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Abstract

We claim that M(atroid) theory may provide a mathematical frame-
work for an underlying description of M -theory. Duality is the key
symmetry which motivates our proposal. The definition of an oriented
matroid in terms of the Farkas property plays a central role in our formal-
ism. We outline how this definition may be carried over M -theory. As a
consequence of our analysis, we find a new type of action for extended
systems which combines dually the p-brane and its dual p⊥-brane.

In the references [1–5] were established a number of connections between
oriented matroid theory [6] and several ingredients of M -theory [7–9] includ-
ing D = 11 supergravity, Chern–Simons theory, string theory and p-brane
physics. The real motivation for such connections has been to implement a
kind of “duality principle” in M -theory via oriented matroid theory. As it is
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known, duality between various superstring theories was the key symmetry
to suggest the existence of an underlying M -theory which includes the five
consistent superstring theories and D = 11 supergravity. However, in spite
of several interesting proposals for describing M -theory (see ref. [10] and
references therein), the precise connection between duality and M -theory
as well as the correct definition of M -theory remains as a mystery [8]. Our
claim in this work is that oriented matroid theory may provide the necessary
mathematical tools for considering a general concept of a duality principle
and consequently may establish the bases for a definition of M -theory as a
“duality theory”.

Let us start off with the consideration of the oriented matroid concept.
There are several equivalent definitions of an oriented matroid, but perhaps
for physicists the most convenient one is in terms of the so-called chirotopes
(see ref. [6] and references therein). Namely, an oriented matroid M is a
pair (E, χ), where E is a non-empty finite set and χ (called chirotope) is
a mapping Er → {−1, 0, 1}, where r means the rank on E, satisfying the
following properties:

(χ1) χ is not identically zero,
(χ2) χ is alternating,
(χ3) for all x1, x2, . . . , xr, y1, y2, . . . , yr ∈ E such that

χ(x1, x2, . . . , xr)χ(y1, y2, . . . , yr) �= 0, (1)

there exists an i ∈ {1, 2, . . . , r} such that

χ(yi, x2, . . . , xr)χ(y1, y2, . . . , yi−1, x1, yi+1, . . . , yr)

= χ(x1, x2, . . . , xr)χ(y1, y2, . . . , yr). (2)

Here, we assume that x1, x2, . . . , xr ∈ E.

One of the reasons why physicists may become interested in this ori-
ented matroid definition is because alternating objects are very well-known
in higher dimensional supergravity and p-branes physics (see ref. [11] and
references therein). This can be clarified further if we consider the case of a
vector configuration in which case the chirotope χ can be written as

χ(μ1, . . . , μr) ≡ sign det(bμ1 , . . . , bμr) ∈ {−1, 0, 1} (3)

for all bμ1 , . . . , bμr ∈ Rr and for all μ1, . . . , μr ∈ E. In this case, expressions
(1) and (2) become connected with the Grassmann–Plücker relations (see
ref. [6], Section 3.5). It turns out that expression (3) can also be written in
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the alternative way

χ(μ1, . . . , μr) ≡ sign Σμ1···μr , (4)

where

Σμ1···μr ≡ εa1···arbμ1
a1

· · · bμr
ar

. (5)

Here, εa1···ar is the completely antisymmetric symbol. Thus, if we introduce
the base ωμ1 , ωμ2 , . . . , ωμr one discovers that (5) leads to the r-form

Σ =
1
r!

Σμ1···μrωμ1 ∧ ωμ2 ∧ · · · ∧ ωμr , (6)

which can also be written as

Σ = b1 ∧ b2 ∧ · · · ∧ br. (7)

Therefore, Σ can be identified as a decomposable r-form element of ∧rR
n.

Here, ∧rR
n denotes a

(
n
r

)
-dimensional real vector space of alternating

r-forms on Rn.

In ref. [1] it was shown that a local version of (5),

Σμ1···μr −→ σμ1···μp+1(ξ), (8)

with r = p + 1, suggested by the so-called matroid bundle [12–15], allows to
establish a connection between matroids and Schild type action for p-branes
[16] (see also ref. [17]),

Sp =
1
2

∫
dp+1ξ(γ−1σμ1···μp+1σμ1···μp+1 − γT 2

p ), (9)

where Tp is a fundamental constant measuring the inertia of the p-brane, γ
is a Lagrange multiplier and

σμ1···μp+1 = εa1···ap+1vμ1
a1

(ξ) · · · vμp+1
ap+1 (ξ) (10)

with

vμ
a (ξ) = ∂ax

μ(ξ), (11)

where xμ(ξ) are d + 1-scalar fields (see ref. [1] for details). One of the inter-
esting aspects of this connection is that duality becomes part of the p-brane
structure in a systematic way. In order to clarify this observation, let us
recall the definition of the dual oriented matroid M∗. It turns out that there
are different equivalent forms for introducing duality in oriented matroid
theory. In terms of chirotopes the dual oriented matroid M∗ is defined as
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follows. First, one introduces the dual chirotope χ∗ such that

χ∗ : En−r −→ {−1, 0, 1} (12)

and

(x1, x2, . . . , xn−r) −→ χ(x′
1, x

′
2, . . . , x

′
r)sign(x1, x2, . . . , xn−r, x

′
1, x

′
2, . . . , x

′
r),

(13)
where (x′

1, x
′
2, . . . , x

′
r) means some permutation of E\(x1, x2, . . . , xn−r) and

sign(x1, x2, . . . , xn−r, x
′
1, x

′
2, . . . , x

′
r) (14)

is the parity of the number of inversions of (1, 2, . . . , n). It is not difficult to
see that, as in the case of ordinary matroids [18], every oriented matroid
M(E, χ) has an associated unique dual M∗(E, χ∗). Furthermore, it is
found that M∗∗ = M (see ref. [6], Section 3.4). Assuming that similar
duality result should go over a matroid bundle scenario, one finds that the
object σμ1···μp+1(ξ) associated with the chirotope χ of M(ξ) should imply
an identification of the dual of σμ1···μp+1(ξ) in the form

∗σμp+2···μd+1 =
1

(p + 1)!
ε
μp+2···μd+1
μ1···μp+1 σμ1···μp+1 , (15)

where the dual ∗σμp+2···μd+1 is associated with the chirotope χ∗ of the dual
oriented matroid M∗(ξ). Here, ∗σμp+2···μd+1 is given by

∗σμp+2···μd+1 = εâp+2···âd+1v
μp+2
âp+2

(ξ) · · · vμd+1
âd+1

(ξ), (16)

where

vμ
â (ξ) = ∂âx

μ(ξ). (17)

In order for (16) and (17) to make sense, it is necessary to consider that
locally the fiber bundle E(B, F, G), with base space B, fiber F and struc-
tural group G, is parametrized by coordinates ξ = (ξa, ξâ). Moreover, the
variables vμ

a (ξ) and vμ
â (ξ) should be associated with the horizontal part

Hξ(E) and the vertical part Vξ(E) of the tangent bundle Tξ(E), respectively.
Of course, we have that vμ

a (ξ) and vμ
â (ξ) satisfy the orthogonality condition

vμ
âvaμ = 0. (18)

From the point of view of ordinary oriented matroid theory, these observa-
tions on duality must be connected with a total vector space Rd+1 corres-
ponding to Tξ(E), a subspace L ⊆ Rd+1 corresponding to Hξ(E) and the
orthogonal complement L⊥ corresponding to Vξ(E). Thus, just as (Hξ(E),
Vξ(E)) determine the structure of Tξ(E), the dual pair (L, L⊥) determines
the structure of total space Rd+1. Therefore, it may result very convenient
to be able to introduce the concept of an oriented matroid in terms of the
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structure (L, L⊥) rather than only in terms of the subspace L. If this is
possible then one should be able to make a direct transition

(L, L⊥) −→ (Hξ(E), Vξ(E)), (19)

and in this way to ensure from the beginning the duality symmetry. Surpris-
ingly, the mathematicians have already considered an equivalent definition
of an oriented matroid in terms of an analog structure to the pair (L, L⊥).
Such a definition used the concept of Farkas property, which we shall proceed
now to discuss briefly (see ref. [19] for details).

But before we address the Farkas property (Lemma) it turns out necessary
to introduce the sign vector concept. Let E �= ∅ be a finite set. An element
X ∈ {+,−, 0}E is called a sign vector. The positive, negative and zero
parts of X are denoted by X+, X− and X0, respectively. Further, we define
suppX ≡ X+ ∪ X−. Consider two sets S and S ′ of signed vectors. The pair
(S ,S ′) is said to have the Farkas property , if ∀e ∈ E either

(a) ∃ X ∈ S , e ∈ supp X and X ≥ 0

or
(b) ∃ Y ∈ S ′, e ∈ supp Y and Y ≥ 0

but not both. Here, X ≥ 0 means that X has a positive (+) or a zero (0)
entry in every coordinate. Observe that (S ,S ′) has the Farkas property if
and only if (S ′,S ) has it.

Let S be a set of signed vectors, and let I and J denote disjoint subsets
of E. Then

S\I/J = {X̃ | ∃X ∈ S , XI = 0, XJ = ∗, X = X̃ on E\(I ∪ J)} (20)

is called a minor of S (obtained by deleting I and contracting J). Here, the
symbol “∗” denotes and arbitrary value. If S and S ′ are sets of sign vectors
on E, then (S\I/J,S ′\J/I) is called minor of (S ,S ′). Similarly,

IS = {X̃ | ∃X ∈ S , XI = −X̃I , XE\I = X̃E\I} (21)

is called the reorientation of S on I. Further, ( IS , IS ′) is the reorientation
of (S ,S ′) on I. Moreover, S is symmetric if S = −S , where −S is the set of
signed vectors which are opposite to the signed vectors of S .

With these definitions at hand, we are ready to give an alternative but
equivalent definition of an oriented matroid. Let E �= ∅ be a finite set and
let S and S ′ be two sets of sign vectors. Then the pair (S , S ′) is called an
oriented matroid on E, if [19]:

(F1) S and S ′ are symmetric and
(F2) every reorientation of every minor of (S ,S ′) has the Farkas property.
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From this definition follows that (S ,S ′) is an oriented matroid if and only
if (S ′,S ) is an oriented matroid, and also that every minor and every
reorientation of an oriented matroid is an oriented matroid again.

Two sign vectors X and Y are orthogonal, denoted by X ⊥ Y , if

(X+ ∩ Y +) ∪ (X− ∩ Y −) �= 0 ⇐⇒ (X+ ∩ Y −) ∪ (X− ∩ Y +). (22)

The set

S⊥ = {X | X ⊥ S}, (23)

where X ⊥ S means that X ⊥ Y for every Y ∈ S , is called the orthogonal
complement of S . If S ′ ⊆ S⊥ then we say that S and S ′ are orthogonal. If
(S ,S ′) is an oriented matroid then two important results follow, namely S
and S ′ are orthogonal and (S ,S⊥) is also an oriented matroid.

A collection C of sign vectors on the set E is the set of signed circuits of
an oriented matroid on E if and only if satisfies the following axioms:

(C0) C �= ∅,

(C1) C is symmetric,

(C2) for all X,Y ∈ C, if X ⊆ Y , then X = Y or X = −Y,

(C3) for all X,Y ∈ C, X �= −Y and e ∈ X+ ∩ Y −, there is a Z such that
e �= supp Z, Z+ ⊆ X+ ∪ Y + and Z− ⊆ X− ∪ Y −.

Now, it can be proved that if (S ,S ′) is an oriented matroid then S satisfies
the axioms (C0)–(C3). Indeed, it can be proved that the axioms (F1)–(F2)
and (C0)–(C3) provide equivalent definitions of an oriented matroid (see
ref. [19]).

The key link between the definition of an oriented matroid in terms of a
chirotope (χ1)–(χ3) and circuits (C0)–(C3) is provided by the relation

C(xi) = (−1)iχ(x1, . . . , xi−1, xi+1, . . . , xr+1), (24)

where {x1, . . . , xr} is a basis of M and

C ⊂{x1, . . . , xr, xr+1}. (25)

Thus, although it is not straightforward to prove that the definitions
(χ1)–(χ3) and (C0)–(C3) are equivalent, the relation (24) gives an idea
of the key step in such a proof. Consequently, we may conclude that (χ1)–
(χ3), (C0)–(C3) and (F1)–(F2) are three equivalent definitions of the same
structure: an oriented matroid.
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Now, assume that (S , S⊥) is an oriented matroid. One question that
arises is: can (S ,S⊥) be realizable in terms of the pair (L, L⊥) of dual vector
spaces, where L, L⊥ ⊆ Rd+1? The answer is, of course not always. This
means that the oriented matroid concept is more general than the concept
of a vector space. In fact, one can prove that a dual pair of realizable
oriented matroids on E corresponds to a pair of orthogonal subspaces in
Rd+1. Moreover, one may also ask a related question: Is it possible to
connect (L, L⊥) with a fiber bundle structure E(B, F, G)? Matroid bundle
seems to give an affirmative answer to this question. In fact, the main
idea of a matroid bundle is to replace the fiber F by an oriented matroid
M(ξa), where ξa are local coordinates on the base manifold B. However,
this prescription is focused more on the definitions (χ1)–(χ3) and (C0)–
(C3) of an oriented matroid rather than on the definition (F1)–(F2). But
considering the equivalence between the three definitions (χ1)–(χ3), (C0)–
(C3) and (F1)–(F2), one should expect a definition for a matroid bundle in
terms of the Farkas structure (F1)–(F2). Our conjecture is that the tangent
bundle T (E) would be the central tool to achieve this goal. The reason is
that T (E) naturally admits the splitting

Tξ(E) = Hξ(E) ⊕ Vξ(E), (26)

in terms of the horizontal Hξ(E) and vertical Vξ(E) subspaces of T (E).
In fact, one may think that the object (Hξ(E), Vξ(E)) constitutes a local
version of the pair of complementary subspaces (L, L⊥). Therefore, just as
the matroid bundle concept considers the transition M → M(ξa), based on
any of the definitions (χ1)–(χ3) and (C0)–(C3), one may assume that the
equivalent definition for a matroid bundle in terms of the definition (F1)–
(F2) should provide the transition (L, L⊥) → (Hξ(E), Vξ(E)). For physicists,
this kind of scenario is not completely new since in Kaluza–Klein theory
through the so-called spontaneous compactification mechanism, the vector
space Rd+1 (or a manifold) is locally considered as a fiber bundle B × F and
as a consequence the tangent bundle Tξ(E) splits as in (26).

What could the connection between the matroid bundle theory in terms of
the pair (S ,S⊥) and M -theory be? Let us assume that the starting point in
M -theory is a duality principle based on the dual symmetry contained in the
Farkas property (F1)–(F2), then one should expect that the pair (S ,S⊥)
plays a basic role in the partition function associated with any proposed
M -theory, which we symbolically write as

Z(S ,S⊥) =
∫

DX exp(S(S ,S⊥)). (27)

As a consequence, due to the Farkas property one ensures a duality symmetry
in (27) not only at the level of the full space (S ,S⊥), but also for any sub-
space (S\I/J,S ′\J/I) corresponding to any reoriented minor of (S ,S⊥).
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In other words, the partition function

Z(S\I/J,S ′\J/I) =
∫

DX exp(S(S\I/J,S ′\J/I)) (28)

must also contain the dual symmetry. This suggests a split of the full
partition function Z(S ,S⊥) in terms of fundamental minors Z(S\I/J,S ′\J/I).
In fact, this conclusion is closely related to the oriented matroid result

(M1 ⊕ M2)∗ = M∗
1 ⊕ M∗

2, (29)

where M1 ⊕ M2 is the direct sum of two oriented matroids M1 and M2
and M∗ denotes the dual of M.

In the case of p-branes physics one may think as follows. Let us associate
the p1-brane and p2-brane with the matroids M1 and M2 respectively, then
the corresponding partition functions

ZM1 =
∫

DX exp(Sp1) (30)

and

ZM2 =
∫

DX exp(Sp2) (31)

should lead to the dual symmetry Z = Z∗ of the total partition function
Z = ZM2ZM2 . Here, the actions Sp1 and Sp2 are determined by (9). Due to
the equivalence between (χ1)–(χ3) and (F1)–(F2), one should expect that
the similar conclusion must be true using an action for p-branes based on
the Farkas property, which we symbolically write as S(p,p⊥), where p⊥ =
d − p − 1. But once again a question emerges: what could the form of
S(p,p⊥) be? This action should contain the invariance S(p,p⊥) = S(p⊥,p) and
for that reason one should expect that the action S(p,p⊥) would combine
the objects σμ1···μp+1 and ∗σμp+2···μd+1 , which are related according to (15).
In analogy to (9), one discovers that the simplest possibility seems to be

S(p,p⊥)

=
1

2(d + 1)!

∫
dd+1ξ(γ−1εμ1···μp+1μp+2···μd+1σμ1···μp+1

∗σμp+2···μd+1 − γT 2
p ).

(32)

We observe that the integrand in this action is over the whole fiber bundle
space E . The reason for this is that according to (10) and (16) σμ1···μp+1 is
defined over the horizontal space Hξ(E) whereas ∗σμp+2···μd+1 is defined over
the vertical space Vξ(E), and therefore the integrand in (32) must be over
the dimension of the tangent bundle Tξ(E), which is equal to d + 1.



ORIENTED MATROID THEORY 755

Using (15), it is not difficult to see that the action S(p,p⊥) can be written
in any of the alternative ways:

S(p,0) =
1

2(d + 1)!

∫
dd+1ξ(γ−1σμ1···μp+1σμ1···μp+1 − γT 2

p ) (33)

or

S(0,p⊥) =
1

2(d + 1)!

∫
dd+1ξ(γ−1∗σμp+2···μd+1 ∗σμp+2···μd+1 − γT 2

p ). (34)

We observe that in general we have xμ(ξa, ξâ). Therefore, in order to derive
the action (9) from (33) we need to assume xμ(ξa, ξâ) = f(ξâ)xμ(ξa), so that
we can integrate out the coordinates ξâ. We observe, however, that in this
case the action S(0,p⊥) vanishes. Similarly, if we assume that xμ(ξa, ξâ) =
g(ξa)xμ(ξâ) then action (32) leads to a p⊥-brane action, but the p-brane
action S(p,0) vanishes. This means that the action (32) is more general
than the actions (33) and (34). It is interesting to observe that in the case
d + 1 = 2n the action (32) can be reduced to the Zaikov self-dual action [20],
which has been studied in some detail by Castro [21].

In order to clarify the meaning of (32), let us assume that the action Sp

corresponds to a 1-brane, with d + 1 = 8. In this case the dual action Sp⊥

corresponds to a 5-brane action. But, the interesting aspect of (32) is that
S(p,p⊥) combines both the 1-brane and 5-brane in a unified way. Thus, the
corresponding partition function

Z(S ,S⊥) =
∫

DX exp(S(1,5)(S ,S⊥)) (35)

should describe the quantum dynamics of both the 1-brane and 5-brane.

Let us make some final comments. Just as duality is a concept of
fundamental importance in M -theory the same is true for oriented matroid
theory. In fact, all objects defined in oriented matroid theory can be dual-
ized. In particular since M∗∗ = M, an oriented matroid M can be defined
either directly or dually. Due to this duality features of oriented matroid the-
ory, perhaps a more appropriate name for matroid theory should be ‘duality
theory’. In view of the duality definition (12)–(14), in terms of chirotopes, it
becomes evident that oriented matroid may provide the mathematical frame-
work for implementing a duality principle in M -theory. This conjecture
becomes more evident using the Farkas definition of an oriented matroid.
This suggests a partition function for M -theory which automatically ensures
the duality symmetry not only for the dual space (S ,S⊥) but for any minor
of (S ,S⊥) as well. These observations lead us to discover the action (32)
which dually combines both the p-brane and its dual p⊥-brane.
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Yet one may wonder whether the action (32) is unique. As we mentioned
just below expression (14), every oriented matroid M(E, χ) has an asso-
ciated unique dual M∗(E, χ∗) and M∗∗ = M (see ref. [6], Section 3.4).
This implies that starting with σμ1···μp+1 we find that the dual chirotope
∗σμp+2···μd+1 is unique and vice versa starting with ∗σμp+2···μd+1 we discover
that the chirotopes σμ1···μp+1 is unique. Thus, the action (32) is constructed
with two unique chirotopes σμ1···μp+1 and ∗σμp+2···μd+1 . It remains to be seen
whether the combination of σμ1···μp+1 and ∗σμp+2···μd+1 given in (32) is unique.
First observe that the indices of the combination σμ1···μp+1

∗σμp+2···μd+1 go
from μ1 to μd+1. This means that one requires a completely antisymmetric
object with d + 1 indices. Thus, one can associate such an object with a
chirotope with d + 1 indices. Considering a ground set of the form Ed+1 =
{1, . . . , d + 1}, one discovers that the object εμ1···μp+1μp+2···μd+1 is the
required chirotope which is unique (see ref. [1]).

Acknowledgments

I would like to thank E. Sezgin and Texas A&M University Physics Depart-
ment for their kind hospitality, where part of this work was developed.

References

[1] J.A. Nieto, Adv. Theor. Math. Phys. 8 (2004), 177, hep-th/0310071.
[2] J.A. Nieto, J. Math. Phys. 45 (2004), 285, hep-th/0212100.
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