor of two coming from the sectors Hf and
Hf̄ . In other words, because of the coefficient g3/2, we get

f0 g2
3

4π2 Tr(Gμν Gμν) = 2
f0 g2

3
4π2 Gi

μν Gμν
i =

f0 g2
3

2π2 Gi
μν Gμν

i ,

where we use (3.26). For the weak interaction bosons Wα we get the
additional coefficient 3 · 4 · 2 = 24 with the 3 for 3 generations, the 4 for
the 3 colors of quarks and 1 lepton per isodoublet and per generation
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(ujL, djL, νL, eL), and the factor of 2 from the sectors Hf and Hf̄ . Thus,
using Tr(σaσb) = 2δab, we obtain the similar term

f0 g2
2

4π2 Tr(Fμν Fμν) = 2
f0 g2

2
4π2 F a

μν Fμν
a =

f0 g2
2

2π2 F a
μν Fμν

a .

For the hypercharge generator Bμ, we get the additional coefficient

2 ·
(((

4
3

)2

+
(

2
3

)2

+ 2
(

1
3

)2
)

· 3 + (22 + 2)

)

· 3 = 80,

which gives an additional coefficient of 10/3 in the corresponding term

10
3

f0 g2
1

4π2 Bμν Bμν =
5
3

f0 g2
1

2π2 Bμν Bμν .

This completes the proof of Theorem 3.13. �

4 The Lagrangian

The KO-dimension of the finite space F is 6 ∈ Z/8, hence the KO-dimension
of the product geometry M × F (for M a spin 4-manifold) is now 2 ∈ Z/8.
In other words, according to Definition 2.7, the commutation rules are

J2 = −1, JD = DJ, and Jγ = −γJ. (4.1)

Let us now explain how these rules define a natural antisymmetric bilinear
form on the even part

H+ = {ξ ∈ H, γ ξ = ξ} (4.2)

of H.

Proposition 4.1. On a real spectral triple of KO-dimension 2 ∈ Z/8, the
expression

AD(ξ′, ξ) = 〈J ξ′, D ξ〉, ∀ξ, ξ′ ∈ H+ (4.3)

defines an antisymmetric bilinear form on H+ = {ξ ∈ H, γ ξ = ξ}. The tri-
linear pairing (4.3) between D, ξ and ξ′ is gauge-invariant under the adjoint
action of the unitary group of A, namely

AD(ξ′, ξ) = ADu(Ad(u)ξ′, Ad(u)ξ), Du = Ad(u) D Ad(u∗). (4.4)

Proof. (1) We use an inner product which is antilinear in the first variable.
Thus, since J is antilinear, A is a bilinear form. Let us check that A
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is antisymmetric. One has

AD(ξ, ξ′) = 〈 J ξ, D ξ′〉 = −〈J ξ, J2 D ξ′〉 = −〈J D ξ′, ξ〉 = −〈D J ξ′, ξ〉
= −〈J ξ′, D ξ〉,

where we used the unitarity of J , i.e., the equality

〈 J ξ, J η〉 = 〈η, ξ〉, ∀ξ, η ∈ H. (4.5)

Finally, one can restrict the antisymmetric form AD to H+ without
automatically getting zero since one has

γ JD = JD γ.

(2) Let us check that Ad(u) commutes with J . By definition Ad(u) =
u (u∗)0 = u JuJ−1. Thus

J Ad(u) = J u JuJ−1 = u J u JJ−1 = u J u = Ad(u) J,

where we used the commutation of u with J u J . Since Ad(u) is uni-
tary, one gets (4.4). �

Now the Pfaffian of an antisymmetric bilinear form is best expressed in
terms of the functional integral involving anticommuting “classical fermions”
(cf. [38, § 5.1]) At the formal level, this means that we write

Pf(A) =
∫

e− 1
2A(ξ̃) D[ξ̃] (4.6)

Notice that A(ξ, ξ) = 0 when applied to a vector ξ, while A(ξ̃, ξ̃) �= 0 when
applied to anticommuting variables ξ̃. We define

H+
cl = {ξ̃ : ξ ∈ H+} (4.7)

to be the space of classical fermions (Grassman variables) corresponding to
H+ of (4.2).

As the simplest example, let us consider a 2-dimensional vector space E
with basis ej and the antisymmetric bilinear form

A(ξ′, ξ) = a(ξ′
1ξ2 − ξ′

2ξ1).

For ξ̃1 anticommuting with ξ̃2, using the basic rule (cf. [38, § 5.1])
∫

ξ̃j dξ̃j = 1,

one gets ∫
e−(1/2)A(ξ̃) D[ξ̃] =

∫
e−a ξ̃1ξ̃2 dξ̃1dξ̃2 = a.
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Remark 4.2. It is the use of the Pfaffian as a square root of the determi-
nant that makes it possible to solve the Fermion doubling puzzle which was
pointed out in [32]. We discuss this in § 4.4.1 below. The solution obtained
by a better choice of the KO-dimension of the space F and hence of M × F
is not unrelated to the point made in [25].

We now state our main result as follows.

Theorem 4.3. Let M be a Riemannian spin 4-manifold and F the finite
noncommutative geometry of KO-dimension 6 described above. Let M × F
be endowed with the product metric.

(1) The unimodular subgroup of the unitary group acting by the adjoint
representation Ad(u) in H is the group of gauge transformations of
SM.

(2) The unimodular inner fluctuations of the metric give the gauge bosons
of SM.

(3) The full standard model (with neutrino mixing and seesaw mechanism)
minimally coupled to Einstein gravity is given in Euclidean form by the
action functional

S = Tr(f(DA/Λ)) +
1
2

〈 J ξ̃, DA ξ̃〉, ξ̃ ∈ H+
cl , (4.8)

where DA is the Dirac operator with the unimodular inner fluctuations.

Remark 4.4. Notice that the action functional (4.8) involves all the data
of the spectral triple, including the grading γ and the real structure J .

Proof. We split the proof of the theorem in several subsections.

To perform the comparison, we look separately at the terms in the SM
Lagrangian. After dropping the ghost terms, one has five different groups
of terms:

(1) Yukawa coupling LHf ,
(2) gauge fermion couplings, Lgf

(3) Higgs self-coupling, LH

(4) self-coupling of gauge fields Lg,
(5) minimal coupling of Higgs fields LHg. �

4.1 Notation for the standard model

The spectral action naturally gives a Lagrangian for matter minimally cou-
pled with gravity, so that we would obtain the standard model Lagrangian
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on a curved space-time. By covariance, it is in fact sufficient to check that
we obtain the standard model Lagrangian in flat space-time. This can only
be done by a direct calculation, which occupies the remaining of this section.

In flat space and in Lorentzian signature, the Lagrangian of the standard
model with neutrino mixing and Majorana mass terms, written using the
Feynman gauge fixing, is of the form

LSM = −1
2
∂νg

a
μ∂νg

a
μ − gsf

abc∂μga
νgb

μgc
ν − 1

4
g2
sf

abcfadegb
μgc

νg
d
μge

ν

− ∂νW
+
μ ∂νW

−
μ − M2W+

μ W−
μ − 1

2
∂νZ

0
μ∂νZ

0
μ − 1

2c2
w

M2Z0
μZ0

μ

− 1
2
∂μAν∂μAν − igcw(∂νZ

0
μ(W+

μ W−
ν − W+

ν W−
μ )

− Z0
ν (W+

μ ∂νW
−
μ − W−

μ ∂νW
+
μ ) + Z0

μ(W+
ν ∂νW

−
μ − W−

ν ∂νW
+
μ ))

− igsw(∂νAμ(W+
μ W−

ν − W+
ν W−

μ ) − Aν(W+
μ ∂νW

−
μ − W−

μ ∂νW
+
μ )

+ Aμ(W+
ν ∂νW

−
μ − W−

ν ∂νW
+
μ )) − 1

2
g2W+

μ W−
μ W+

ν W−
ν

+
1
2
g2W+

μ W−
ν W+

μ W−
ν + g2c2

w(Z0
μW+

μ Z0
νW−

ν − Z0
μZ0

μW+
ν W−

ν )

+ g2s2
w(AμW+

μ AνW
−
ν − AμAμW+

ν W−
ν )

+ g2swcw(AμZ0
ν (W+

μ W−
ν − W+

ν W−
μ ) − 2AμZ0

μW+
ν W−

ν )

− 1
2
∂μH∂μH − 2M2αhH2 − ∂μφ+∂μφ− − 1

2
∂μφ0∂μφ0

− βh

(
2M2

g2 +
2M

g
H +

1
2
(H2 + φ0φ0 + 2φ+φ−)

)

+
2M4

g2 αh − gαhM
(
H3 + Hφ0φ0 + 2Hφ+φ−)

− 1
8
g2αh

(
H4 + (φ0)4 + 4(φ+φ−)2

+ 4(φ0)2φ+φ− + 4H2φ+φ− + 2(φ0)2H2)

− gMW+
μ W−

μ H − 1
2
g
M

c2
w

Z0
μZ0

μH

− 1
2
ig
(
W+

μ (φ0∂μφ− − φ−∂μφ0) − W−
μ (φ0∂μφ+ − φ+∂μφ0)

)

+
1
2
g
(
W+

μ (H∂μφ− − φ−∂μH) + W−
μ (H∂μφ+ − φ+∂μH)

)

+
1
2
g

1
cw

Z0
μ(H∂μφ0 − φ0∂μH)
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+ M (
1
cw

Z0
μ∂μφ0 + W+

μ ∂μφ− + W−
μ ∂μφ+)

− ig
s2
w

cw
MZ0

μ(W+
μ φ− − W−

μ φ+) + igswMAμ(W+
μ φ− − W−

μ φ+)

− ig
1 − 2c2

w

2cw
Z0

μ(φ+∂μφ− − φ−∂μφ+) + igswAμ(φ+∂μφ− − φ−∂μφ+)

− 1
4
g2W+

μ W−
μ

(
H2 + (φ0)2 + 2φ+φ−)

− 1
8
g2 1

c2
w

Z0
μZ0

μ

(
H2 + (φ0)2 + 2(2s2

w − 1)2φ+φ−)

− 1
2
g2 s2

w

cw
Z0

μφ0(W+
μ φ− + W−

μ φ+) − 1
2
ig2 s2

w

cw
Z0

μH(W+
μ φ− − W−

μ φ+)

+
1
2
g2swAμφ0(W+

μ φ− + W−
μ φ+) +

1
2
ig2swAμH(W+

μ φ− − W−
μ φ+)

− g2 sw

cw
(2c2

w − 1)Z0
μAμφ+φ− − g2s2

wAμAμφ+φ−

+
1
2
igs λa

ij(q̄
σ
i γμqσ

j )ga
μ

− ēλ(γ∂ + mλ
e )eλ − ν̄λ(γ∂ + mλ

ν )νλ − ūλ
j (γ∂ + mλ

u)uλ
j

− d̄λ
j (γ∂ + mλ

d)dλ
j + igswAμ

×
(

−(ēλγμeλ) +
2
3
(ūλ

j γμuλ
j ) − 1

3
(d̄λ

j γμdλ
j )
)

+
ig

4cw
Z0

μ{(ν̄λγμ(1 + γ5)νλ) + (ēλγμ(4s2
w − 1 − γ5)eλ)

+ (d̄λ
j γμ(

4
3
s2
w − 1 − γ5)dλ

j ) + (ūλ
j γμ(1 − 8

3
s2
w + γ5)uλ

j )}

+
ig

2
√

2
W+

μ

(
(ν̄λγμ(1 + γ5)U lep

λκeκ) + (ūλ
j γμ(1 + γ5)Cλκdκ

j )
)

+
ig

2
√

2
W−

μ

(
(ēκU lep†

κλγμ(1 + γ5)νλ) + (d̄κ
j C†

κλγμ(1 + γ5)uλ
j )
)

+
ig

2M
√

2
φ+
(
−mκ

e (ν̄λU lep
λκ(1 − γ5)eκ) + mλ

ν (ν̄λU lep
λκ(1 + γ5)eκ)

)

+
ig

2M
√

2
φ−
(
mλ

e (ēλU lep†
λκ(1 + γ5)νκ) − mκ

ν(ēλU lep†
λκ(1 − γ5)νκ)

)

− g

2
mλ

ν

M
H(ν̄λνλ) − g

2
mλ

e

M
H(ēλeλ) +

ig

2
mλ

ν

M
φ0(ν̄λγ5νλ)

− ig

2
mλ

e

M
φ0(ēλγ5eλ) − 1

4
ν̄λ MR

λκ (1 − γ5)ν̂κ − 1
4

ν̄λ MR
λκ (1 − γ5)ν̂κ
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+
ig

2M
√

2
φ+
(
−mκ

d(ūλ
j Cλκ(1 − γ5)dκ

j ) + mλ
u(ūλ

j Cλκ(1 + γ5)dκ
j )
)

+
ig

2M
√

2
φ−
(
mλ

d(d̄λ
j C†

λκ(1 + γ5)uκ
j ) − mκ

u(d̄λ
j C†

λκ(1 − γ5)uκ
j )
)

− g

2
mλ

u

M
H(ūλ

j uλ
j ) − g

2
mλ

d

M
H(d̄λ

j dλ
j ) +

ig

2
mλ

u

M
φ0(ūλ

j γ5uλ
j )

− ig

2
mλ

d

M
φ0(d̄λ

j γ5dλ
j ).

Here the notation is as in [42], as follows:

• gauge bosons: Aμ, W±
μ , Z0

μ, ga
μ;

• quarks: uκ
j , dκ

j , collective : qσ
j ;

• leptons: eλ, νλ;
• Higgs fields: H, φ0, φ+, φ−;
• ghosts: Ga, X0, X+, X−, Y ;
• masses: mλ

d , mλ
u, mλ

e , mh, M (the latter is the mass of the W );
• coupling constants gsw =

√
4πα (fine structure), gs = strong, αh =

(m2
h)/(4M2);

• tadpole constant βh;
• cosine and sine of the weak mixing angle cw, sw;
• cabibbo–Kobayashi–Maskawa mixing matrix: Cλκ;
• structure constants of SU(3): fabc;
• the gauge is the Feynman gauge.

Remark 4.5. Notice that, for simplicity, we use for leptons the same con-
vention usually adopted for quarks, namely to have the up particles in diag-
onal form (in this case the neutrinos) and the mixing matrix for the down
particles (here the charged leptons). This is different from the convention
usually adopted in neutrino physics (cf., e.g., [33, § 11.3]), but it is conve-
nient here, in order to write the Majorana mass matrix in a simpler form.

Our goal is to compare this Lagrangian with the one we get from the
spectral action, when dealing with flat space and Euclidean signature. All
the results immediately extend to curved space since our formalism is fully
covariant.

4.2 The asymptotic formula for the spectral action

The change of variables from the standard model to the spectral model is
summarized in Table 1.
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We first perform a trivial rescaling of the Higgs field ϕ so that kinetic
terms are normalized. To normalize the Higgs field kinetic energy we have
to rescale ϕ to

H =
√

a f0

π
ϕ, (4.9)

so that the kinetic term becomes
∫

1
2
|DμH|2 √

g d4x.

The normalization of the kinetic terms, as in Lemma 4.10 below, imposes a
relation between the coupling constants g1, g2, g3 and the coefficient f0, of
the form

g2
3 f0

2π2 =
1
4
, g2

3 = g2
2 =

5
3

g2
1. (4.10)

The bosonic action (3.41) then takes the form

S =
∫ (

1
2κ2

0
R + α0 Cμνρσ Cμνρσ + γ0 + τ0 R∗R∗

+
1
4

Gi
μν Gμνi +

1
4

Fα
μν Fμνα +

1
4

Bμν Bμν

+
1
2
|Dμ H|2 − μ2

0|H|2 − ξ0 R |H|2 + λ0|H|4
)

√
g d4x, (4.11)

where
1
κ2

0
=

96 f2 Λ2 − f0 c

12 π2 ,

μ2
0 = 2

f2 Λ2

f0
− e

a
,

α0 = − 3 f0

10 π2 ,

τ0 =
11 f0

60 π2 ,

γ0 =
1
π2 (48 f4 Λ4 − f2 Λ2 c +

f0

4
d),

λ0 =
π2

2 f0

b

a2 ,

ξ0 =
1
12

. (4.12)
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Notice that the matrices Y(↑3), Y(↓3), Y(↑1) and Y(↓1) are only relevant up
to an overall scale. Indeed they only enter in the coupling of the Higgs with
fermions and because of rescaling (4.9) only by the terms

kx =
π√
a f0

Yx, x ∈ {(↑↓, j)} (4.13)

which are dimensionless matrices by construction. In fact, by (3.16)

a = Tr(Y ∗
(↑1)Y(↑1) + Y ∗

(↓1)Y(↓1) + 3(Y ∗
(↑3)Y(↑3) + Y ∗

(↓3)Y(↓3)))

has the physical dimension of a (mass)2.

Using (4.10) to replace
√

a f0
π by 1√

2

√
a

g , the change of notations for the
Higgs fields is

H =
1√
2

√
a

g
(1 + ψ) =

(
2M

g
+ H − iφ0,−i

√
2φ+

)

, (4.14)

4.3 The mass relation

The relation between the mass matrices comes from the equality of the
Yukawa coupling terms LHf . For the standard model these terms are given
by Lemma 4.7 below. For the spectral action they are given by γ5 M(ϕ)
with the notations of (3.28) and (3.31).

After Wick rotation to Euclidean and the chiral transformation U =
ei π

4 γ5 ⊗ 1, they are the same (cf. Lemma 4.9 below), provided the follow-
ing equalities hold:

(k(↑3))σκ =
g

2M
mσ

u δκ
σ ,

(k(↓3))σκ =
g

2M
mμ

d Cσμδρ
μC†

ρκ,

(k(↑1))σκ =
g

2M
mσ

ν δκ
σ ,

(k(↓1))σκ =
g

2M
mμ

e U lep
σμδρ

μU lep†
ρκ. (4.15)

Here the symbol δj
i is the Kronecker delta (not to be confused with the

previous notation δ↑↓).

Lemma 4.6. The mass matrices of (4.15) satisfy the constraint
∑

σ

(mσ
ν )2 + (mσ

e )2 + 3 (mσ
u)2 + 3 (mσ

d)2 = 8 M2. (4.16)
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Proof. It might seem at first sight that one can simply use (4.15) to define
the matrices kx, but this overlooks the fact that (4.13) implies the constraint

Tr(k∗
(↑1)k(↑1) + k∗

(↓1)k(↓1) + 3(k∗
(↑3)k(↑3) + k∗

(↓3)k(↓3))) = 2 g2, (4.17)

where we use (4.10) to replace π2

f0
by 2 g2. Using (4.15), we then obtain the

constraint (4.16), where summation is performed with respect to the flavor
index σ. Notice that g2 appeared in the same way on both sides and drops
out of the equation. �

We discuss in § 5.4 below the physical interpretation of the imposition of
this constraint at unification scale.

4.4 The coupling of fermions

Let us isolate the Yukawa coupling part of the standard model Lagrangian,
ignoring first the right-handed neutrinos (i.e. using the minimal standard
model as in [42]). We consider the additional terms later in Lemma 4.8. In
the minimal case, one has

LHf = −ēλ mλ
e eλ − ūλ

j mλ
u uλ

j − d̄λ
j mλ

d dλ
j +

ig

2
√

2
mλ

e

M
(
−φ+(ν̄λ(1 − γ5)eλ) + φ−(ēλ(1 + γ5)νλ)

)

− g

2
mλ

e

M

(
H(ēλeλ) + iφ0(ēλγ5eλ)

)

+
ig

2M
√

2
φ+
(
−mκ

d(ūλ
j Cλκ(1 − γ5)dκ

j ) + mλ
u(ūλ

j Cλκ(1 + γ5)dκ
j )
)

+
ig

2M
√

2
φ−
(
mλ

d(d̄λ
j C†

λκ(1 + γ5)uκ
j ) − mκ

u(d̄λ
j C†

λκ(1 − γ5)uκ
j )
)

− g

2
mλ

u

M
H(ūλ

j uλ
j ) − g

2
mλ

d

M
H(d̄λ

j dλ
j ) +

ig

2
mλ

u

M
φ0(ūλ

j γ5uλ
j )

− ig

2
mλ

d

M
φ0(d̄λ

j γ5dλ
j ) (4.18)

The matrix Cλκ is the mixing matrix. It does enter in the Lagrangian
elsewhere but only in the two gauge coupling terms where the down and up
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fermions are involved together and which are part of the expression

Lgf =
1
2
igs λij

a

(
q̄σ
i γμqσ

j

)
ga
μ − ēλ (γ∂) eλ − ν̄λγ∂νλ − ūλ

j (γ∂) uλ
j − d̄λ

j (γ∂) dλ
j

+ igswAμ

(

−
(
ēλγμeλ

)
+

2
3

(
ūλ

j γμuλ
j

)
− 1

3

(
d̄λ

j γμdλ
j

))

+
ig

4cw
Z0

μ

{(
ν̄λγμ

(
1 + γ5) νλ

)
+
(
ēλγμ

(
4s2

w − 1 − γ5) eλ
)

+
(

d̄λ
j γμ

(
4
3
s2
w − 1 − γ5

)

dλ
j

)

+
(

ūλ
j γμ

(

1 − 8
3
s2
w + γ5

)

uλ
j

)}

+
ig

2
√

2
W+

μ

((
ν̄λγμ

(
1 + γ5) eλ

)
+
(
ūλ

j γμ
(
1 + γ5)Cλκdκ

j

))

+
ig

2
√

2
W−

μ

((
ēλγμ

(
1 + γ5) νλ

)
+
(
d̄κ

j C†
κλγμ

(
1 + γ5)uλ

j

))
. (4.19)

Since the matrix Cλκ is unitary, the quadratic expressions in dλ
j are

unchanged by the change of variables given by

dλj = Cλκ dκ
j , d̄λj = C̄λκ d̄κ

j = C†
κλ d̄κ

j (4.20)

and in this way one can eliminate Cλκ in Lgf .

Once written in terms of the new variables, the term Lgf reflects the
kinetic terms of the fermions and their couplings to the various gauge fields.
The latter is simple for the color fields, where it is of the form

1
2
igs λij

a (q̄σ
i γμqσ

j )ga
μ,

where the λ are the Gell-mann matrices (3.25).

It is more complicated for the (A, W±, Z0). This displays in particular
the complicated hypercharges assigned to the different fermions, quarks and
leptons, which depend upon their chirality. At the level of electromagnetic
charges themselves, the assignment is visible in the coupling with Aμ. There
one sees that the charge of the electron is −1, while it is 2/3 for the up quark
and −(1/3) for the down quark.

Lemma 4.7. Let the fermions f be obtained from the quarks and leptons
by performing the change of basis (4.20) on the down quarks. Then the
following hold.
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1) The terms Lgf are of the form

Lgf = −
∑

f

[

fLγμ

(

∂μ − ig
σa

2
Wμa − ig′ YL

2
Bμ − ig′′ λb

2
Vμb

)

fL

+ fRγμ(∂μ − ig′ YR

2
Bμ − ig′′λbVμb)fR

]

(4.21)

and similar terms for the leptons, with W+
μ = Wμ1−iWμ2√

2
,

W−
μ = Wμ1+iWμ2√

2
, and

g′ = g tan(θw), g′′ = gs, Bμ = cw Aμ − sw Z0
μ, Wμ3 = sw Aμ + cw Z0

μ.
(4.22)

2) The terms LHf are given with the notation (3.30) by

LHf = −f̄ T (0, Ke, ϕ) f − f̄ T (Ku, Kd, ϕ) f, (4.23)

where

ϕ1 =
2M

g
+ H − iφ0, ϕ2 = −i

√
2φ+, (4.24)

and

(Ke)μρ =
g

2M
mμ

e δρ
μ,

(Ku)μρ =
g

2M
mμ

uδρ
μ,

(Kd)μρ =
g

2M
mλ

dCμλδκ
λC†

κρ. (4.25)

Proof. (1) In Minkowski space a quark q is represented by a column vector
and one has the relation

q̄ = q∗ γ0 (4.26)

between q and q̄. Thus, q and q̄ have opposite chirality.

Since the γμ switch the chirality to its opposite and all the terms in (4.19)
involve the γμ, they can be separated as a sum of terms only involving fL,
f̄L and terms only involving fR, f̄R. The neutrinos νλ only appear as left-
handed, i.e., as the combination (1 + γ5)νλ.

The last two lines of (4.19) correspond to the terms in ig σa

2 Wμa for the
off diagonal Pauli matrices σ1, σ2. The first line of (4.19) corresponds to the
gluons and the kinetic terms. The terms involving the gluons ga

μ in (4.19)
give the strong coupling constant g′′ = gs. The second and third lines of
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(4.19) use the electromagnetic field Aμ related to Bμ by

g sw (Aμ − tan(θw) Z0
μ) = g′ Bμ. (4.27)

This gives (note the sign − × − = + in (4.21)) the terms

ig′ YR

2
Bμ = ig sw Aμ Qem − ig

s2
w

cw
Z0

μ Qem (4.28)

for the right-handed part. On the left-handed sector, one has

Qem =
YL

2
+

σ3

2
.

The diagonal terms for the left-handed part

ig
σ3

2
Wμ3 + ig′ YL

2
Bμ

are then of the form

ig
σ3

2
Wμ3 + ig sw (Aμ − tan(θw) Z0

μ)(Qem − σ1

2
)

= ig sw Aμ Qem − ig
s2
w

cw
Z0

μ Qem + (igWμ3 − ig sw (Aμ − tan(θw) Z0
μ))

σ3

2
.

The relation

(igWμ3 − ig sw (Aμ − tan(θw) Z0
μ)) =

ig

cw
Z0

μ (4.29)

then determines Wμ3 as a function of Aμ and Z0
μ. It gives

Wμ3 = sw (Aμ − tan(θw) Z0
μ) +

1
cw

Z0
μ,

i.e.,
Wμ3 = sw Aμ + cw Z0

μ. (4.30)

The diagonal terms for the left-handed sector can then be written in the
form

ig sw Aμ Qem − ig
s2
w

cw
Z0

μ Qem +
ig

cw
Z0

μ

σ3

2
. (4.31)

This matches with the factor ig
4cw

in (4.19) multiplying (1 + γ5). The latter
is twice the projection on the left-handed particles. This takes care of one
factor of two, while the other comes from the denominator in σ3/2.

The term
ig

4cw
Z0

μ{(ν̄λγμ(1 + γ5)νλ) + (ēλγμ(4s2
w − 1 − γ5)eλ)

is fine, since the neutrino has no electromagnetic charge and one gets the
term −ig s2

w/cw Z0
μ Qem for the electron, while the left-handed neutrino has
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σ3 = 1 and the left-handed electron has σ3 = −1. The other two terms

ig

4cw
Z0

μ

{(

d̄λ
j γμ

(
4
3
s2
w − 1 − γ5

)

dλ
j

)

+
(

ūλ
j γμ

(

1 − 8
3
s2
w + γ5

)

uλ
j

)}

give the right answer, since the electromagnetic charge of the down is −1
3

and it has σ3 = −1, while for the up the electromagnetic charge is 2
3 and

σ3 = 1.

(2) We rely on [33] equation (2.14) at the conceptual level, while we
perform the computation in full details. The first thing to notice is that, by
(4.26), the q̄ have opposite chirality. Thus, when we spell out the various
terms in terms of chiral ones, we always get combinations of the form q̄L X qR
or q̄R X qL. We first look at the lepton sector. This gives

− ēλ mλ
e eλ +

ig

2
√

2
mλ

e

M

(
−φ+(ν̄λ(1 − γ5)eλ) + φ−(ēλ(1 + γ5)νλ)

)

− g

2
mλ

e

M

(
H(ēλeλ) + iφ0(ēλγ5eλ)

)
.

The terms in ē X e are of two types. The first gives

−ēλ mλ
e

(

1 +
g H

2 M

)

eλ = −ēλ
L mλ

e

(

1 +
g H

2 M

)

eλ
R − ēλ

R mλ
e

(

1 +
g H

2 M

)

eλ
L

The second type gives

−g

2
mλ

e

M
iφ0(ēλγ5eλ) =

g

2
mλ

e

M
iφ0(ēλ

Leλ
R) − g

2
mλ

e

M
iφ0(ēλ

Reλ
L).

Thus, they combine together using the complex field

ψ1 = H − iφ0 (4.32)

and give

−ēλ
L mλ

e

(

1 +
g ψ1

2 M

)

eλ
R − ēλ

R mλ
e

(

1 +
g ψ̄1

2 M

)

eλ
L.

The terms where both e and ν appear involve only νL, hence only eR.
The fields φ± are complex fields that are complex conjugates of each other.
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We let

ψ2 = −i
√

2 φ+. (4.33)

The contribution of the terms involving both e and ν is then

ν̄λ
L mλ

e

(
g ψ2

2 M

)

eλ
R + ēλ

R mλ
e

(
g ψ̄2

2 M

)

νλ
L

We use the notation (3.30), that is,

T (K1, K2, ϕ) =

⎡

⎢
⎢
⎣

0 0 K∗
1 ϕ1 K∗

1 ϕ2
0 0 −K∗

2 ϕ̄2 K∗
2 ϕ̄1

K1ϕ̄1 −K2 ϕ2 0 0
K1ϕ̄2 K2 ϕ1 0 0

⎤

⎥
⎥
⎦ .

We then get that, for the lepton sector, the terms LHf are of the form

−f̄ T (0, Ke, ϕ) f, ϕ1 = ψ1 +
2 M

g
, ϕ2 = ψ2, (4.34)

where Ke is the diagonal matrix with diagonal entries the g
2M mλ

e .

Let us now look at the quark sector, i.e., at the terms

− ūλ
j mλ

u uλ
j − d̄λ

j mλ
d dλ

j +
ig

2M
√

2
φ+

×
(
−mκ

d(ūλ
j Cλκ(1 − γ5)dκ

j ) + mλ
u(ūλ

j Cλκ(1 + γ5)dκ
j

)

+
ig

2M
√

2
φ−
(
mλ

d(d̄λ
j C†

λκ(1 + γ5)uκ
j ) − mκ

u(d̄λ
j C†

λκ(1 − γ5)uκ
j

)

− g

2
mλ

u

M
H(ūλ

j uλ
j ) − g

2
mλ

d

M
H(d̄λ

j dλ
j ) +

ig

2
mλ

u

M
φ0(ūλ

j γ5uλ
j )

− ig

2
mλ

d

M
φ0(d̄λ

j γ5dλ
j ).

Notice that we have to write it in terms of the dλj given by (4.20) instead
of the dλ

j . The terms of the form ū X u are

−ūλ
j mλ

u uλ
j − g

2
mλ

u

M
H(ūλ

j uλ
j ) +

ig

2
mλ

u

M
φ0(ūλ

j γ5uλ
j ).

They are similar to the terms in ē X e for the leptons but with an oppo-
site sign in front of φ0. Thus, if we let Ku be the diagonal matrix with
diagonal entries the g

2M mλ
u, we get the terms depending on ϕ1 and Ku
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in the expression
−f̄ T (Ku, Kd, ϕ) f, (4.35)

where Kd remains to be determined. There are two other terms involving
the mλ

u, which are directly written in terms of the dλj . They are of the form

ig

2M
√

2
φ+ mλ

u(ūλ
j (1 + γ5)dλj) − ig

2M
√

2
φ− mκ

u(d̄κj(1 − γ5)uκ
j ).

This is the same as

−d̄λjL mλ
u

(
g ψ̄2

2 M

)

uλ
jR − ūλ

jR mλ
u

(
g ψ2

2 M

)

dλjL,

which corresponds to the other terms involving Ku in (4.35).

The remaining terms are

− d̄λ
j mλ

d dλ
j +

ig mκ
d

2M
√

2
(−φ+ (ūλ

j Cλκ(1 − γ5)dκ
j ) + φ− (d̄λ

j C†
λκ(1 + γ5)uκ

j ))

− g

2
mλ

d

M
(H(d̄λ

j dλ
j ) + i φ0(d̄λ

j γ5dλ
j )). (4.36)

Except for the transition to the the dλj , these terms are the same as for the
lepton sector. Thus, we define the matrix Kd in such a way that it satisfies

d̄λjL Kλκ
d dκjR + d̄λjR K†λκ

d dκjL =
g

2M
d̄λ

j mλ
d dλ

j .

We can just take the positive matrix obtained as the conjugate

(Kd)μρ =
g

2M
mλ

dCμλδκ
λC†

κρ (4.37)

as in (4.25).

The only terms that remain to be understood are then the cross terms
(with up and down quarks) in (4.36). It might seem at first that one rec-
ognizes the expression for dλj = Cλκ dκ

j , but this does not hold, since the
summation index κ also appears elsewhere, namely in mκ

d . One has in fact
g

2M
mκ

dCλκdκ
j =

g

2M
mμ

dCλμδκ
μC†

κρdρj = (Kd d)λj .

Thus, the cross terms in (4.36) can be written in the form
i√
2
(−φ+ (ūλ

j Kλκ
d (1 − γ5)dκj) + φ− (d̄λj(K

†
d)

λκ(1 + γ5)uκ
j )).

Thus, we get the complete expression (4.35). �

We still need to add the new terms that account for neutrino masses and
mixing. We have the following result.
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Lemma 4.8. The neutrino masses and mixing are obtained in two addi-
tional steps. The first is the replacement

T (0, Ke, ϕ) �→ T (Kν , K
′
e, ϕ),

where the Ke of (4.25) is replaced by

(Ke)λκ =
g

2M
mμ

e U lep
λμδρ

μU lep†
ρκ, (4.38)

while Kν is the neutrino Dirac mass matrix

(Kν)λκ =
g

2M
mλ

νδκ
λ. (4.39)

The second step is the addition of the Majorana mass term

Lmass = −1
4

ν̄λ (MR)λκ (1 − γ5)ν̂κ − 1
4

¯̂νλ (MR)λκ (1 + γ5)νκ. (4.40)

Proof. After performing the inverse of the change of variables (4.20) for the
leptons, using the matrix U lep instead of the CKM matrix, the new Dirac
Yukawa coupling terms for the leptons imply the replacement of

−g

2
mλ

e

M

(
H(ēλeλ) + iφ0(ēλγ5eλ)

)

by

−g

2
mλ

ν

M
H(ν̄λνλ) − g

2
mλ

e

M
H(ēλeλ) +

ig

2
mλ

ν

M
φ0(ν̄λγ5νλ) − ig

2
mλ

e

M
φ0(ēλγ5eλ)

and of
ig

2
√

2
mλ

e

M

(
−φ+(ν̄λ(1 − γ5)eλ) + φ−(ēλ(1 + γ5)νλ)

)

by

ig

2M
√

2
φ+
(
−mκ

e (ν̄λU lep
λκ(1 − γ5)eκ) + mλ

ν (ν̄λU lep
λκ(1 + γ5)eκ

)

+
ig

2M
√

2
φ−
(
mλ

e (ēλU lep†
λκ(1 + γ5)νκ) − mκ

ν(ēλU lep†
λκ(1 − γ5)νκ

)
,

where the matrix U lep plays the same role as the CKM matrix. Since the
structure we obtained in the lepton sector is now identical to that of the
quark sector, the result follows from Lemma 4.7.

The Majorana mass terms are of the form (4.40), where the coefficient 1/4
instead of 1/2 comes from the chiral projection (1 − γ5) = 2R. The mass
matrix MR is a symmetric matrix in the flavor space. �
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In order to understand the Euclidean version of the action considered
above, we start by treating the simpler case of the free Dirac field.

It is given in Minkowski space by the action functional associated to the
Lagrangian

−ū γ∂ u − ū m u. (4.41)
In Euclidean space the action functional becomes (cf. [13], “The use of
instantons”, § 5.2)

S = −
∫

ψ̄ (i γμ ∂μ − im) ψ d4x, (4.42)

where the symbols ψ and ψ̄ now stand for classical fermions, i.e., independent
anticommuting Grassman variables.

Notice that, in (4.42), the gamma matrices γμ are self-adjoint and the
presence of i =

√
−1 in the mass term is crucial to ensure that the Euclidean

propagator is of the form
p/ + im

p2 + m2 .

In our case, consider the Dirac operator DA that incorporates the inner
fluctuations. Recall that DA is given by the sum of two terms

DA = D(1,0) + γ5 ⊗ D(0,1), (4.43)

where D(0,1) is given by (3.11) and D(1,0) is of the form

D(1,0) =
√

−1 γμ(∇s
μ + Aμ), (4.44)

where ∇s is the spin connection (cf. (3.2)), while the Aμ are as in
Proposition 3.9.

Lemma 4.9. The unitary operator

U = eiπ/4γ5 ⊗ 1

commutes with A and γ. One has JU = U∗J and

U DA U = D(1,0) + i ⊗ D(0,1). (4.45)

Proof. Since γ5 anticommutes with the γμ, one has D(1,0) eiπ/4γ5 = e−iπ/4γ5

D(1,0). Moreover

U (γ5 ⊗ D(0,1)) U = (γ5 eiπ/2γ5) ⊗ D(0,1) = i ⊗ D(0,1)
�

The result of Lemma 4.9 can be restated as the equality of antisymmetric
bilinear forms

〈JUξ′, DAUξ〉 = 〈Jξ′, (D(1,0) + i ⊗ D(0,1))ξ〉. (4.46)
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4.4.1 The Fermion doubling problem

We can now discuss the Fermion doubling issue of [32]. As explained
there the number of fermion degrees of freedom when one simply writes
the Euclidean action 〈ψ̄, Dψ〉 in our context is in fact 4 times what it should
be. The point is that we have included one Dirac fermion for each of the
chiral degrees of freedom such as eR and that we introduced the mirror
fermions f̄ to obtain the Hilbert space HF .

Thus, we now need to explain how the action functional (4.8) divides the
number of degrees of freedom by 4 by taking a 4th root of a determinant.

By Proposition 4.1 we are dealing with an antisymmetric bilinear form and
the functional integral involving anticommuting Grassman variables delivers
the Pfaffian, which takes care of a square root.

Again by Proposition 4.1, we can restrict the functional integration to the
chiral subspace H+

cl of (4.7), hence gaining another factor of two.

Let us spell out what happens first with quarks. With the basis qL, qR, q̄L,
q̄R in HF, the reduction to H+ makes it possible to write a generic vector as

ζ = ξL ⊗ qL + ξR ⊗ qR + ηR ⊗ q̄L + ηL ⊗ q̄R, (4.47)

where the subscripts L and R indicate the chirality of the usual spinors
ξL . . . ∈ L2(M, S). Similarly, one has

J ζ ′ = JMξ′
L ⊗ q̄L + JMξ′

R ⊗ q̄R + JMη′
R ⊗ qL + JMη′

L ⊗ qR (4.48)

and

ζ ′′ = (∂/M ⊗ 1) J ζ ′

= ∂/M JMξ′
L ⊗ q̄L + ∂/M JMξ′

R ⊗ q̄R + ∂/M JMη′
R ⊗ qL + ∂/M JMη′

L ⊗ qR.
(4.49)

Thus, since the operator ∂/M JM anticommutes with γ5 in L2(M, S), we see
that the vector ζ ′′ still belongs to H+, i.e., is of the form (4.47). One gets

〈(∂/M ⊗ 1) J ζ ′, ζ〉 = 〈∂/M JMξ′
L, ηR〉 + 〈∂/M JMξ′

R, ηL〉 + 〈∂/M JMη′
R, ξL〉

+ 〈∂/M JMη′
L, ξR〉.

The right-hand side can be written, using the spinors ξ = ξL + ξR etc., as

〈(∂/M ⊗ 1) J ζ ′, ζ〉 = 〈∂/M JMξ′, η〉 + 〈∂/M JMη′, ξ〉. (4.50)

This is an antisymmetric bilinear form in L2(M, S) ⊕ L2(M, S). Indeed if
ζ ′ = ζ, i.e., ξ′ = ξ and η′ = η one has

〈∂/M JMξ, η〉 = −〈∂/M JMη, ξ〉, (4.51)

since JM commutes with ∂/M and has square −1.
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At the level of the fermionic functional integral the classical fermions ξ̃
and η̃ anticommute. Thus, up to the factor 2 taken care of by the 1

2 in front
of the fermionic term, one gets

∫
e〈JM η̃, ∂/M ξ̃〉, D[η̃]D[ξ̃],

where ξ̃ and η̃ are independent anticommuting variables. (Here we use the
same notation as in (4.7).)

This coincides with the prescription for the Euclidean functional integral
given in [13] (see “The use of instantons”, § 5.2) when using JM to identify
L2(M, S) with its dual.

The Dirac Yukawa terms simply replace ∂/M ⊗ 1 in the expression above
by an operator of the form

∂/M ⊗ 1 + γ5 ⊗ T,

where T = T (x) acts as a matrix valued function on the bundle S ⊗ HF .

By construction, T preserves Hf and anticommutes with γF . Thus, one
gets an equation of the form

(γ5 ⊗ T )J ζ ′ = T1 JMξ′
L ⊗ q̄R + T2 JMξ′

R ⊗ q̄L + T3 JMη′
R ⊗ qR

+ T4 JMη′
L ⊗ qL,

where the Tj are endomorphisms of the spinor bundle commuting with the
γ5 matrix. In particular, it is a vector in H+. Thus, one gets

〈(γ5 ⊗ T ) J ζ ′, ζ〉 = 〈T1 JMξ′
L, ηL〉 + 〈T2 JMξ′

R, ηR〉 + 〈T3 JMη′
R, ξR〉

+ 〈T4 JMη′
L, ξL〉.

Expression (4.50) remains valid for the Dirac operator with Yukawa cou-
plings, with the JMξ′, JMη′ on the left, paired with the η and ξ, respectively.
Thus, the Pfaffian of the corresponding classical fermions as Grassman vari-
ables delivers the determinant of the Dirac operator.

We now come to the contribution of the piece of the operator D which in
the subspace νR, ν̄R is of the form

T =
[

0 M∗
R

MR 0

]

,

where MR is a symmetric matrix in the flavor space. We use (4.47) and
(4.48), replacing quarks by leptons, and we assume for simplicity that the
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matrix MR is diagonal. We denote the corresponding eigenvalues still by
MR. We get

ζ = ξL ⊗ νL + ξR ⊗ νR + ηR ⊗ ν̄L + ηL ⊗ ν̄R,

J ζ ′ = JMξ′
L ⊗ ν̄L + JMξ′

R ⊗ ν̄R + JMη′
R ⊗ νL + JMη′

L ⊗ νR

so that

(γ5 ⊗ T ) J ζ ′ = γ5M̄RJMξ′
R ⊗ νR + γ5MRJMη′

L ⊗ ν̄R,

〈(γ5 ⊗ T ) J ζ ′, ζ〉 = MR〈γ5JMξ′
R, ξR〉 + M̄R〈γ5JMη′

R, ηR〉. (4.52)

The only effect of the γ5 is an overall sign. The charge conjugation oper-
ator JM is now playing a key role in the terms (4.52), where it defines an
antisymmetric bilinear form on spinors of a given chirality (here right-handed
ones). For a detailed treatment of these Majorana terms in Minkowski sig-
nature we refer to the independent work of John Barrett [4].

Notice also that one needs an overall factor of 1
2 in front of the fermionic

action, since in the Dirac sector the same expression repeats itself twice,
see (4.51).

Thus, in the Majorana sector we get a factor 1
2 in front of the kinetic term.

This corresponds to equation (4.20) of [33]. For the treatment of Majorana
fermions in Euclidean functional integrals see, e.g., [27, 34].

4.5 The self-interaction of the gauge bosons

The self-interaction terms for the gauge fields have the form

Lg = −1
2
∂νg

a
μ∂νg

a
μ − gsf

abc∂μga
νgb

μgc
ν − 1

4
g2
sf

abcfadegb
μgc

νg
d
μge

ν

− ∂νW
+
μ ∂νW

−
μ − M2W+

μ W−
μ − 1

2
∂νZ

0
μ∂νZ

0
μ − 1

2c2
w

M2Z0
μZ0

μ

− 1
2
∂μAν∂μAν − igcw(∂νZ

0
μ(W+

μ W−
ν − W+

ν W−
μ )

− Z0
ν (W+

μ ∂νW
−
μ − W−

μ ∂νW
+
μ ) + Z0

μ(W+
ν ∂νW

−
μ − W−

ν ∂νW
+
μ ))

− igsw(∂νAμ(W+
μ W−

ν − W+
ν W−

μ ) − Aν(W+
μ ∂νW

−
μ − W−

μ ∂νW
+
μ )

+ Aμ(W+
ν ∂νW

−
μ − W−

ν ∂νW
+
μ )) − 1

2
g2W+

μ W−
μ W+

ν W−
ν

+
1
2
g2W+

μ W−
ν W+

μ W−
ν + g2c2

w(Z0
μW+

μ Z0
νW−

ν − Z0
μZ0

μW+
ν W−

ν )

+ g2s2
w(AμW+

μ AνW
−
ν − AμAμW+

ν W−
ν )

+ g2swcw(AμZ0
ν (W+

μ W−
ν − W+

ν W−
μ ) − 2AμZ0

μW+
ν W−

ν ). (4.53)
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We show that they can be written as a sum of terms of the following form:

(1) mass terms for the W± and the Z0;
(2) Yang–Mills interaction −(1/4) F a

μν Fμν
a for the gauge fields Bμ, W a

μ , ga
μ;

(3) Feynman gauge fixing terms Lfeyn for all gauge fields;

Lemma 4.10. One has

Lg = −M2W+
μ W−

μ − 1
2c2

w

M2Z0
μZ0

μ − 1
4

F a
μν Fμν

a − 1
2

∑

a

(
∑

μ

∂μGa
μ

)2

(4.54)

Proof. It is enough to show that the expression

− ∂νW
+
μ ∂νW

−
μ − 1

2
∂ν(cw Z0

μ + sw Aμ)∂ν(cw Z0
μ + sw Aμ)

− igcw(∂νZ
0
μ(W+

μ W−
ν − W+

ν W−
μ ) − Z0

ν (W+
μ ∂νW

−
μ − W−

μ ∂νW
+
μ )

+ Z0
μ(W+

ν ∂νW
−
μ − W−

ν ∂νW
+
μ )) − igsw(∂νAμ(W+

μ W−
ν − W+

ν W−
μ )

− Aν(W+
μ ∂νW

−
μ − W−

μ ∂νW
+
μ ) + Aμ(W+

ν ∂νW
−
μ − W−

ν ∂νW
+
μ ))

− 1
2
g2W+

μ W−
μ W+

ν W−
ν +

1
2
g2W+

μ W−
ν W+

μ W−
ν

+ g2c2
w(Z0

μW+
μ Z0

νW−
ν − Z0

μZ0
μW+

ν W−
ν )

+ g2s2
w(AμW+

μ AνW
−
ν − AμAμW+

ν W−
ν )

+ g2swcw(AμZ0
ν (W+

μ W−
ν − W+

ν W−
μ ) − 2AμZ0

μW+
ν W−

ν )

coincides with the Yang–Mills action of the SU(2)-gauge field.

In fact, the kinetic terms will then combine with those of the B-field,
namely

−1
2
∂ν(−sw Z0

μ + cw Aμ)∂ν(−sw Z0
μ + cw Aμ).

One can rewrite the above in terms of Wμ3 = sw Aμ + cw Z0
μ. This gives

− ∂νW
+
μ ∂νW

−
μ − 1

2
∂νWμ3∂νWμ3 − ig(∂νWμ3(W+

μ W−
ν − W+

ν W−
μ )

− Wν3(W+
μ ∂νW

−
μ − W−

μ ∂νW
+
μ ) + Wμ3(W+

ν ∂νW
−
μ − W−

ν ∂νW
+
μ ))

− 1
2
g2W+

μ W−
μ W+

ν W−
ν +

1
2
g2W+

μ W−
ν W+

μ W−
ν

+ g2(Wμ3W
+
μ Wν3W

−
ν − Wμ3Wμ3W

+
ν W−

ν ).

Using W+
μ = (Wμ1 − iWμ2)/

√
2 and W−

μ = (Wμ1 + iWμ2)/
√

2, one checks
that it coincides with the Yang-Mills action functional −(1/4) F a

μν Fμν
a of

the SU(2)-gauge field Wμj .



STANDARD MODEL WITH NEUTRINO MIXING 1059

More precisely, let

∇μ = ∂μ − i
g

2
Wμ

a σa.

One then has

[∇μ,∇ν ] = −i
g

2
(∂μW ν

a − ∂νW
μ
a )σa +

(
−i

g

2

)2
(Wμ

b W ν
c σb σc − W ν

c Wμ
b σc σb)

and, with σb σc − σc σb = 2i εabc σa, this gives

F a
μν = ∂μW ν

a − ∂νW
μ
a + g εabc Wμ

b W ν
c . (4.55)

One then checks directly that the above expression coincides with

−1
4

F a
μν Fμν

a − 1
2

∑

a

(
∑

μ

∂μW a
μ

)2

. (4.56)

Notice that the addition of the Feynman gauge fixing term −1/2(
∑

μ ∂μ

Gμ)2 to the kinetic term −(1/4) |dG|2 of the Yang–Mills action for each of
the gauge fields Gμ gives kinetic terms of the form −1/2 ∂νG

μ ∂νG
μ and

very simple propagators.

This addition of the gauge fixing term is not obtained from the spectral
action, but has to be added afterwards together with the ghost fields. �

4.6 The minimal coupling of the Higgs field

We add the mass terms (4.54) to the minimal coupling terms of the Higgs
fields, with the gauge fields which is of the form

LHg = −1
2
∂μH∂μH − ∂μφ+∂μφ− − 1

2
∂μφ0∂μφ0 − gMW+

μ W−
μ H

− 1
2
g
M

c2
w

Z0
μZ0

μH − 1
2
ig
(
W+

μ (φ0∂μφ− − φ−∂μφ0)

−W−
μ (φ0∂μφ+ − φ+∂μφ0)

)
+

1
2
g
(
W+

μ (H∂μφ− − φ−∂μH)

+W−
μ (H∂μφ+ − φ+∂μH)

)
+

1
2
g

1
cw

Z0
μ(H∂μφ0 − φ0∂μH)

− ig
s2
w

cw
MZ0

μ(W+
μ φ− − W−

μ φ+) + igswMAμ(W+
μ φ− − W−

μ φ+)
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− ig
1 − 2c2

w

2cw
Z0

μ(φ+∂μφ− − φ−∂μφ+) + igswAμ(φ+∂μφ− − φ−∂μφ+)

− 1
4
g2W+

μ W−
μ

(
H2 + (φ0)2 + 2φ+φ−)

− 1
8
g2 1

c2
w

Z0
μZ0

μ

(
H2 + (φ0)2 + 2(2s2

w − 1)2φ+φ−)

− 1
2
g2 s2

w

cw
Z0

μφ0(W+
μ φ− + W−

μ φ+) − 1
2
ig2 s2

w

cw
Z0

μH(W+
μ φ− − W−

μ φ+)

+
1
2
g2swAμφ0(W+

μ φ− + W−
μ φ+) +

1
2
ig2swAμH(W+

μ φ− − W−
μ φ+)

− g2 sw

cw
(2c2

w − 1)Z0
μAμφ+φ− − g2s2

wAμAμφ+φ−

+ M (
1
cw

Z0
μ∂μφ0 + W+

μ ∂μφ− + W−
μ ∂μφ+). (4.57)

This is, by construction, a sum of terms labeled by μ. Each of them
contains three kinds of terms, according to the number of derivatives. We
now compare this expression with the minimal coupling terms which we get
from the spectral action.

Lemma 4.11. With the notation (4.22) of Lemma 4.7, the minimal coupling
terms (4.57) are given by

LHg = −1
2

|Dμ ϕ|2 (4.58)

with Dμϕ given by (3.36), with g2 = g, g1 = g′.

Proof. We have from (3.36)

Dμϕ = ∂μϕ +
i

2
gWα

μ ϕσα − i

2
g′Bμϕ, g′ = tan(θw)g

where, by Lemma 4.7, we have

ϕ = (ϕ1, ϕ2) =
(

2M

g
+ H − iφ0,−i

√
2φ+

)

, Bμ = cwAμ − swZ0
μ,

Wμ3 = swAμ + cwZ0
μ,
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and the matrix Wα
μ σα is given by

Wα
μ σα =

[
sw Aμ + cw Z0

μ W 1
μ − i W 2

μ

W 1
μ + i W 2

μ −sw Aμ − cw Z0
μ

]

=
[
sw Aμ + cw Z0

μ

√
2 W+

μ√
2 W−

μ −sw Aμ − cw Z0
μ

]

.

The kinetic terms are simply

−1
2
∂μH∂μH − ∂μφ+∂μφ− − 1

2
∂μφ0∂μφ0,

and one checks that they are obtained.

Let us consider the terms with no derivatives. The combination Wα
μ ϕ σα

is given by

((
2M

g
+ H − iφ0

)

(swAμ + cwZ0
μ) − 2iφ+W−

μ ,

(
2M

g
+ H − iφ0

)√
2W+

μ + i
√

2φ+(swAμ + cwZ0
μ)
)

.

The term Bμ ϕ is given by

Bμϕ =
((

2M

g
+ H − iφ0

)

(cwAμ − swZ0
μ),−i

√
2φ+(cwAμ − swZ0

μ)
)

.

The dangerous term in M Aμ (which would give a mass to the photon)
has to disappear. This follows from g′ = tan(θw) g. This means that we
consider the expression Wα

μ ϕ σα − tan(θw) Bμ ϕ. It gives

Wα
μ ϕ σα − tan(θw) Bμ ϕ = (X1, X2) =

((
2M

g
+ H − iφ0

)
1
cw

Z0
μ

− 2i φ+ W−
μ ,

(
2M

g
+ H − iφ0

)√
2 W+

μ

+i
√

2 φ+(2 sw Aμ + (cw − s2
w

cw
) Z0

μ)
)

. (4.59)
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One has to multiply by g
2

√
−1 and then take −1

2 of the norm square. The
direct computation gives

− M2W+
μ W−

μ − 1
2c2

w

M2Z0
μZ0

μ − gMW+
μ W−

μ H − 1
2
g
M

c2
w

Z0
μZ0

μH

− ig
s2
w

cw
MZ0

μ(W+
μ φ− − W−

μ φ+) + igswMAμ(W+
μ φ− − W−

μ φ+)

− 1
4
g2W+

μ W−
μ

(
H2 + (φ0)2 + 2φ+φ−)− 1

8
g2 1

c2
w

Z0
μZ0

μ

(
H2 + (φ0)2

+2(2s2
w − 1)2φ+φ−)− 1

2
g2 s2

w

cw
Z0

μφ0(W+
μ φ− + W−

μ φ+)

− 1
2
ig2 s2

w

cw
Z0

μH(W+
μ φ− − W−

μ φ+) +
1
2
g2swAμφ0(W+

μ φ− + W−
μ φ+)

+
1
2
ig2swAμH(W+

μ φ− − W−
μ φ+) − g2 sw

cw
(1 − 2s2

w)Z0
μAμφ+φ−

− g2s2
wAμAμφ+φ−.

Taking into account the terms (4.54), the terms with no derivatives in
(4.57) are

− M2W+
μ W−

μ − 1
2c2

w

M2Z0
μZ0

μ − gMW+
μ W−

μ H − 1
2
g
M

c2
w

Z0
μZ0

μH

− ig
s2
w

cw
MZ0

μ(W+
μ φ− − W−

μ φ+) + igswMAμ(W+
μ φ− − W−

μ φ+)

− 1
4
g2W+

μ W−
μ

(
H2 + (φ0)2 + 2φ+φ−)− 1

8
g2 1

c2
w

Z0
μZ0

μ

(
H2 + (φ0)2

+2(2s2
w − 1)2φ+φ−)− 1

2
g2 s2

w

cw
Z0

μφ0(W+
μ φ− + W−

μ φ+)

− 1
2
ig2 s2

w

cw
Z0

μH(W+
μ φ− − W−

μ φ+) +
1
2
g2swAμφ0(W+

μ φ− + W−
μ φ+)

+
1
2
ig2swAμH(W+

μ φ− − W−
μ φ+) − g2 sw

cw
(2c2

w − 1)Z0
μAμφ+φ−

− g2s2
wAμAμφ+φ−.

Thus, there is only one difference with respect to the above, namely the
replacement (2c2

w − 1) �→ (1 − 2s2
w) in the 13th term. This has no effect

since s2
w + c2

w = 1.



STANDARD MODEL WITH NEUTRINO MIXING 1063

We now need to take care of the terms with one derivative. With the
notation as above, we compute the cross terms of

−1
2

∣
∣
∣
∣(∂μϕ1, ∂μϕ2) +

ig

2
(X1, X2)

∣
∣
∣
∣

2

,

i.e., the terms

−1
2

(

∂μϕ̄1
ig

2
X1 − ∂μϕ1

ig

2
X̄1 + ∂μϕ̄2

ig

2
X2 − ∂μϕ2

ig

2
X̄2

)

.

The computation gives

− 1
2
ig
(
W+

μ (φ0∂μφ− − φ−∂μφ0) − W−
μ (φ0∂μφ+ − φ+∂μφ0)

)

+
1
2
g
(
W+

μ (H∂μφ− − φ−∂μH) + W−
μ (H∂μφ+ − φ+∂μH)

)

+
1
2
g

1
cw

Z0
μ(H∂μφ0 − φ0∂μH) − ig

1 − 2c2
w

2cw
Z0

μ(φ+∂μφ− − φ−∂μφ+)

+ igswAμ(φ+∂μφ− − φ−∂μφ+)

+ M

(
1
cw

Z0
μ∂μφ0 + W+

μ ∂μφ− + W−
μ ∂μφ+

)

,

which agrees with the sum of terms with one derivative in (4.57). �

4.7 The Higgs field self-interaction

The Higgs self-coupling terms of the standard model are of the form

LH = −1
2
m2

hH2 − βh

(
2M2

g2 +
2M

g
H +

1
2
(H2 + φ0φ0 + 2φ+φ−)

)

+
2M4

g2 αh − gαhM
(
H3 + Hφ0φ0 + 2Hφ+φ−)

− 1
8
g2αh(H4 + (φ0)4 + 4(φ+φ−)2 + 4(φ0)2φ+φ−

+ 4H2φ+φ− + 2(φ0)2H2). (4.60)

Lemma 4.12. Let ϕ be given by (4.34) and assume that

αh =
m2

h

4 M2 . (4.61)

Then one has

LH = −1
8
g2αh|ϕ|4 +

(

αhM2 − βh

2

)

|ϕ|2. (4.62)
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Proof. Expression (4.60) can be simplified in terms of the field ψ. The
quartic term is simply given by

− 1
8
g2αh

(
H4 + (φ0)4 + 4(φ+φ−)2 + 4(φ0)2φ+φ− + 4H2φ+φ− + 2(φ0)2H2)

= −1
8
g2αh|ψ|4,

since
|ψ|2 = |ψ1|2 + |ψ2|2 = H2 + (φ0)2 + 2 φ+φ−.

The cubic term is

−gαhM
(
H3 + Hφ0φ0 + 2Hφ+φ−) = −gαhM H |ψ|2,

which arises in the expansion of

−1
8
g2αh|ϕ|4, (4.63)

with ϕ given by (4.34), so that

|ϕ|2 = |ψ|2 +
4M

g
H +

4M2

g2

and

|ϕ|4 = |ψ|4 +
8M

g
H |ψ|2 +

16M2

g2 H2 +
8M2

g2 |ψ|2 +
16M4

g4 +
32M3

g3 H.

Thus, the natural invariant expression with no tadpole (i.e., with the expan-
sion in H at an extremum) is

−1
8
g2αh |ϕ|4 + αh M2 |ϕ|2. (4.64)

It expands as

−1
8
g2αh|ψ|4 − gαhM H |ψ|2 − 2αh M2 H2 +

2M4

g2 αh, (4.65)

which takes care of the constant term +2M4

g2 αh in (4.60). Thus, we get

LH =
(

−1
8
g2αh |ϕ|4 + αh M2 |ϕ|2

)

+
(

2αh M2 − 1
2
m2

h

)

H2 − βh

2
|ϕ|2,

(4.66)

since the quadratic “tadpole” term in (4.60) is

−βh

(
2M2

g2 +
2M

g
H +

1
2
(H2 + φ0φ0 + 2φ+φ−)

)

= −βh

2
|ϕ|2. (4.67)

The assumption (4.61) of the lemma implies that the coefficient of the term
in H2 in (4.66) vanishes. �
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Remark 4.13. The tadpole term (4.67) is understandable, since in renor-
malizing the terms one has to maintain the vanishing of the term in H. The
assumption (4.61) is a standard relation giving the Higgs mass (cf. [42]).

4.8 The coupling with gravity

By construction the spectral action delivers the standard model minimally
coupled with Einstein gravity. Thus the Lagrangian of the standard model of
§ 4.1 is now written using the Riemannian metric gμν and the corresponding
Dirac operator ∂/M in curved space–time. We shall check below that the
Einstein term (the scalar curvature) admits the correct physical sign and
size for the functional integral in Euclidean signature. The addition of the
minimally coupled standard model gives the Einstein equation when one
writes the equations of motion by differentiating with respect to gμν (cf., for
instance, [43, Chapter 12, § 2]).

The spectral action contains one more term that couple gravity with the
standard model, namely the term in RH2. This term is unavoidable as
soon as one considers gravity simultaneously with scalar fields as explained
in [21]. The only other new term is the Weyl curvature term

− 3f0

10π2

∫
CμνρσCμνρσ√

gd4x (4.68)

This completes the proof of Theorem 4.3.

5 Phenomenology and predictions

5.1 Coupling constants at unification

The relations

g2
2 = g2

3 =
5
3
g2
1

we derived in (4.10) among the gauge coupling constants coincide with
those obtained in grand unification theories (cf. [11, 33, § 9]). This indi-
cates that the action functional (4.11) should be taken as the bare action
at the unification cutoff scale Λ and we first briefly recall how this scale is
computed.
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The electromagnetic coupling constant is given by (4.28) and is g sin(θw).
The fine structure constant αem is thus given by

αem = sin(θw)2α2, αi =
g2
i

4π
(5.1)

Its infrared value is ∼ 1/137.036 but it is running as a function of the energy
and increases to the value αem(MZ) = 1/128.09 already, at the energy MZ ∼
91.188 GeV.

Assuming the “big desert” hypothesis, the running of the three couplings
αi is known. With 1-loop corrections only, it is given by [1, 29]

βgi = (4π)−2 bi g
3
i , with b =

(
41
6

,−19
6

,−7
)

, (5.2)

so that [40]

α−1
1 (Λ) = α−1

1 (MZ) − 41
12π

log
Λ

MZ
,

α−1
2 (Λ) = α−1

2 (MZ) +
19
12π

log
Λ

MZ
,

α−1
3 (Λ) = α−1

3 (MZ) +
42
12π

log
Λ

MZ
(5.3)

where MZ is the mass of the Z0 vector boson. For 2-loop corrections, see [1].

It is known that the predicted unification of the coupling constants does
not hold exactly, which points to the existence of new physics, in contrast
with the “big desert” hypothesis. In fact, if one considers the actual exper-
imental values

g1(MZ) = 0.3575, g2(MZ) = 0.6514, g3(MZ) = 1.221, (5.4)

one obtains the values

α1(MZ) = 0.0101, α2(MZ) = 0.0337, α3(MZ) = 0.1186. (5.5)

Thus, one sees that the graphs of the running of the three constants αi

do not meet exactly, hence do not specify a unique unification energy (cf.
figure 1 where the horizontal axis labels the logarithm in base 10 of the scale
measured in GeV).
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Figure 1: The running of the three couplings.

5.2 The Higgs scattering parameter and the Higgs mass

When written in terms of H, and using (4.10), the quartic term

f0

2 π2

∫
b|ϕ|4√gd4x =

π2

2f0

b

a2

∫
|H|4√gd4x

gives a further relation in our theory between the λ̃|H|4 coupling and the
gauge couplings to be imposed at the scale Λ (figure 2). This is of the form

λ̃(Λ) = g2
3

b

a2 . (5.6)

We introduce the following notation. For v = 2M/g we define the ele-
ments (yσ

· ) with σ = 1, 2, 3 the generation index and · = u, d, ν, e by the
relation

v√
2
(yσ

· ) = (mσ
· ), (5.7)

where the (mσ
· ) are defined as in (4.15). In particular, yσ

u for σ = 3 gives
the top quark Yukawa coupling. We also set

t = log
(

Λ
MZ

)

and μ = MZet. (5.8)

We consider the Yukawa couplings (yσ
· ) as depending on the energy scale

through their renormalization group equation (cf. [1, 6, 37]). We consider
in particular the top quark case yσ

u(t) for σ = 3. The running of the top
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Figure 2: The running of the quartic Higgs coupling.

quark Yukawa coupling (figure 3) yt = yσ
u(t), with σ = 3, is governed by the

equation (cf. [41, equation (2.143)] and [1, equation (A9)])

dyt

dt
=

1
16π2

[
9
2
y3

t −
(
ag2

1 + bg2
2 + cg2

3
)
yt

]

, (a, b, c) =
(

17
12

,
9
4
, 8
)

. (5.9)

The relation (5.6) could be simplified if we assume that the top quark
Yukawa coupling is much larger than all the other Yukawa couplings. In this
case equation (5.6) simplifies. In fact, one gets a ∼ 3 m2

top and b ∼ 3 m4
top,

where mtop = mσ
u, with σ = 3 in the notation of (4.15), so that

λ̃(Λ) ∼ 4
3

π α3(Λ). (5.10)

This agrees with [7] equation (3.31). In fact, the normalization of the Higgs
field there is as in the LHS of (5.23) which gives λ(μ) = 4λ̃(μ), with μ as in
(5.8). In terms of the Higgs scattering parameter αh of the standard model,
(5.10) reads

αh(Λ) ∼ 8
3
, (5.11)

which agrees with [29], equation (1). Therefore, the value of λ = 4 λ̃ at the
unification scale of Λ = 1017 GeV is λ0 ∼ 0.356 showing that one does not
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Figure 3: The running of the top quark Yukawa coupling.

go outside the perturbation domain. Equation (5.10) can be used, together
with the RG equations for λ and yσ

u(t), with σ = 3, to determine the Higgs
mass at the low-energy scale MZ .

For simplicity of notation, in the following we write

yt = yσ
u(t), with σ = 3. (5.12)

We have (cf. [41, equations (2.141), (2.142), (4.2)] and [1, formula (A15)])
the equation

dλ

dt
= λγ +

1
8π2 (12λ2 + B), (5.13)

where

γ =
1

16π2 (12 y2
t − 9 g2

2 − 3 g2
1), (5.14)

B =
3
16

(3 g4
2 + 2g2

1 g2
2 + g4

1) − 3 y4
t .
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The Higgs mass is then given by

m2
H = 8λ

M2

g2 , mH =
√

2λ
2M

g
. (5.15)

The numerical solution to these equations with the boundary value λ0 =
0.356 at Λ = 1017 GeV gives λ(MZ) ∼ 0.241 and a Higgs mass of the order
of 170 GeV. We refer to [5, 29] for the analysis of variants of the model.

Remark 5.1. The estimate of equation (5.10) is obtained under the assump-
tion that the Yukawa coupling for the top quark is the dominant term and
the others are negligible. However, due to the see-saw mechanism discussed
in § 5.3 below, one should expect that the Yukawa coupling for the tau neu-
trino is also large and of the same order as the one for the top quark. Thus,
the factor of 4/3 in (5.10) should be corrected to 1 as in (5.29) below. One
can check by direct calculation that this does not affect substantially the
estimate we obtain for the Higgs mass which is then around 168 GeV.

5.3 Neutrino mixing and the see-saw mechanism

Let us briefly explain how the see-saw mechanism appears in our context.
Let D = D(Y ) be as in (2.31). The restriction of D(Y ) to the subspace of
HF with basis the (νR, νL, ν̄R, ν̄L) is given by a matrix of the form

⎡

⎢
⎢
⎣

0 M∗
ν M∗

R 0
Mν 0 0 0
MR 0 0 M̄∗

ν

0 0 M̄ν 0

⎤

⎥
⎥
⎦ , (5.16)

where Mν = 2M
g Kν with Kν as in (4.39).

The largest eigenvalue of MR is set to the order of the unification scale
by the equations of motion of the spectral action as in the following result.

Lemma 5.2. Assume that the matrix MR is a multiple of a fixed matrix kR,
i.e., is of the form MR = x kR. In flat space, and assuming that the Higgs
vacuum expectation value is negligible with respect to unification scale, the
equations of motion of the spectral action fix x to be either x = 0 (unstable)
or satisfying

x2 =
2 f2 Λ2 Tr(k∗

RkR)
f0 Tr((k∗

RkR)2)
. (5.17)

Proof. The value of x is fixed by the equations of motion of the spectral
action

∂uTr(f(DA/Λ)) = 0, (5.18)
with u = x2.



STANDARD MODEL WITH NEUTRINO MIXING 1071

One can see from (5.16) that x only appears in the coefficients c, d,
and e. In the variation (5.18), the terms in the spectral action (3.41) of
Theorem 3.13 containing the coefficient c and e produce linear terms in x2,
proportional to the scalar curvature R and the square |ϕ|2 of the Higgs
vacuum expectation value, and an additional linear term coming from the
cosmological term. The cosmological term also contains the coefficient d,
which depends quadratically on x2. In flat space, and under the assumption
that |ϕ|2 is sufficiently small, (5.18) then corresponds to minimizing the
cosmological term.

This gives

∂x

(

−f2 Λ2 c +
f0

4
d

)

= 0, c = x2Tr(k∗
RkR), d = x4 Tr((k∗

RkR)2).

(5.19)

Thus, we get MR = xkR with x satisfying (5.17). In other words we see that

M∗
RMR =

2 f2 Λ2

f0

k∗
RkR Tr(k∗

RkR)
Tr((k∗

RkR)2)
. (5.20)

�

The Dirac mass Mν is of the order of the Fermi energy v and hence much
smaller. The eigenvalues of the matrix (5.16) are then given, simplifying to
one generation, by

1
2

(

±mR ±
√

m2
R + 4 v2

)

, (5.21)

where mR denotes the eigenvalues of MR, which is of the order of Λ by the
result of Lemma 5.2, see (5.20).

This gives two eigenvalues very close to ±mR and two others very close
to ±v2/mR as can be checked directly from the determinant of the matrix
(5.16), which is equal to |Mν |4 ∼ v4 (for one generation).

Remark 5.3. This is compatible with the scenario proposed by Fukigita and
Yanagida (cf. [33]) following the ideas of Sakharov and t’Hooft, to explain
the asymmetry between matter and antimatter in the universe.

Typical estimates for the large masses of the right handed neutrinos, i.e.,
the eigenvalues of MR are given (cf. [33]) by

(mR)1 ≥ 107 GeV, (mR)2 ≥ 1012 GeV, (mR)3 ≥ 1016 GeV. (5.22)
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5.4 The fermion–boson mass relation

There are two different normalizations for the Higgs field in the literature.

1) In Veltman [42], the kinetic term has a factor of 1
2 .

2) In Mohapatra–Pal, it has a factor of 1 (cf. [37], equation (1.43)]).

One passes from one to the other by

ϕmp =
1√
2

ϕvelt (5.23)

In [7] we used the second convention. Let us then stick to that for the
definition of the Yukawa couplings (yσ

· )(t) which is then given by (5.7) above.

The mass of the top quark is governed by the top quark Yukawa coupling
yt = yσ

u(t) with σ = 3 by the equation

mtop(t) =
1√
2

2M

g
yt =

1√
2

v yt, (5.24)

where v = 2M
g is the vacuum expectation value of the Higgs field. The

running of the top quark Yukawa coupling yt = yσ
u(t), with σ = 3, is governed

by equation (5.9).

In terms of the Yukawa couplings (yσ
· ) of (5.7), the mass constraint (4.16)

reads as

v2

2

∑

σ

(yσ
ν )2 + (yσ

e )2 + 3(yσ
u)2 + 3(yσ

d )2 = 2 g2 v2, (5.25)

with v = 2M
g the vacuum expectation value of the Higgs, as above.

In the traditional notation for the standard model the combination

Y2 =
∑

σ

(yσ
ν )2 + (yσ

e )2 + 3 (yσ
u)2 + 3 (yσ

d )2

is denoted by Y2 = Y2(S) (cf. [1]). Thus, the mass constraint (4.16) is of
the form

Y2(S) = 4 g2. (5.26)

Assuming that it holds at a unification scale of 1017 GeV and neglecting all
other Yukawa couplings with respect to the top quark yσ

u , with σ = 3, we
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get the following approximate form of (4.16).

yσ
u =

2√
3

g, with σ = 3. (5.27)

The value of g at a unification scale of 1017 GeV is ∼0.517. Thus, neglecting
the τ neutrino Yukawa coupling, we get the simplified relation

yt =
2√
3

g ∼ 0.597, t ∼ 34.6. (5.28)

Thus, in first approximation, numerical integration of the differential equa-
tion (5.9) with the boundary condition (5.28) gives the value y0 = ∼1.102
and a top quark mass of the order of 1√

2
y0 v ∼ 173.683 y0 GeV.

The see-saw mechanism, however, suggests that the Yukawa coupling for
the τ neutrino is of the same order as the top quark Yukawa coupling.
Indeed, even if the tau neutrino mass has an upper bound of the order of
(cf. [33])

mντ ≤ 18.2 MeV,

the see-saw mechanism allows for a large Yukawa coupling term by the
relation (5.21) and (5.22). It is then natural to take the Yukawa coupling
yσ

ν , with σ = 3 for the tau neutrino to be the same, at unification, as that of

the top quark. This introduces in (5.28) a correction factor of
√

3
4 . In fact,

for xt = yσ
ν (t) and yt = yσ

u(t), with σ = 3, we now have

Y2(S) ∼ x2
t + 3y2

t ∼ 4
3

· 3y2
t = 4 y2

t ⇒ yt ∼ g (5.29)

This has the effect of lowering the value of y0 to y0 ∼ 1.04, which yields
an acceptable value for the top quark mass, given that we neglected all other
Yukawa couplings except for the top and the tau neutrino.

5.5 The gravitational terms

We now discuss the behavior of the gravitational terms in the spectral action,
namely

∫ (
1

2κ2
0
R + α0CμνρσCμνρσ + γ0 + τ0R

∗R∗ − ξ0R |H|2
)

√
g d4x. (5.30)

The traditional form of the Euclidean higher derivative terms that are qua-
dratic in curvature is (see, e.g., [12], [19])

∫ (
1
2η

CμνρσCμνρσ − ω

3η
R2 +

θ

η
E

)
√

g d4x, (5.31)
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with E = R∗R∗ the topological term which is the integrand in the Euler
characteristic

χ(M) =
1

32π2

∫
E

√
g d4x =

1
32π2

∫
R∗R∗√g d4x. (5.32)

The running of the coefficients of the Euclidean higher derivative terms
in (5.31), determined by the renormalization group equation, is gauge-
independent and is given by (see, e.g., [3, equations 4.49 and 4.71] and
[12, 19])

βη = − 1
(4π)2

133
10

η2,

βω = − 1
(4π)2

25 + 1098 ω + 200ω2

60
η,

βθ =
1

(4π)2
7(56 − 171θ)

90
η,

while the graphs are shown in figures 4, 5, 6. Notice that the infrared
behavior of these terms approaches the fixed point η = 0, ω = −0.0228, θ =
0.327. The coefficient η goes to zero in the infrared limit, sufficiently slowly,
so that, up to scales of the order of the size of the universe, its inverse remains
O(1). On the other hand, η(t), ω(t), and θ(t) have a common singularity at
an energy scale of the order of 1023 GeV, which is above the Planck scale.
Moreover, within the energy scales that are of interest to our model η(t) is
neither too small nor too large (it does not vary by more than a single order
of magnitude between the Planck scale and infrared energies).

Figure 4: The running of the Weyl curvature term in (5.31).
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Figure 5: The running of the ratio of the coefficients of the R2 term and the
Weyl term in (5.31).

The only known experimental constraints on the values of the coefficients
of the quadratic curvature terms RμνR

μν and R2 at low energy are very
weak and predict that their value should not exceed 1074 (cf., e.g., [19]). In
our case, this is guaranteed by the running described above. Note that we
have neglected the coupling RH2 with the Higgs field which ought to be
taken into account in a finer analysis.

Figure 6: The running of the ratio of the coefficients of the topological term
and the Weyl term in (5.31).
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The coefficient of the Einstein term is of the form

1
κ2

0
=

96f2Λ2 − f0 c

12π2 . (5.33)

With the above notation, by the result of Lemma 5.2, we get

c = x2Tr(k∗
RkR) =

2f2Λ2(Tr(k∗
RkR))2

f0Tr((k∗
RkR)2)

.

Thus, the range of variation of (Tr(k∗
RkR))2

Tr((k∗
RkR)2) for N generations is the interval

[1, N ]. In particular, with N = 3 we get

90f2Λ2

12π2 ≤ 1
κ2

0
≤ 94f2Λ2

12π2 . (5.34)

This estimate is not modified substantially if one takes into account the
contribution from the RH2 term using the vacuum expectation value of
the Higgs field. Thus we see that independently of the choice of kR, the
coefficient κ−2

0 of the Einstein term 1
2

∫
R

√
g d4x is positive and of the order

of f2Λ2. Thus the result is similar to what happened for the Einstein–
Yang–Mills system [8] and the sign is the correct one. As far as the size is
concerned let us now compare the value we get for κ0 with the value given
by Newton’s constant. In our case we get

κ−1
0 ∼ Λ

√
f2.

Thus if we take for Λ the energy scale of the meeting point of the electroweak
and strong couplings, namely Λ ∼ 1.1 × 1017 GeV, we get

κ−1
0 ∼ 1.1 × 1017

√
f2 GeV

On the other hand, using the usual form of the gravitational action

S(g) =
1

16πG

∫

M
R dv, (5.35)

and the experimental value of Newton’s constant at ordinary scales one gets
the coupling constant

κ0(MZ) =
√

8πG, κ−1
0 ∼ 1.221 1019/

√
8π ∼ 2.43 × 1018 GeV.

One should expect that the Newton constant runs at higher energies (cf.,
e.g., [19, 35, 36]) and increases at high energy when one approaches the
Planck scale. Thus the ratio

ρ = κ0(Λ)/κ0(MZ) (5.36)

for Λ ∼ 1.1 × 1017 GeV, which measures the running at unification scale,
should be larger than 1.
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By the normalization of the kinetic terms of the gauge fields, one has (4.10)

f0 =
π2

2 g2 =
π

8 α2(Λ)
∼ 18.45.

Thus
1.1 × 1017

√
f0 ∼ 4.726 × 1017.

It follows that if
f2/f0 = τ2/ρ2, τ ∼ 5.1, (5.37)

one obtains the correct physical value for the Newton constant. In fact,
starting with a test function g such that g2 = g0, equality (5.37) holds,
provided one performs the transformation

g �→ f, f(x) = g
(ρx

τ

)
.

5.6 The cosmological term

The cosmological term depends, in our model, on the remaining
parameter f4.

Lemma 5.4. Under the hypothesis of Lemma 5.2, the cosmological term
gives

1
π2

(

48f4 − Tr(k∗
RkR)2

Tr((k∗
RkR)2)

f2
2

f0

)

Λ4. (5.38)

Proof. In (3.45) we have the cosmological term

1
π2

(

48f4Λ4 − f2cΛ2 +
f0

4
d

)

,

where the coefficients c and d are given by

c = Tr(Y ∗
RYR) and d = Tr((Y ∗

RYR)2)).

We use the result of Lemma 5.2 and (5.20) and obtain

c =
2 f2 Λ2

f0

Tr(k∗
RkR)2

Tr((k∗
RkR)2)

and d =
4f2

2 Λ4

f2
0

Tr(k∗
RkR)2

Tr((k∗
RkR)2)

.

�

The positivity of the fj , and the freedom in choosing the f4 makes it possible
to adjust the value of the cosmological term. Notice that, if one assumes
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that the function f is decreasing (and positive as usual), then the Schwartz
inequality gives the constraint

f2
2 ≤ f0f4.

The Schwartz inequality also gives the estimate

Tr(k∗
RkR)2

Tr((k∗
RkR)2)

≤ 3

in (5.38). Thus, for a decreasing positive function, this cosmological term is
positive. Of course to obtain the physical cosmological constant, one needs
to add to this term the contribution from the vacuum expectation value
of the various fields which give an additional contribution of the order of
(96 − 28)1/32π2Λ4 and generate a fine tuning problem to ensure that the
value of the cosmological constant at ordinary scale is small. It is natural in
this context to replace the cut-off Λ by a dynamical dilaton field as in [9],
cf. § 5.7.3 below.

5.7 The tadpole term and the naturalness problem

The naturalness problem for the standard model arises from the quadrati-
cally divergent corrections to the tadpole term

δβh ∼ Λ2
∑

cn log(Λ/MZ)n (5.39)

that are required in order to maintain the Higgs vacuum expectation value
at the electroweak scale (cf. [39, §II.C.4]). In our set-up, the only natural
scale is the unification scale. Thus, an explanation for the weak scale still
remains to be found. We shall not attempt to address this problem here but
make a few remarks.

5.7.1 Naturalness and fine tuning

When the cut-off regularization method is used, a number of diagrams
involving the Higgs fields are actually quadratically divergent and thus gen-
erate huge contributions to the tadpole bare term. To be more specific, one
has the following quadratically divergent diagrams:

• minimal coupling with W and B fields,
• quartic self-coupling of Higgs fields,
• Yukawa couplings with fermions.

If we want to fix the Higgs vacuum at 2M
g in the standard model, we need to

absorb the huge quadratic term in Λ in the tadpole term of the action. The
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tadpole constant βh then acquires a quadratically divergent contribution

1
2
δβh ∼ Λ2

32π2 q(t), t = log(Λ/MZ), (5.40)

where (cf. [20, 28, 39])

q(t) =
9
4

g2
2 +

3
4

g2
1 + 6λ − 6 y2

t , (5.41)

where, as above, yt = yσ
u(t), with σ = 3 is the top quark Yukawa coupling.

This form of (5.41) holds under the assumption that the contribution com-
ing from the top quark is the dominant term in the Yukawa coupling (see,
however, the previous discussion on the term yσ

ν (t) with σ = 3 in § 5.4).

One can check that the contribution yt is sufficiently large in the standard
model so that, for small t, q(t) is negative. However, as shown in figure 7,
the expression q(t) changes sign at energies of the order of 1010 GeV, and is
then positive, with a value at unification ∼1.61.

While figure 7 uses the known experimental values, one can show directly
that our boundary conditions at unification scale tunif also imply that
q(tunif) > 0. In fact it is better to replace 3y2

t by Y2, and we can then
use our mass relation at unification in the form (5.26)

Y2 = 4 g2.

Figure 7: The running of the tadpole term.
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Also at unification we have a precise form of λ namely (5.6), together with
λ = 4λ̃ and get

λ = 4 g2 b

a2 .

We can thus rewrite (5.41) as (with g = g2)

q(tunif) =
9
4

g2 +
3
4

g2
1 + 24 g2 b

a2 − 8 g2, (5.42)

We can now use the inequality
b

a2 ≥ 1
4
,

which holds even with a large tau neutrino Yukawa coupling, to get

q(tunif) ≥ 9
4

g2 +
3
4

g2
1 + 24 g2 1

4
− 8 g2 =

1
4

g2 +
3
4

g2
1 > 0. (5.43)

5.7.2 Sign of the quadratic term

In the spectral action, we also have a similar term which is quadratic in Λ
namely the term −μ2

0 H2 of (4.11) where μ2
0 = 2(f2 Λ2/f0) − e/a. We show

that, under the simplifying hypothesis of Lemma 5.2, the coefficient of Λ2 in
μ2

0 in the spectral action is generally positive but can be small and have an
arbitrary sign provided there are at least two generations and one chooses
suitable Yukawa and Majorana mass matrices. The reason why we can use
Lemma 5.2 is that we are interested in small values of μ2

0, a more refined
analysis would be required to take care of the general case. By Lemma 5.2
we have MR = xkR with x as in (5.17).

Lemma 5.5. Under the hypothesis of Lemma 5.2, the coefficient of the Higgs
quadratic term −μ2

0 H2 in the spectral action is given by

μ2
0 = 2Λ2 f2

f0
(1 − X) = (1 − X)

4 g2 Λ2

π2 f2, (5.44)

where

X =
Tr(k∗

RkR k∗
νkν) Tr(k∗

RkR)
Tr(k∗

νkν + k∗
eke + 3(k∗

uku + k∗
dkd))Tr((k∗

RkR)2)
(5.45)

Proof. One has μ2
0 = 2(f2 Λ2/f0) − e/a with e and a as in (3.16).

Using (5.20) and (4.13) we then get the first equality in (5.44). The second
follows from (4.10). �

In order to compare X with 1 we need to determine the range of variation
of the largest eigenvalue of (k∗

RkR Tr(k∗
RkR)/Tr((k∗

RkR)2)) as a function of
the number of generations.
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Lemma 5.6. The range of variation of the largest eigenvalue,

ρ(kR) =
∥
∥
∥
∥
k∗

RkRTr(k∗
RkR)

Tr((k∗
RkR)2)

∥
∥
∥
∥

for kR ∈ MN (C), is the interval

[

1,
1
2
(1 +

√
N)
]

.

Proof. Notice first that one has

Tr((k∗
RkR)2) ≤ Tr(k∗

RkR) ||k∗
RkR||

so that the inequality ≥ 1 follows. Moreover this lower bound is reached
exactly when k∗

RkR is a multiple of an idempotent which means that kR is
a multiple of a partial isometry. To understand the upper bound, we can
assume that k∗

RkR is diagonal with eigenvalues λ2
j . We just need to under-

stand the range of variation of FN (λ) = (λ2
1
∑

λ2
j/
∑

λ4
j ). Using Lagrange

multipliers one gets that, at an extremum, all the λ2
j for j �= 1 are equal.

Thus, one just needs to get the range of variation of the simpler function
fN (u) = u2(u2 + N − 1)/(u4 + N − 1). Computing the value of fN at the
maximum u2 = 1 +

√
N yields the required answer. �

We thus see that the maximal value for X obtained by replacing k∗
RkR by

its maximal eigenvalue, yields the inequality

X ≤ (1 +
√

N)
2

Tr(k∗
νkν)

Tr(k∗
νkν + k∗

eke + 3(k∗
uku + k∗

dkd))
. (5.46)

As we show now, the range of variation of the simplified quadratic term
(i.e., the right-hand side of equation (5.44)) depends on the number N of
generations.

Proposition 5.7. Let N be the number of generations.

(1) If N = 1, or if kR is a scalar multiple of a partial isometry, the qua-
dratic term (5.44) is positive and its size of the order of f2 Λ2

f0
.

(2) If N ≥ 2, the quadratic term (5.44) can vanish and have arbitrary sign,
provided one chooses kR, kν appropriately.
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Proof. (1) By Lemma 5.6 we have ρ(kR) = 1 and thus by (5.45),

X ≤ Tr(k∗
νkν)

Tr(k∗
νkν + k∗

eke + 3(k∗
uku + k∗

dkd))
< 1.

Thus
μ2

0 = 2 Λ2 f2

f0
(1 − X)

is positive and of the same order as (f2 Λ2/f0).

(2) We take N = 3 and explain how to choose kR, kν etc. so that the
coefficient of the quadratic term vanishes. We choose kR such that the
eigenvalues of k∗

RkR are of the form (1 +
√

3, 1, 1). Then, as in Lemma 5.6,
the eigenvalues of (k∗

RkRTr(k∗
RkR)/Tr((k∗

RkR)2)) are 1/2(1 +
√

3, 1, 1). We
can now choose kν in such a way that it is diagonal in the same basis as
k∗

RkR with a single, order one, eigenvalue on the first basis vector while the
two other eigenvalues are small. It follows that

X ∼ 1
2
(1 +

√
3)

Tr(k∗
νkν)

Tr(k∗
νkν + k∗

eke + 3(k∗
uku + k∗

dkd))
∼ 1,

provided that
1
2
(
√

3 − 1) Tr(k∗
νkν) ∼ Tr(k∗

eke + 3(k∗
uku + k∗

dkd)). �

Neglecting the Yukawa couplings except for the tau neutrino and the top
quark, one gets kντ ∼ 2.86 ktop. While the see-saw mechanism allows for a
large Yukawa matrix for the neutrinos, the above relation yields a Yukawa
coupling for the tau neutrino which is quite a bit larger than the expected
one as in GUT theories, where it is similar to the top Yukawa coupling. In
summary we have shown that μ2

0 > 0 except under the above special choice
of Yukawa coupling matrices. We have been working under the simplifying
hypothesis of Lemma 5.2 and to eliminate that, a finer analysis involving the
symmetry breaking of the potential in the variables x and ϕ (after promoting
x to a scalar field) would be necessary.

5.7.3 The dilaton field

In fact there is another scalar field which plays a natural role in the above
set-up and which has been neglected for simplicity in the above discussion.
Indeed as in [9] it is natural when considering the spectral action (in partic-
ular on noncompact spaces) to replace the cut-off Λ by a dynamical dilaton
field. We refer to [9] for the computation of the spectral action with dilaton
and its comparison with the Randall–Sundrum model. Its extension to the
present set-up is straightforward using the technique of [9]. One obtains
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a model which is closely related to the model of scale invariant extended
inflation of [26].

5.7.4 Geometric interpretation

Our geometric interpretation of the standard model gives a picture of space–
time as the product of an ordinary spin manifold (in Euclidean signature)
by a finite noncommutative geometry F . The geometry of F is specified by
its Dirac operator DF whose size is governed by the vacuum expectation
value of the Higgs field. In other words, it is the (inverse of the) size of the
space F that specifies the electroweak scale. It is thus tempting to look for
an explanation for the smallness of the ratio MZ/MP along the same lines
as inflation as an explanation for the large size of the observable universe in
Planck units.

Appendix A. Gilkey’s Theorem

The square of the Dirac operator appearing in the spectral triple of a non-
commutative space is written in a form suitable to apply the standard local
formulas for the heat expansion (see [24, § 4.8]). We now briefly recall the
statement of Gilkey’s theorem ([24, Theorem 4.8.16]. One starts with a com-
pact Riemannian manifold M of dimension m, with metric g, and one lets F
be a vector bundle on M and P a differential operator acting on sections of
F and with leading symbol given by the metric tensor. Thus locally one has

P = −(gμνI ∂μ∂ν + Aμ∂μ + B), (A.1)

where gμν plays the role of the inverse metric, I is the unit matrix, Aμ and
B are endomorphisms of the bundle F . The Seeley–De witt coefficients are
the terms an(x, P ) in the heat expansion, which is of the form

Tre−tP ∼
∑

n≥0

t(n−m)/2
∫

M
an(x, P ) dv(x), (A.2)

where m is the dimension of the manifold and dv(x) =
√

det gμν dm x where
gμν is the metric on M .

By Lemma 4.8.1 of [24], the operator P is uniquely written in the form

P = ∇∗ ∇ − E , (A.3)

where ∇ is a connection on F , ∇∗ ∇ the connection Laplacian and where E
is an endomorphism of F . The explicit formulas for the connection ∇ and
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the endomorphism E are

∇μ = ∂μ + ω′
μ, (A.4)

ω′
μ =

1
2

gμν(Aν + Γν · id), (A.5)

E = B − gμν(∂μ ω′
ν + ω′

μ ω′
ν − Γρ

μν ω′
ρ), (A.6)

Where one lets Γρ
μν(g) be the Christoffel symbols of the Levi–Civita connec-

tion of the metric g and

Γρ(g) = gμνΓρ
μν(g).

One lets Ω be the curvature of the connection ∇ so that (cf.
[24, Lemma 4.8.1]),

Ωμν = ∂μω′
ν − ∂νω

′
μ + [ω′

μ, ω′
ν ]. (A.7)

The Seeley–de Witt coefficients an(P ) vanish for odd values of n. The first
three ans for n even have the following explicit form in terms of the Riemann
curvature tensor R, the curvature Ω of the connection ∇ and the
endomorphism E .

Theorem A.1. [24] One has:

a0(x, P ) = (4π)−m/2 Tr(id), (A.8)

a2(x, P ) = (4π)−m/2 Tr
(

−R

6
id + E

)

, (A.9)

a4(x, P ) = (4π)−m/2 1
360

Tr(−12R;μ μ + 5R2 − 2RμνR
μν (A.10)

+ 2RμνρσRμνρσ − 60RE + 180E2 + 60E ;μ μ

+ 30ΩμνΩμν).

Remark A.2. Notice that E only appears through the terms

Tr
(

−R

6
id + E

)

, Tr

((

−R

6
id + E

)2
)

(A.11)

and the boundary term Tr(E ;μ μ).

Here, R;μ μ = ∇μ∇μR and similarly E ;μ μ = ∇μ∇μE .

A.1 The generalized Lichnerowicz formula

Let M be a compact Riemannian spin manifold of dimension m, S the spinor
bundle with the canonical riemannian connection ∇S . Let V be a hermitian
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vector bundle over M with a compatible connection ∇V . One lets ∂/V be the
Dirac operator on S ⊗ V endowed with the tensor product connection ([30,
Proposition 5.10])

∇(ξ ⊗ v) = (∇Sξ) ⊗ v + ξ ⊗ (∇V v). (A.12)

Let then RV be the bundle endomorpism of the bundle S ⊗ V defined by

RV (ξ ⊗ v) =
1
2

m∑

j,k=1

(γjγkξ) ⊗ (R(V )jkv) (A.13)

where R(V ) is the curvature tensor of the bundle V .

One then has ([30, Theorem 8.17])

Theorem A.3. let s = −R be the scalar curvature of M , then the Dirac
operator ∂/V satisfies

∂/2
V = ∇∗∇ +

1
4

s + RV , (A.14)

where ∇∗∇ is the connection Laplacian of S ⊗ V .

Notice that all three terms of the right-hand side of (A.14) are self-adjoint
operators by construction. In particular RV is self-adjoint. One can write
RV in the following form where the terms in the sum are pairwise orthogonal
for the natural inner product on the Clifford algebra (induced by the Hilbert–
Schmidt inner product 〈A, B〉 = Tr(A∗B) in the spin representation)

RV =
∑

j<k

γjγk ⊗ R(V )j k. (A.15)

A.2 The asymptotic expansion and the residues

The spectral action can be expanded in decreasing powers of the scale Λ in
the form

Trace (f(D/Λ)) ∼
∑

k∈Π+

fkΛk

∫
− |D|−k + f(0)ζD(0) + o(1), (A.16)

where the function f only appears through the scalars

fk =
∫ ∞

0
f(v)vk−1 dv. (A.17)

The term independent of the parameter Λ is the value at s = 0 (regularity
at s = 0 is assumed) of the zeta function

ζD(s) = Tr (|D|−s). (A.18)



1086 ALI H. CHAMSEDDINE ET AL.

The terms involving negative powers of Λ involve the full Taylor expansion
of f at 0.

Let us briefly review the classical relation between residues and the heat
kernel expansion in order to check the numerical coefficients.

For the positive operator Δ = D2, one has

|D|−s = Δ−s/2 =
1

Γ(s/2)

∫ ∞

0
e−tΔts/2−1 dt (A.19)

and the relation between the asymptotic expansion,

Trace(e−tΔ) ∼
∑

aαtα (t −→ 0) (A.20)

and the ζ function,
ζD(s) = Trace (Δ−s/2) (A.21)

is given by the following result.

Lemma A.4. • A non-zero term aα with α < 0 gives a pole of ζD at
−2α with

Ress=−2αζD(s) =
2aα

Γ(−α)
(A.22)

• The absence of log t terms gives regularity at 0 for ζD with

ζD(0) = a0. (A.23)

Proof. We just check the coefficients, replacing Trace(e−tΔ) by aαtα and
using

∫ 1

0
tα+s/2−1 dt =

(
α +

s

2

)−1
,

one gets the first statement. The second follows from the equivalence

1
Γ
(

s
2

) ∼ s

2
, s → 0

so that only the pole part at s = 0 of
∫ ∞

0
Tr(e−tΔ) ts/2−1 dt

contributes to the value ζD(0). But this pole part is given by

a0

∫ 1

0
ts/2−1 dt = a0

2
s

so that one gets (A.23). �
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Remark A.5. The relations (A.22) and (A.23), in particular, show that
our coefficients f0, f2 and f4 are related to the coefficients of the asymptotic
expansion of the spectral action as written in [8] in the following way. Our
f0 is the f4 of [8]. Our f2 is 1/2 of the f2 of [8]. Our f4 is 1/2 of the f0 of
[8]. In fact our f(u) = χ(u2), for χ as in (2.14) of [8].
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noncommutative geometry, Phys. Lett. B 296 (1992), 109–116.

[11] D. Chang, R. N. Mohapatra, J.M. Gipson, R.E. Marshak and
M.K. Parida, Experimental tests of new SO(10) grand unification, Phys.
Rev. D 31(7) (1985), 1718–1732.

[12] A. Codello and R. Percacci, Fixed points of higher derivative gravity,
hep-th/0607128.

[13] S. Coleman, Aspects of symmetry, Selected Erice Lectures, Cambridge
University Press, 1985.

[14] A. Connes, Noncommutative geometry, Academic Press, 1994.
[15] A. Connes, Non commutative geometry and reality, J. Math. Phys.

36(11) (1995), 6194–6231.
[16] A. Connes, Gravity coupled with matter and the foundation of noncom-

mutative geometry, Comm. Math. Phys. 182(1) (1995), 155–176.
[17] A. Connes, Noncommutative geometry and the standard model with neu-

trino mixing, hep-th/0608226.
[18] L. Da̧browski and A. Sitarz, Dirac operator on the standard Podleś
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