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Abstract

The entropy of a half-BPS black hole in N = 4 supersymmetric het-
erotic string compactification is independent of the details of the charge
vector and is a function only of the norm of the charge vector calculated
using the appropriate Lorentzian metric. Thus, in order for this to agree
with the degeneracy of the elementary string states, the latter must also
be a function of the same invariant norm. We show that this is true for
generic CHL compactifications to all orders in a power series expansion
in the inverse charges, but there are exponentially suppressed corrections
which do depend on the details of the charge vector. This is consistent
with the hypothesis that the black hole entropy reproduces the degener-
acy of elementary string states to all orders in a power series expansion
in the inverse charges, and helps us extend the earlier conjectured relation
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between black hole entropy and degeneracy of elementary string states to
generic half-BPS electrically charged states in generic N = 4 supersym-
metric heterotic string compactification. Using this result, we can also
relate the black hole entropy to the statistical entropy calculated using an
ensemble of elementary string states that contains all BPS states along
a fixed null line in the lattice of electric charges.

1 Introduction and summary

Recent progress [1–7] towards relating the degeneracy of half-BPS states in
the spectrum of elementary string [8, 9] to the entropy of the black hole
carrying the same charge quantum numbers [10–12] opens up the possibility
of exploring the relationship between the black hole entropy and the statis-
tical entropy in string theory in much more detail than has been achieved
so far. In carrying out a similar analysis for systems involving D-branes and
other non-perturbative objects in string theory [13, 14], one encounters the
problem that while it is relatively easy to compute the degeneracy of BPS
states in the limit of large charges, it is not always possible to make a more
precise estimate that is valid even for finite values of the various charges.
In contrast, the degeneracy of elementary string states can be calculated
precisely in a wide variety of theories in which the string world-sheet theory
is described by a solvable conformal field theory. This in turn should make
it possible to carry out a detailed comparison of this degeneracy with the
black hole entropy that goes beyond the large charge limit.

However, in carrying out this programme, we encounter a conceptual
difficulty: finite size corrections to entropy (and other thermodynamic
quantities) depend on the ensemble that we use, and hence there is no unam-
biguous expression for the statistical entropy even if we know the spectrum
exactly. This is due to the fact that in order to establish the equivalence
between different ensembles we need to replace the ensemble average of any
quantity by the value of the quantity for the most probable configuration.
This is a valid approximation in the infinite size limit where the probabil-
ity distribution is sharply peaked around the most probable configuration,
but is not strictly valid for a finite size system. Thus, in order to carry
out a comparison between the entropy of a black hole to the degeneracy
of elementary string states beyond the large charge limit, we first need to
decide which ensemble we should use to compute the statistical entropy of
elementary string states. Since there is as yet no fundamental principle that
determines this, we can pose the question in a slightly different way: is there
a statistical ensemble for half-BPS elementary string states such that the
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entropy computed using this ensemble agrees with the entropy of the black
hole carrying the same charge quantum numbers?

So far there has been two different proposals for the choice of ensem-
bles. The first one uses an expression for the black hole entropy computed
without taking into account the effect of holomorphic anomaly in the expres-
sion for the generalized prepotential and relates it to the statistical entropy
computed using an ensemble where we keep half of the charges (“magnetic
charges”) fixed and sum over all possible values of the other charges after
introducing chemical potential conjugate to these charges [1, 7, 15, 16]. The
second proposal uses an expression for the black hole entropy computed
after taking into account the effect of holomorphic anomaly [17–19] fol-
lowing [20], and relates it to the statistical entropy of an ensemble where
a single T-duality invariant combination of the charges is allowed to vary
[3,6].1 The relationship between these two proposals is not completely clear
at present.

In this paper, we continue our study of the second proposal. We find that
in order to generalize this proposal to generic half-BPS states in a generic
N = 4 supersymmetric heterotic string compactifications, the spectrum of
half-BPS states in these theories must satisfy some consistency conditions.
In particular, the degeneracy should be expressible as a continuous function
of the charges and should not jump by “large” amount as we move from
one point on the charge lattice to a neighbouring point, even if the two
charges arise from different twisted sectors of an orbifold theory. We then
go ahead and analyze the spectrum of half-BPS states in these theories to
show that these consistency conditions are satisfied, and furthermore that
the spectrum agrees with the proposed formula for relating the black hole
entropy to the statistical entropy of half-BPS elementary string states up
to exponentially suppressed correction terms. We also give an alternative
interpretation of the ensemble used in computing the statistical entropy. In
this interpretation, the ensemble includes all states whose charges lie along
a fixed null line in the lattice of physical electric charges.

Since part of the paper is somewhat technical, we shall now summarize
the main results in some more detail. Let us consider an N = 4 super-
symmetric heterotic string compactification [22–27] with (22 − k) matter
multiplets. This theory has a rank (28 − k) gauge group, and a generic
eletrically charged state is labelled by a (28 − k)-dimensional electric charge
vector. There is a natural T-duality invariant inner product of signature
(22 − k, 6) in the (28 − k)-dimensional lattice of electric charges. Let us

1A different version of this ensemble for studying entropy of quarter BPS black holes
have been suggested in [21].
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consider a black hole solution in this theory carrying electric charge vector
Q, and let N = Q2/2, where Q2 denotes the SO(22 − k, 6) invariant norm
of this charge vector. It turns out that SBH is a function of N alone and
does not depend on the details of the vector Q. We now define FBH(µ) as
the Legendre transform of SBH(N):

FBH(µ) = SBH(N) − µN, (1.1)

where N is the solution of the equation

∂SBH(N)
∂N

− µ = 0. (1.2)

The proposed relation between the degeneracy d(Q) of elementary string
states carrying charge Q and FBH(µ) is2

d(Q) � 1
2πi

e−C0

∫ µ0+ia

µ0−ia
dµ eFBH(µ)+µN , (1.3)

where a is a sufficiently small but fixed positive number, but is other-
wise arbitrary, e−C0 is an overall normalization constant whose value we
are unable to determine due to an uncertainty in computing the addi-
tive constant in the expression for SBH, and µ0 is the saddle point of the
integrand on the positive real axis, corresponding to the solution of the
equation:

F ′
BH(µ0) + N = 0, Im(µ0) = 0, Re(µ0) > 0. (1.4)

The � in equation (1.3) denotes equality up to error terms which are sup-
pressed relative to the leading term by powers of e−π

√
N . As long as a is

sufficiently small, the contribution to equation (1.3) is dominated by the sad-
dle point of the integrand given in equation (1.4), and the result of doing the
integration is independent of a up to terms that are suppressed by powers
of e−π

√
N . If we simply replace the integral by the value of the integrand at

the saddle point, the right-hand side of equation (1.3) reduces to the expo-
nential of the inverse Legendre transform of FBH(µ) up to a multiplicative
constant. This gives us back the usual leading order relation ln d(Q) = SBH
up to an additive constant. However, equation (1.3) is a refined version
of this proposal which is supposed to reproduce ln d(Q) to all orders in a
power series expansion in 1/N . One of the consequences of the proposal
given in equations (1.1)–(1.3) is that if we ignore corrections to d(Q) which
are suppressed by powers of e−π

√
N , then d(Q) must be a function dN only

of the combination N = Q2/2 and should not depend on the details of the
charge vector Q.

2As usual, in computing d(Q), we sum over all angular momentum states.
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Explicit computation of the black hole entropy shows that the part of
FBH(µ) that contributes to equation (1.3) up to terms suppressed by powers
of e−π

√
N has the form

FBH(µ) � 4π2

µ
+

24 − k

2
ln

µ

2π
+ C, (1.5)

where C is a constant whose value is not known at present. Substituting
this into equations (1.3) and (1.4), we get

d(Q) � eC−C0

2πi

∫ µ0+ia

µ0−ia
dµ exp

(
4π2

µ
+

24 − k

2
ln

µ

2π
+ µN

)
, (1.6)

and

−4π2

µ2
0

+
24 − k

2µ0
+ N = 0. (1.7)

Note that µ0 calculated from equation (1.7) is a function of N , but we shall
avoid displaying this dependence explicitly in order to avoid cluttering up
the various formulæ.

The proposed relation (1.3) differ from that in [1, 7, 15, 16] in two impor-
tant ways. First of all the black hole entropy is computed using the S-duality
invariant one particle irreducible effective action that includes explicit non-
holomorphic corrections to the generalized prepotential instead of the Wilso-
nian effective action where such non-holomorphic corrections are absent.
Second, the Laplace transform in equation (1.3) is taken with respect to
a single variable µ conjugate to the combination N = Q2/2 instead of the
chemical potentials conjugate to all the electric charges.

In section 2, we shall review the result for SBH(N) that leads to
equation (1.5). We also give various different (but equivalent) versions
of the proposal (1.3). For example, we show that equation (1.3) may be
re-expressed as

FBH(µ) � F(µ) + C0, (1.8)
where

exp (F(µ)) ≡ 1
M

∑
N

dNe−µN . (1.9)

Here, dN is the degeneracy of elementary string states with Q2 = 2N and M
is an integer that counts the number of allowed values of N per unit interval.
� in equation (1.8) denotes equality up to terms suppressed by powers of
e−π2/µ. The sum over N in equation (1.9) runs over all allowed values of N
in the theory. In computing dN on the right-hand side of equation (1.9), we
must pick a specific representative charge vector Q satisfying Q2 = 2N and
identify dN as the degeneracy of these states. Different representatives differ
from each other by terms suppressed by powers of e−π

√
N which introduces
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an uncertainty in F(µ) that is suppressed by powers of e−π2/µ. This does not
affect our analysis of the proposed relation equation (1.8) since this relation
is expected to be valid in the small µ limit up to exponentially suppessed
terms.

Taking the inverse Legendre transform on both sides, we may also express
equation (1.8) as:

SBH(N) � S̃stat(N) + C0, (1.10)

where S̃stat(N) is the “statistical entropy” of half-BPS elementary string
states defined through the relation:

S̃stat(N ′) = F(µ) + µN ′,
∂F(µ)

∂µ
+ N ′ = 0. (1.11)

� in equation (1.10) denotes equality up to error terms which are suppressed
by powers of exp(−π

√
N).

In section 3, we shall verify the proposal (1.3) relating black hole entropy
and degeneracy of elementary string states by computing the latter in N = 4
supersymmetric heterotic string compactifications. In particular, verifica-
tion of equation (1.3) requires proving that up to correction terms suppressed
by powers of e−π

√
N , the result for d(Q) depends only on the combination

Q2 and not on the details of the charge vector Q. The functional dependence
on Q2 (including the overall normalization) must be the same irrespective of
whether the state arises in the untwisted sector or one of the twisted sectors
of the theory.

In the form given in equations (1.8)–(1.10), the proposed relations are
equivalent to identifying the black hole entropy to the entropy of half-BPS
elementary string states in an ensemble that contains BPS states of different
charges, counting all the states with a given Q2 value 2N as one state. µ
denotes the chemical potential conjugate to the variable N = Q2/2. This
looks a bit odd since Q2 is a quadratic function of the charges and hence
is not an additive quantum number. A more natural choice of an ensemble
would be one in which we keep some charges fixed, introduce a chemical
potential conjugate to the other charges, and sum over all possible values of
the other charges. We demonstrate in section 4 that such an interpretation
is possible for the partition function defined in equation (1.9). We take two
fixed charge vectors Q0 and s0 on the lattice of physical electric charges with
s0 being null, and consider an ensemble that contains all states of the form
Q0 + ns0 with n ∈ Z. If β denotes the chemical potential conjugate to the
integer n, then the partition function exp

(
F̂(Q0, s0, β)

)
of this ensemble

has a simple relation to the partition function exp (F(µ)) introduced in
equation (1.9). Thus, the proposed relation (1.10) may also be regarded
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as the statement of equivalence between the black hole entropy and the
statistical entropy associated with an ensemble of elementary string states
whose charges lie along a null line in the lattice.

2 Entropy of half-BPS black holes and its relation to the
degeneracy of elementary string states

Let us consider an N = 4 heterotic string compactification with (22 − k)
massless matter multiplets [22–27]. This theory has altogether (28 − k)
U(1) gauge fields, of which six are graviphoton fields arising out of the
right-moving currents on the world-sheet and (22 − k) are part of the mat-
ter multiplets arising out of the left-moving currents on the world-sheet.
We shall refer to these gauge fields as right-handed and left-handed gauge
fields, respectively. We consider a half-BPS black hole carrying (28 − k)-
dimensional electric charge vector Q. There is a natural Lorentzian metric
of signature (22 − k, 6) in the vector space of the charges. We define

N =
Q2

2
, (2.1)

where Q2 is the norm of Q measured with this metric. At any given point,
in the moduli space of the theory, the (28 − k)-dimensional vector space has
a natural decomposition into a direct sum of a (22 − k)-dimensional vector
space of left-handed electric charges and a six-dimensional vector space of
right-handed electric charges. The latter charges couple to the graviphoton
fields. If we denote by �QL and �QR the left and the right-handed components
of the charges, then

Q2 = ( �Q2
R − �Q2

L), N =
1
2
( �Q2

R − �Q2
L). (2.2)

The entropy of this black hole vanishes in the supergravity approximation.
However higher derivative corrections become important near the horizon
since the curvature and other field strengths become large in this region.
There is a general scaling argument that shows that for large Q2 the entropy
of the black hole, after taking into account the higher derivative corrections,
goes as a

√
N for some constant a [10,12]. More recently, [1–7] computed the

entropy of these black holes by taking into account a specific class of higher
derivative terms in the action, following earlier work on supersymmetric
attractor mechanism [28–30] and the effect of higher derivative terms on the
black hole entropy [20,31–38]. The higher derivative terms which were used
in this calculation represent corrections to the generalized prepotential of
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the theory and are of the form [20, 39–41]∫
d4x

√
det g

[
φ(S, S)R−

µνρσR−µνρσ + c.c.
]
+ · · · , (2.3)

where gµν , R±
µνρσ, and S denote, respectively, the canonical metric, the

self-dual, and the anti-self-dual components of the Riemann tensor and the
complex scalar field whose real and imaginary parts are given by the expo-
nential of the dilaton field and the axion field, respectively. The function3

φ(S, S) = g(S) − K

128π2 ln(S + S) (2.4)

is the sum of a piece g(S) that is holomorphic in S and a piece proportional
to ln(S + S) that is a function of both S and S. For large S, the function
g(S) has the form

g(S) =
S

16π
+ O

(
e−2πS

)
. (2.5)

Furthermore, the combination ĥ(S), defined as

ĥ(S) ≡ ∂Sg(S) +
K

32π2 ∂S ln η(e−2πS), η(q) ≡ q1/24
∞∏

n=1

(1 − qn), (2.6)

transforms as a modular form of weight two under the S-duality group of
the theory [6]. The constant K in equation (2.4) and (2.6) is given by [6,41]

K = 24 − k, (2.7)

and represents the effect of holomorphic anomaly [17–19]. Finally, · · · in
equation (2.3) denotes various other terms which are required for the super-
symmetric completion.

In the presence of the term given in equation (2.3), the black hole entropy
SBH is given by the formula [6, 20]:

SBH =
πN

S0
+ 64π2g(S0) − K

2
ln(2S0) + C, (2.8)

where S0, the value of the field S at the horizon, is determined from the
equation:

−π N

S2
0

+ 64π2g′(S0) − K

2S0
� 0, (2.9)

3We shall be considering those heterotic string compactifications which admit dual
type II description so that we can compute φ(S, S) by working in this dual description
[6,40,41]. A wide class of such models were constructed in [26,27].
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and C is a constant whose value is not known at present. Note that SBH
is a function only of the combination N defined in equation (2.2) and does
not depend on the details of the charge vector Q. In arriving at equa-
tions (2.8) and (2.9) one needs to take into account the correction to the
Bekenstein–Hawking formula for the entropy due to higher derivative terms
in the action [42–45]. It should be mentioned, however, that this formula
has been derived from first principles only in the case K = 0 where the
non-holomorphic contribution to φ(S, S) is absent. It is usually difficult to
supersymmetrize the non-holomorphic terms, and [20] guessed this formula
for toroidally compactified heterotic string theory using the requirement of
S-duality invariance. Equations (2.8) and (2.9) are generalizations of this
formula for general N = 4 supersymmetric compactification [6]. The con-
stant C in equation (2.8) is not determined by the requirement of duality
invariance. We should keep in mind, however, that for a given theory this
is a fixed constant and is independent of the charges carried by the black
hole.

We now define FBH(µ) as the Legendre transform of the function SBH(N)
with respect to the variable N . Then, SBH is the inverse Legendre transform
of F(µ):

SBH(N) = FBH(µ) + µN, (2.10)

with µ determined from the formula

∂FBH

∂µ
+ N = 0. (2.11)

Equations (2.8) and (2.9) are identical to equations (2.10) and (2.11) pro-
vided we make the identification

µ =
π

S0
, (2.12)

FBH(µ) = 64π2 g

(
π

µ

)
− K

2
ln

(
2π

µ

)
+ C

=
4π2

µ
− 24 − k

2
ln

(
2π

µ

)
+ C + O

(
e−2π2/µ

)
. (2.13)

In arriving at the second line of this equation, we have used equations (2.5)
and (2.7). eFBH(µ) will be called the black hole partition function.

We propose the following relation between FBH(µ) and the degeneracy
d(Q) of elementary string states carrying electric charge Q:

d(Q) � 1
2πi

e−C0

∫ µ0+ia

µ0−ia
eFBH(µ)+µN , N =

1
2
Q2, (2.14)
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where � denotes equality up to error terms which are suppressed by powers
of e−π

√
N relative to the leading term, µ0 is given by the solution of the

equation

F ′
BH(µ0) + N = 0, Im(µ0) = 0, Re(µ0) > 0, (2.15)

a is a small positive constant about which we shall say more in the next para-
graph and C0 is a constant whose value will be determined in equation (3.59).
Note that according to this proposal the degeneracy of the elementary string
states should be a function of the combination N = Q2/2 only, and should
not depend on the details of the charge vector Q. In section 3, we shall
verify that this is true up to exponentially suppressed correction terms.

In order to understand the role of the limits of integration on the right-
hand side of equation (2.14), we need to analyze this integral in some detail.
From equation (2.13), it follows that µ0 given in equation (2.17) is a saddle
point of the integrand in equation (2.14) up to exponentially suppressed
corrections. Up to power corrections µ0 � 2π/

√
N , and the value of the

integrand near this saddle point has a factor of e4π
√

N , with a factor of
e2π

√
N coming from the eFBH(µ0) term and another factor of e2π

√
N coming

from the eµ0N term. As mentioned below equation (2.6), the function g(π/µ)
appearing in the expression (2.13) for FBH(µ) has modular properties, and
as a result there are additional divergences of the integrand near the points
of the form µ = iν, ν = 2πp/q for integer p, q. Near these points, FBH(µ) ∼
4π2cp,q/(µ − iν) for some constant cp,q that depends on the fraction p/q
and typically is smaller for larger q. Since the integration contour has been
chosen to have Re(µ) = µ0, the maximum contribution to the integrand from
a singularity at µ = iν comes when the integration contour passes through
the point µ = µ0 + iν, and at this point the integrand has a factor of order
e2π

√
N(1+cp,q)+iν N . As long as cp,q is smaller than 1, this contribution is

exponentially suppressed compared to the contribution coming from the
saddle point near µ0. We shall choose the constant a appearing in the
integration range of µ to be sufficiently small so that for all points of the
form 2πip/q in the range (−ia, ia) the coefficient cp,q is smaller than 1. In
this case, the dominant contribution to the integral comes from a region close
to µ0, and hence the dependence of the integral on the constant a will be
exponentially suppressed as long as a satisfies the criteria given above. Also
in this case, we can ignore the contributions to FBH(µ) which are suppressed
by powers of e−π2/µ, since after integration this will produce corrections that
are suppressed by powers of e−π2/µ0 ∼ e−π

√
N/2. Equations (2.13) now allows

us to restate the proposals (2.14) and (2.15) as

d(Q) � 1
2πi

e−C0

∫ µ0+ia

µ0−ia
exp

(
µN +

4π2

µ
− 24 − k

2
ln

(
2π

µ

)
+ C

)
, (2.16)
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where µ0 is the solution of the equation

−4π2

µ2
0

+
24 − k

2µ0
+ N = 0, µ0 > 0. (2.17)

We shall now reformulate this relation in terms of a relation between the
black hole partition function eFBH(µ) and the partition function of elementary
string states, defined as

eF(µ) =
1
M

∑
N

dNe−µN , (2.18)

where the sum over N in equation (2.18) runs over all the allowed values of N
in the theory, and M is an integer that counts the number of allowed values
of N per unit interval. In order to define the quantity dN appearing on the
right-hand side of equation (2.18), we need to pick a representative charge
vector Q so that Q2/2 = N and identify dN as the degeneracy d(Q) of states
carrying charge Q. As mentioned earlier, the leading contribution of order
e4π

√
N to dN is independent of the choice of the representative Q that we

choose, but there are corrections suppressed by powers of e−π
√

N which do
depend on this representative. By analyzing the sum in equation (2.18) by
saddle point method, one can easily see that a contribution to dN that grows
as exp(4πc

√
N) will give rise to a contribution to eF(µ) of order exp(4π2c2/µ)

for small µ. Thus, an uncertainty in dN that is suppressed by powers of
exp(−π

√
N) will induce an uncertainty in the definition of F(µ) that is

suppressed by powers of e−π2/µ. This will not affect our analysis, since the
proposed relation (2.26) between FBH(µ) and F(µ) is expected to be valid
only up to exponentially suppressed correction terms.

In order to analyze the consequence of the proposed form (2.16) for dN

for the partition function eF(µ), it will be convenient to work with a more
general set of partition functions defined as follows. For any integer J , let SJ

denote the set of allowed values of N in the interval −1 ≤ N < J − 1. Since
there are M possible values of N in unit interval, the set SJ will contain
JM elements. For any α ∈ SJ , we define

eF(J)
α (µ) ≡ J

∞∑
L=0

dJL+αe−µ(JL+α). (2.19)

As in the definition of F(µ), F (J)
α (µ) also suffers from an uncertainty that is

suppressed by powers of e−π2/µ. Using equations (2.18) and (2.19), we get

eF(µ) =
1

JM

∑
α∈SJ

eF(J)
α (µ). (2.20)
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We shall now substitute equation (2.16) into equation (2.19) to come up
with a proposal for the form of F (J)

α (µ):

eF(J)
α (µ) � J

2πi
e−C0+C

∞∑
L=0

e−µ(JL+α)

×
∫ µ0+ia

µ0−ia
dµ′ e4π2/µ′+µ′(JL+α)

(
µ′

2π

)12−(1/2)k

, (2.21)

where � denotes equality up to terms suppressed by powers of e−π2/µ com-
pared to the leading term. Note that in arriving at equation (2.21), we
have used the proposed form of dN in terms of black hole entropy that is
correct up to fractional errors involving powers of e−π

√
N , but this is okay

since these induce errors in the expression for F (J)
α (µ) involving powers of

e−π2/µ. In equation (2.21), µ0 is the solution of equation (2.17) with N
replaced by JL + α and hence depends on JL. We shall now deform the
µ′ integration contour so that it runs parallel to the real axis from µ0 − ia
to a point close to the point −ia on the imaginary axis, then runs till a
point close to ia by grazing the imaginary axis, and finally returns back to
µ0 + ia along a line parallel to the real axis. For the first and the third
component of the contour, the e4π2/µ′

part remains finite, and hence the
contribution to the µ′ integral from these contours are bounded by a term
of order eµ0(JL+α) ∼ e2π

√
JL+α. After performing the sum over L for these

terms, we get contributions bounded by a term of order eπ2/µ. The middle
component of the contour that grazes the imaginary µ′ axis is independent
of L. Furthermore, for any point µ′ on this contour, Re(µ − µ′) > 0 for any
finite µ. Hence, we can perform the sum over L explicitly and write the
contribution as

J

2πi
e−C0+Ce−(µ−µ′)α

∫ 0++ia

0+−ia
dµ′ 1

1 − e−J(µ−µ′) e
4π2/µ′

(
µ′

2π

)12−(1/2)k

.

(2.22)

We can now evaluate the integral by deforming the µ′ integration contour
to a semicircle of radius a in the Re(µ′) > 0 region. During this process, we
pick up the residue at the pole at µ′ = µ. This contribution is given by

e−C0+Ce4π2/µ
( µ

2π

)12−(1/2)k
. (2.23)

The left-over contour integral along the semicircle |µ′| = a does not have
any exponentially large contribution, and hence this contribution is expo-
nentially suppressed compared to equation (2.23). Furthermore, the contri-
bution from the first and the third components of the contour, which were
seen to be bounded by terms of order eπ2/µ, are also exponentially small
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compared to equation (2.23). Thus, equation (2.23) gives the complete con-
tribution to equation (2.21) up to exponentially suppressed terms, and we
get

F (J)
α (µ) � 4π2

µ
+

(
12 − 1

2
k

)
ln

µ

2π
+ C − C0 � FBH(µ) − C0. (2.24)

Equation (2.24) implies that for small µ, F (J)
α (µ) is independent of J and

α up to correction terms involving powers of e−π2/µ. This information,
together with equation (2.20), gives

F (J)
α (µ) � F(µ). (2.25)

This in turn allows us to restate equation (2.24) as4

F(µ) � FBH(µ) − C0. (2.26)

Equations (2.24) and (2.26) are different ways of restating the proposed
relation (2.14) between black hole entropy and degeneracy of elementary
string states. By taking the inverse Legendre transform of both sides of
equation (2.26), we may state the proposal in yet another form:

S̃stat(N) � SBH(N) − C0, (2.27)

where S̃stat(N) is the inverse Legendre transform of F(µ):

S̃stat(N) = F(µ) + µN,
∂F(µ)

∂µ
+ N = 0. (2.28)

� in equation (2.27) represents equality up to error terms involving powers
of e−π

√
N .

3 Counting degeneracy of BPS states in CHL
compactification

In this section, we shall generalize the analysis of [6,7] to compute the degen-
eracy of half-BPS elementary string states in a general class of CHL models
[22–27] and verify its proposed relation to the black hole entropy as given
in equations (2.14) and (2.16). These models are obtained by beginning
with heterotic string compactified on T 6 and then modding out the theory
by the action of an abelian group G. In particular, [26, 27] constructed a

4This is the way the conjecture was stated earlier in [3, 6]. There we worked with a
special class of theories where the compactification manifold has an S1 factor and chose
the representative dN in equation (2.19) from a special class of elementary string states
which carry w units of winding charge and n units of momentum along this circle without
carrying any other charges. For these states, Q2 = 2nw, and one can check explicitly that
dN depends only on the combination nw and not individually on n and w.
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wide class of such models which admit dual type II description by beginning
with heterotic string compactification on a six-dimensional torus of the form
T 4 × S1 × S̃1, and then modding out the theory by a Zm × Zn group, where
Zm (Zn) acts on S1 (S̃1) by a shift of order m (n) and also acts as a Zm (Zn)
symmetry transformation on the rest of the conformal field theory involv-
ing the coordinates of T 4 and the other 16 left-moving world-sheet scalars
associated with E8 × E8 gauge group. The action of a typical element g
of the orbifold group can be regarded as a combination of a shift ag and
a rotation Rg on the signature (22, 6) Narain lattice Γ associated with the
toroidal compactification [46, 47]:

P → RgP + ag, P ∈ Γ. (3.1)

The rotation part also acts on the oscillators. The set of Rg’s for g ∈ G
form a group that describes the rotational part of G. We shall call this
group RG. In order to preserve N = 4 supersymmetry, we need to ensure
that RG acts trivially on the right-handed world-sheet fields. If we assume
that the full group RG leaves (22 − k) of the 22 left-moving directions invari-
ant, then for any given g, Rg can be characterized by k/2 rotation angles
2πφ1(g), . . . , 2πφk/2(g).5 We shall denote by Xj (1 ≤ j ≤ k

2 ) the complex
world-sheet scalars labelling the planes of rotation so that the effect of rota-
tion on the corresponding left-handed oscillators αj

−n is represented by

αj
−n → e2πiφj(g)αj

−n. (3.2)

The corresponding complex conjugate oscillator transforms with a phase
e−2πiφj(g). Thus, without any loss of generality, we can restrict φj(g)’s to be
in the range

0 ≤ φj(g) ≤ 1
2
. (3.3)

For future reference, it will be useful to set up some notations and def-
initions at this stage. Let V denote the (22 + 6)-dimensional vector space
in which the lattice Γ is embedded. For a given group element g, we denote
by V⊥(g) the subspace of V that is left invariant by Rg, and by V‖(g) its
orthogonal subspace. Thus, the planes of rotation associated with a given
group element g are orthogonal to V⊥(g) and lie along V‖(g). We also define

V⊥ =
⋂
g∈G

V⊥(g), V‖ =
⋃
g∈G

V‖(g). (3.4)

In others words, V⊥ is the subspace of V that is left invariant by the entire
group G, and V‖ is its orthogonal subspace. The total dimension of V⊥ is
(28 − k). This is the number of U(1) gauge fields in the resulting theory.

5For a particular element g, some of the φj(g)’s may vanish, but for each j, φj(g) �= 0
for at least one g ∈ G.
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Finally, let us define

Λ⊥(g) = Γ
⋂

V⊥(g), Λ⊥ = Γ
⋂

V⊥ =
⋂
g

Λ⊥(g), (3.5)

and

Λ‖(g) = Γ
⋂

V‖(g), Λ‖ = Γ
⋂

V‖. (3.6)

Let us now begin analyzing the spectrum of half-BPS elementary string
states. We first consider untwisted sector states. Before the orbifold pro-
jection, a generic BPS state is obtained by keeping the right-moving sector
of the state at the lowest L0 eigenvalue allowed by GSO projection and
considering arbitrary excitations on the left-moving sector. If we denote by
(�PL, �PR) the left and right components of the momentum vector and by NL
the total level of left-handed oscillator excitations, then the level-matching
condition gives

NL − 1 +
1
2
(�P 2

L − �P 2
R) = 0. (3.7)

While in the original theory, all the components of P act as sources for
electric fields, in the orbifold theory, only the components of P along V⊥
act as sources for electric fields. We shall denote by Q = ( �QL, �QR) the
projection of P along V⊥ and by P‖ = (�P‖L, 0) the projection of P along
V‖. The requirement of N = 4 supersymmetry forces V‖ to be directed fully
along the left-handed component of the lattice. As a result, P‖ has no right-
handed component and �PR = �QR. Equation (3.7) may now be rewritten
as:

NL − 1 +
1
2

�P 2
‖L = N, (3.8)

where

N ≡ 1
2
( �Q2

R − �Q2
L). (3.9)

If two vectors P and P ′ in Λ correspond to the same charge vector Q,
then P − P ′ = (�P‖L − �P ′

‖L, 0). Thus, �P‖L − �P ′
‖L ∈ Λ‖. This shows that, for

a given Q, the allowed values of �P‖L are of the form

�P‖L = �K(Q) + �p, �p ∈ Λ‖, (3.10)

where �K(Q) is a fixed vector in V‖ lying within the unit cell of Λ‖.

We want to count the number of G invariant BPS states d(Q) for a fixed
Q. This is best done by taking the trace of

∑
g∈G g over all states carrying

the given electric charge Q and then dividing the answer by the total number
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of elements nG of the group. Clearly, the contribution to Tr(g) will come
from only those �P‖L which are invariant under Rg. This requires

�p + �K(Q) ∈ V⊥(g). (3.11)

Acting on the Fock vacuum carrying such a momentum P , the group element
g produces a phase

e2πiag ·P = e2πiag ·Qe−2πi�agL·(�p+ �K(Q)). (3.12)

If we denote by d(osc)(NL, g) the number of ways we can construct total
oscillator level NL out of the 24 left-moving oscillators, weighted by the
action of the group element g on that combination, then we may express the
total number of BPS states carrying charge Q as

d(Q) =
16
nG

∑
g∈G

∞∑
NL=0

d(osc)(NL, g)e2πiag ·Qe−2πi�agL· �K(Q)

×
∑
�p∈Λ‖

�p+ �K(Q)∈V⊥(g)

e−2πi�agL·�pδNL−1+(1/2)(�p+ �K(Q))2,N . (3.13)

The factor of 16 in this equation counts the number of states in a single BPS
supermultiplet.

In a sector twisted by a group element g′, the oscillators of Xj are frac-
tionally moded with modes αj

−n+φj(g′). In this case, the momenta P carried
by the state lie in the vector space V⊥(g′) and are of the form [48]

P = ãg′ + λ, λ ∈ Λ⊥(g′)∗, (3.14)

where ãg′ is the projection of the vector ag′ into V⊥(g′), and Λ⊥(g′)∗ is the
lattice dual to Λ⊥(g′). If we denote by NL the total level of the left-handed
oscillators and by (�PL, �PR) the left and the right-handed components of the
charge vector as before, the level-matching condition reads

NL − 1 +
1
2
(�P 2

L − �P 2
R) +

1
2

k/2∑
j=1

φj(g′)(1 − φj(g′)) = 0, (3.15)

where the last term on the left-hand side of this equation accounts for the
L̄0 eigenvalue of the ground state of the twisted sector. As before, the
electric charge vector Q = ( �QL, �QR) is given by the projection of P into
V⊥. For a generic CHL compactification of the type described in [26, 27],
all states carrying a given charge Q arises from a single twisted sector since
the projection of ag′ into V⊥ are different for different g′. We shall denote
by g′

Q the twist associated with the charge vector Q. We also denote by
P‖ = (�P‖L, 0) the projection of P into V‖. Then using equation (3.14) and



THE N = 4 SUPERSYMMETRIC STRING THEORY 543

an argument identical to the one that led to equation (3.10), we can show
that �P‖L must have the form:

�P‖L = �K(Q) + �p, �p ∈ Λ1(g′
Q), (3.16)

where

Λ1(g′) = Λ⊥(g′)∗
⋂

V‖, (3.17)

and �K(Q) is some vector in V‖
⋂

V⊥(g′
Q) within the unit cell of the lattice

Λ⊥(g′
Q)∗ ⋂

V‖. Equation (3.15) now takes the form:

NL − 1 +
1
2
(�p + �K(Q))2

+
1
2

k/2∑
j=1

φj(g′
Q)(1 − φj(g′

Q)) = N, N ≡ 1
2
( �Q2

R − �Q2
L). (3.18)

As in the case of untwisted sector states, we want to count the number of
G invariant BPS states d(Q) for a fixed Q in a sector twisted by some fixed
group element g′

Q. Again this is done by taking the trace of
∑

g∈G g over all
states carrying the given electric charge Q and then dividing the answer by
the total number of elements nG of the group. Non-vanishing contribution
to the trace will come from only those �P‖L which are invariant under Rg.
Thus, we must have

�p + �K(Q) ∈ V⊥(g). (3.19)

Let us denote by d(vac)(g′) the degeneracy of the ground state in the sector
twisted by g′—this is the generalization of the number of fixed points for a
symmetric orbifold. We shall label these vacua by the index r running from
1 to d(vac)(g′). Acting on the rth Fock vacuum carrying momentum P , the
group element g produces a phase

eiχr(g′
Q,g)e2πiag ·P , (3.20)

where we have allowed for the possibility that acting on the rth vacuum in
the sector twisted by g′, the action of the group element g may produce a
momentum independent phase eiχr(g′,g). We note, however, that if g is the
identity element, then this phase must be trivial:

eiχr(g′,1) = 1. (3.21)

If we now denote by d(osc)(NL, g′, g) the number of ways we can construct
total oscillator level NL out of the 24 left-moving oscillators in the sector
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twisted by g′, weighted by the action of the group element g on that combi-
nation, and then we may write

d(Q) =
16
nG

d(vac)(g′
Q)∑

r=1

∑
g∈G

eiχr(g′
Q,g)

∞∑
NL=0

d(osc)(NL, g′
Q, g)e2πiag ·Qe−2πi�agL· �K(Q)

×
∑

�p∈Λ1(g′
Q

)

�p+ �K(Q)∈V⊥(g)

e−2πi�agL·�pδ
NL−1+(1/2)(�p+ �K(Q))2+(1/2)

∑k/2
j=1 φj(g′

Q)(1−φj(g′
Q)),N

,

(3.22)

where we have used the fact that for a momentum of the type given in
equation (3.16),

ag · P = ag · Q − agL · (�p + �K(Q)). (3.23)

Note that equation (3.13) can be regarded as a special case of equation (3.22)
by setting g′

Q = 1 in the latter equation. Thus, once we compute d(Q) using
equation (3.22), we do not need to compute equation (3.13) separately.

In order to evaluate the right-hand side of equation (3.22), we shall rewrite
this equation in a slightly different way. We write

d(Q) = F (Q, N), N ≡ 1
2
( �Q2

L − �Q2
R), (3.24)

where

F (Q, N̂)

≡ 16
nG

d(vac)(g′
Q)∑

r=1

∑
g∈G

eiχr(g′
Q,g)

∞∑
NL=0

d(osc)(NL, g′
Q, g)e2πiag ·Qe−2πi�agL· �K(Q)

×
∑

�p∈Λ1(g′
Q

)

�p+ �K(Q)∈V⊥(g)

e−2πi�agL·�pδ
NL−1+(1/2)(�p+ �K(Q))2+(1/2)

∑k/2
j=1 φj(g′

Q)(1−φj(g′
Q)),N̂

.

(3.25)

Note that in equation (3.25), we have regarded N̂ as an independent variable
not related to Q. This allows us to introduce a “partition function:”

F̃ (Q, µ) =
∑
N̂

F (Q, N̂) e−µN̂ , (3.26)
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where the sum over N̂ runs over all values for which F (Q, N̂) is non-zero.
By the left–right level-matching condition, these are of the form6

N̂ = N0 + f(Q), (3.27)

where N0 is an integer and f(Q) is a fixed number between 0 and 1 which
measures the fractional part of N ≡ 1

2Q2. Thus, we also have the reverse
relation:

F (Q, N̂) =
1

2πi

∫ ε+iπ

ε−iπ
F̃ (Q, µ)eµN̂ , (3.28)

where ε is any real positive number. We shall first compute F̃ (Q, µ), and
then use equation (3.28) to compute F (Q, N̂).

Using equations (3.25) and (3.26), we get

F̃ (Q, µ)

=
16
nG

exp

⎛
⎝µ

⎛
⎝1 − 1

2

k/2∑
j=1

φj(g′
Q)(1 − φj(g′

Q))

⎞
⎠

⎞
⎠

d(vac)(g′
Q)∑

r=1

∑
g∈G

eiχr(g′
Q,g)e2πiag ·Qe−2πi�agL· �K(Q)F̃ (osc)(g′

Q, g, µ)F̃ (lat)(Q, g, µ),

(3.29)

where

F̃ (osc)(g′, g, µ) =
∞∑

NL=0

d(osc)(NL, g′, g)e−µNL , (3.30)

and

F̃ (lat)(Q, g, µ) =
∑

�p∈Λ1(g′
Q

)

�p+ �K(Q)∈V⊥(g)

e−2πi�agL·�p exp
(

−1
2
µ(�p + �K(Q))2

)
. (3.31)

In order to compute F̃ (osc)(g′, g, µ), we note that under the action of the
group element g, the oscillator αj

−n+φj(g′) picks up a phase of e2πiφj(g). For
a given group element g′, let us denote by the A(g′) the subset of the k/2

6This follows from the fact that F (Q, ̂N) counts the number of states in the conformal
field theory which carry charge Q, have their right-handed oscillator excitations at the
minimal level allowed by GSO projection, and have (L̄0 − L0) eigenvalue ̂N − 1

2Q2. Since
the requirement of one loop modular invariance forces all states in the CFT to carry integer
L̄0 − L0 eigenvalue, ̂N − 1

2Q2 must be an integer. Note, however, that individual terms
in the sum in equation (3.25) do not satisfy the ̂N − 1

2Q2 =integer condition. Only after
summing over g, which corresponds to projecting onto G invariant states, the unwanted
terms cancel.
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indices j for which the φj(g′) are non-zero and by B(g′) the set complemen-
tary to A(g′) in the set (1, 2, . . . , k/2).7 In this case,

order(Ag′) =
1
2

dim V‖(g
′) ≡ 1

2
kg′ , order(Bg′) =

1
2
(k − kg′). (3.32)

Let us define

τ =
iµ

2π
, q = e−µ = e2πiτ . (3.33)

Then, F̃ (osc)(g′, g, µ) is given by

F̃ (osc)(g′, g, µ)

=

( ∞∏
n=1

1
1 − qn

)24−k ∏
j∈B(g′)

( ∞∏
n=1

1
1 − e2πiφj(g)qn

1
1 − e−2πiφj(g) qn

)

×
∏

j∈A(g′)

( ∞∏
n=1

1
1 − e2πiφj(g) qn−φj(g′)

∞∏
n=0

1
1 − e−2πiφj(g)qn+φj(g′)

)
.

(3.34)

Using the Jacobi ϑ function

ϑ1(z|τ) = 2q1/12η(q) sin(πz)
∞∏

n=1

(1 − qne2πiz)(1 − qne−2πiz), (3.35)

where

η(q) = q1/24
∞∏

n=1

(1 − qn), (3.36)

we can rewrite equation (3.34) as

F̃ (osc)(g′, g, µ) = q (η(q))3k/2−24
∏

j∈B(g′)

2 sin(πφj(g))
ϑ1(φj(g)|τ)

×
∏

j∈A(g′)

eiπ(φj(g)−τφj(g′))

iϑ1(φj(g) − τφj(g′)|τ)
. (3.37)

If some of the φj(g)s for j ∈ Bg′ vanish, then we should replace the corre-
sponding term in the product by its limit as φj(g) → 0:

lim
φj(g)→0

2 sin(πφj(g))
ϑ1(φj(g)|τ)

= (η(q))−3. (3.38)

7Thus, the xjs for j ∈ A(g′) and their complex conjugate coordinates span the vector
space V‖(g′).
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We are interested in the behaviour of F̃ (osc)(g′, g, µ) for small µ, i.e., for
small τ , since we shall see later that up to exponentially suppressed correc-
tions, the contribution to equation (3.28) comes from a small region around
the origin. Using the modular transformation properties of η(τ) and ϑ1(z|τ),
it can be seen that, in this limit, if z remains fixed with 0 ≤ Re(z) ≤ 1

2 ,

η(q) � e−π2/6µ

√
2π

µ
, (3.39)

ϑ1(z|τ) � e−π2/2µe2π2z(1−z)/µ

√
2π

µ
, (3.40)

where � denotes equality up to terms which are suppressed by powers of
e−π2/µ. Using equations (3.37)–(3.40), we see that in the µ → 0 limit the
ratio

F̃ (osc) (g′, g, µ)

F̃ (osc) (g′, 1, µ)
(3.41)

is exponentially small for any g 	= 1 due to the non-vanishing φj(g)’s. As
a result, F̃ (osc)(g′

Q, 1, µ), for which all the φj(g)’s vanish, is exponentially
large compared to all other F̃ (osc)(g′

Q, g, µ) appearing in equation (3.29).
It is easy to see that the F̃ (lat)(Q, g, µ) factor cannot compensate for this
suppression—indeed, from equation (3.31), it follows that F̃ (lat)(Q, 1, µ) is
greater than or equal to F̃ (lat)(Q, g, µ) for any g. Thus, the sum over g in
equation (3.29) can be replaced by a single term corresponding to g = 1 if
we are willing to ignore corrections involving powers of e−π2/µ.

This shows that in order to compute F̃ (Q, µ) up to exponentially sup-
pressed contributions, we only need to evaluate F̃ (osc)(g′

Q, 1, µ) and F̃ (lat)

(Q, 1, µ). This simplifies the analysis enormously since all the φj(g)’s vanish
in equation (3.37), and hence all the terms in the set Bg′ are now replaced
by the right hand side of equation (3.38). Using equation (3.32) this gives

F̃ (osc)(g′, 1, µ) = q (η(q))(3/2)kg′−24
∏

j∈A(g′)

e−iπτφj(g′)

iϑ1(−τφj(g′)|τ)
. (3.42)

In the τ → 0 limit,

ϑ1(−τφj(g′)|τ) � −i

√
2π

µ
e−π2/2µe(µ/2)φj(g′)22 sin(πφj(g′)) (3.43)
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up to exponentially suppressed terms. Equations (3.39), (3.42), and (3.43)
now give

F̃ (osc)(g′, 1, µ) � e4π2/µ exp

⎛
⎝−µ

⎛
⎝1 − 1

2

k/2∑
j=1

φj(g′)(1 − φj(g′))

⎞
⎠

⎞
⎠

×
( µ

2π

)12−(1/2)kg′ ∏
j∈Ag′

1
2 sin(πφj(g′))

. (3.44)

In writing the argument of the exponential in equation (3.44), we have
replaced the sum over j ∈ Ag′ by the sum over all values of j in the range
(1, k/2), since φj(g′) vanishes outside the set Ag′ anyway.

Let us now turn to the analysis of F̃ (lat)(Q, 1, µ). In this case, V⊥(g =
1) = V and the condition �p + �K(Q) ∈ V⊥(g) is trivially satisfied. Thus,
equation (3.31) simplifies to:

F̃ (lat)(Q, 1, µ) =
∑

�p∈Λ1(g′
Q)

exp
(

−1
2
µ(�p + �K(Q))2

)
. (3.45)

The dimension of the lattice Λ1(g′) defined in equation (3.17) is that of
V⊥(g′)

⋂
V‖. This counts the number of directions in the k-dimensional

vector space V‖ which is left invariant under the element g′. Comparing this
with equation (3.32), we see that

dim Λ1(g′) = k − kg′ . (3.46)

With the help of equation (3.46) and Poisson resummation, we may
re-express equation (3.45) as

F̃ (lat)(Q, 1, µ) =
1

vΛ1(g′
Q)

( µ

2π

)(1/2)(kg′
Q

−k)

×
∑

�q∈Λ1(g′
Q)∗

exp
(

−2π2

µ
�q2 + 2πi�q · �K(Q)

)
, (3.47)

where for any lattice Λ, vΛ denotes the volume of the unit cell of the lattice
Λ and Λ∗ denotes its dual lattice. Thus, up to exponentially suppressed
contribution, we have

F̃ (lat)(Q, 1, µ) � 1
vΛ1(g′

Q)

( µ

2π

)(1/2)(kg′
Q

−k)
. (3.48)
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Finally, we need the value of d(vac)(g′)—the degeneracy of the ground
state of the sector twisted by g′. This was computed in [48] and is given by

d(vac)(g′) =
1

vΛ⊥(g′)

∏
j∈A(g′)

(2 sin(πφj(g′)). (3.49)

We are now ready to compute F̃ (Q, µ). Restricting the sum over g in
equation (3.29) to only over the identity element, and using equations (3.21),
(3.44), (3.48), and (3.49), we get

F̃ (Q, µ) � 16
d(vac)(g′

Q)
nG

exp

⎛
⎝µ

⎛
⎝1 − 1

2

k/2∑
j=1

φj(g′
Q)(1 − φj(g′

Q))

⎞
⎠

⎞
⎠

× F̃ (osc)(g′
Q, 1, µ)F̃ (lat)(Q, 1, µ)

� 16
nGvΛ1(g′

Q)vΛ⊥(g′
Q)

e4π2/µ
( µ

2π

)12−(1/2)k
. (3.50)

From definition (3.4), it follows that V⊥(g′) has an orthogonal decomposition:

V⊥(g′) = V⊥ ⊕ (V⊥(g′)
⋂

V‖). (3.51)

Then, given any lattice Λ ∈ V⊥(g′), we have [49]

vΛ
⋂

V⊥ = vΛvΛ∗ ⋂
V‖ . (3.52)

Choosing Λ = Λ⊥(g′) and using equation (3.17), we now get

vΛ⊥(g′)
⋂

V⊥ = vΛ⊥(g′)vΛ1(g′). (3.53)

However,

Λ⊥(g′)
⋂

V⊥ = Γ
⋂

V⊥(g′)
⋂

V⊥ = Γ
⋂

V⊥ = Λ⊥ (3.54)

is independent of g′. Using equations (3.53) and (3.54), we may now re-
express equation (3.50) as

F̃ (Q, µ) � 16
nGvΛ⊥

e4π2/µ
( µ

2π

)12−(1/2)k
. (3.55)

Note that this expression (including its overall normalization) is independent
of the charge vector Q irrespective of which twisted sector it arises from. In
the specific example of the Z2 orbifold model of [23], this feature can be seen
explicitly in the results of [7].

We can now try to compute F (Q, N̂) using equation (3.28). The choice
of ε in equation (3.28) is arbitrary, but we shall find it convenient to take
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ε = µ0 with µ0 given by the solution of equation (2.17) with N replaced by
N̂ . Thus,

F (Q, N̂) =
1

2πi

∫ µ0+iπ

µ0−iπ
F̃ (Q, µ) eµN̂ . (3.56)

We might at this stage be tempted to replace F̃ (Q, µ) in this expression by
the right-hand side of equation (3.55). However, one needs to exercise a
little more care, since the relation (3.55) holds only in the region of small µ,
while the integration range over µ in equation (3.56) extends over a finite
range. Thus, replacing F̃ (Q, µ) by the right-hand side of equation (3.55) is
possible only if we can argue that the dominant contribution to the integral
in equation (3.56) comes from a small region around the origin. From,
equation (3.55), it follows that µ0 given in equation (2.17), is a saddle point
of the integral in equation (3.56) up to exponentially suppressed corrections.
Since up to power corrections µ0 � 2π/

√
N̂ , the value of the integrand near

this saddle point has a factor of e4π
√

N̂ , with a factor of e2π
√

N̂ coming

from the F̃ (Q, µ0) term and another factor of e2π
√

N̂ coming from the eµ0N̂

term. From the modular properties of F̃ (Q, µ), it follows that there are
additional divergences of the integrand near the points of the form µ =
iν, ν = 2πp/q for integer p, q. Near these points, F̃ (Q, µ) ∼ e4π2cp,q/(µ−iν)

with cp,q < 1 as long as µ is in the range (−iπ, iπ).8 Since the integration
contour has been chosen to have Re(µ) = µ0, the maximum contribution
to the integrand from a singularity at µ = iν comes when the integration
contour passes through the point µ = µ0 + iν, and at this point the integrand

has a factor of order e2π
√

N̂(1+cp,q)+iνN̂ . Since cp,q < 1, these contributions

are exponentially suppressed compared to the contribution ∼ e4π
√

N̂ from
the saddle point at µ0. Thus, we see that up to exponentially suppressed
terms, the contribution to the integral comes from a region close to µ0, and
hence in the integral appearing in equation (3.56), we can replace F̃ (Q, µ) by
the right-hand side of equation (3.55) and change the range of integration to
be from µ0 − ia to µ0 + ia, where a is some small but fixed positive number.
This gives

F (Q, N̂) � 1
2πi

16
nGvΛ⊥

∫ µ0+ia

µ0−ia
dµ e4π2/µ+µN̂

( µ

2π

)12−(1/2)k
. (3.57)

8Due to the µ → µ + 2πi periodicity, at µ � µ0 ± 2πi, we expect to get back a contri-
bution of strength identical to that near µ = µ0, but these points are outside the range of
integration in equation (3.56).
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Using equation (3.24), we now get

d(Q) � 1
2πi

16
nGvΛ⊥

∫ µ0+ia

µ0−ia
dµ e4π2/µ+µN

( µ

2π

)12−(1/2)k
, N ≡ 1

2
( �Q2

R − �Q2
L).

(3.58)

This is in precise agreement with the proposed relation (2.16) provided we
make the identification

e−C0+C =
16

nGvΛ⊥
. (3.59)

By the general arguments outlined in section 2, this also establishes the
relations (2.24) and (2.26) involving the partition functions and the relation
(2.27) involving the entropy.

4 Reinterpretation of the partition function F(µ)

The definition of the partition function eF(µ) corresponds to choosing an
ensemble where we introduce a chemical potential µ conjugate to the com-
bination N = Q2/2. This is somewhat strange since N involves the square
of the charge vector and is not additive. It would seem more natural to
choose an ensemble where we keep some of the charges fixed and sum over
all possible values of the other charges after introducing a chemical poten-
tial conjugate to these charges.9 In this section, we shall show that due to
the Lorentzian signature of the Narain lattice, and the universality of the
expression for d(Q), the partition function eF(µ) can also be reinterpreted
in this way.

Let us consider a fixed vector Q0 in V⊥ in the lattice of physical charges,
and let s0 denote another fixed vector in V⊥ which is also in the lattice of
physical charges, and which furthermore is null. Then, Q0 + ns0 for any
integer n represents a physical charge, and for this state

N =
1
2
(Q0 + ns0)2 =

1
2
(Q0)2 + nQ0 · s0. (4.1)

As long as Q0 · s0 	= 0, we can choose Q0 · s0 to be positive without any loss
of generality. We now introduce an ensemble where we sum over all charges
of the form Q0 + ns0 for fixed Q0 and s0 by introducing a chemical potential

9For example, the ensembles used in [1,7,15] is of this type.
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β conjugate to the variable n:

exp
(
F̂(Q0, s0, β)

)
=

∑
n

d(Q0 + ns0)e−βn. (4.2)

Using equation (4.1), this reduces to

exp
(
F̂(Q0, s0, β)

)
�

∑
n

d(1/2)(Q0)2+nQ0·s0e
−βn, (4.3)

where dN as usual denotes the universal formula for the degeneracy of half-
BPS elementary string states with Q2 = 2N . If Q0 · s0 = p/q for relatively
prime integers p and q, then we express n as jq + l with 0 ≤ l ≤ q − 1, j ∈ Z,
and rewrite the sum over n in equation (4.3) as

exp
(
F̂(Q0, s0, β)

)

�
q−1∑
l=0

∑
j∈Z

d(1/2)(Q0)2+(jq+l)(p/q)e
−β(jq+l)

= e(1/2)βqQ2
0/p

q−1∑
l=0

∑
j∈Z

d(1/2)(Q0)2+l p
q
+jpe

−((1/2)(Q0)2+l p
q
+jp)βq/p

. (4.4)

Using definition (2.19) of F (J)
α (µ) and equation (2.25), this may be rewritten

as10

exp
(
F̂(Q0, s0, β)

)
� e(1/2)βqQ2

0/p
q−1∑
l=0

1
p

exp
(
F (p)

(1/2)(Q0)2+lp/q
(βq/p)

)

� e(1/2)βqQ2
0/p q

p
eF(βq/p)

=
1

Q0 · s0
eβQ2

0/2Q0 · s0 eF(β/Q0·s0). (4.5)

This gives

F̂(Q0, s0, β) � βQ2
0

2Q0 · s0
+ F

(
β

Q0 · s0

)
− ln(Q0 · s0). (4.6)

This gives a simple relation between the partition function eF(µ) that we have
used and the partition function eF̂(Q0,s0,β) defined in equation (4.2). In par-
ticular, if we define Ŝstat(Q0, s0, n) as the Legendre transform of F̂(Q0, s0, β):

Ŝstat(Q0, s0, n) = F̂(Q0, s0, β) + βn,
∂F̂(Q0, s0, β)

∂β
+ n = 0, (4.7)

10If the subscript 1
2 (Q0)2 + l p

q
of F (p) lies outside the range (−1, p − 1), then we need

to bring it within this range by adding appropriate integral multiples of p.
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then equation (4.6) implies that Ŝstat(Q0, s0, n) is related to the statistical
entropy S̃stat(N) defined in equation (2.28) by the simple relation:

Ŝstat(Q0, s0, n) � S̃stat

(
N =

1
2
(Q0)2 + nQ0 · s0

)
− ln(Q0 · s0). (4.8)

Thus, the two entropies are essentially the same up to an additive factor.
This additive factor reflects the difference in step size used in defining the
two ensembles. Using equation (4.8), we can now rewrite the conjectured
relation (2.27) as

Ŝstat(Q0, s0, n) � SBH

(
N =

1
2
(Q0)2 + nQ0 · s0

)
− C0 − ln(Q0 · s0). (4.9)

5 Index or absolute degeneracy?

For N = 4 supersymmetric string theories, one can define an index Ω4 which
vanishes for a non-BPS state but is non-zero for half-BPS states [41], and it
has been suggested that the computation of the black hole entropy by keep-
ing only the corrections to the generalized prepotential and ignoring other
higher derivative corrections might lead to this index rather than the abso-
lute degeneracy [7]. Up to an overall normalization factor, this index counts
the number of short multiplets of the supersymmetry algebra weighted by
(−1)F , where F represents the space-time fermion number of the highest J3
state of the supermultiplet, and J3 is the third component of the angular
momentum of the state. In order to compute this index for fundamental
string states, it is more convenient to express (−1)F as (−1)FL(−1)FR , with
FL and FR denoting the contribution to the space-time fermion number
from the left and the right-handed sector of the world-sheet, respectively.
For any string compactification, if we consider half-BPS states which involve
excitations of the left-handed oscillators on the world-sheet, then each BPS
multiplet can be regarded as a tensor product of a single BPS multiplet
representing the ground state of the right-handed oscillators and an arbi-
trary state involving the left-handed oscillators. (−1)FR for the highest J3
state of such a BPS state is always 1. Thus, the computation of Ω4 involves
computing the trace of (−1)FL over the BPS states.

For heterotic string compactification, the left-moving sector does not con-
tribute to the fermion number. Hence, each BPS state contributes 1 to
Tr(−1)FL , and Ω4 is simply proportional to the absolute number of BPS
states [7]. Thus, in all the formulae we have given in the earlier sections of
this paper, e.g., equation (2.18), we can replace the degeneracy dN by the
index (Ω4)N up to an overall multiplicative factor, and the analysis in the
heterotic string theory cannot distinguish these two prescriptions.
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The situation, however, is different in type II string theory. Let us con-
sider, for example, type II string theory compactified on a torus T 6, and
consider a state for which the right-handed oscillators are in the lowest
L0 eigenvalue state consistent with GSO projection. In this case, at any
given level, there are equal number of states in the left-hand sector with
(−1)FL = 1 and (−1)FL = −1. As a result, the index Ω4 vanishes. This
is encouraging since it is known that for type II superstring theory on a
torus, inclusion of higher derivative corrections to the generalized prepo-
tential does not produce a finite area for the black hole representing the
fundamental type II string. Thus, if in our formulae, we replace the degen-
eracy dN by the index (Ω4)N , then the results agree trivially since the leading
contribution to both side of various formulae vanishes.

This, however, is not the end of the story. Consider, for example, type
IIA string theory on T 4 × S̃1 × S1 and take the quotient of this theory by
a Z2 group that acts as (−1)FL together with a half-shift along S̃1 [50]. In
this case, if we consider an untwisted sector state that carries even unit
of momentum along S̃1, then the (−1)FL for the surviving states must be
1, and as a result, when we evaluate Tr(−1)FL over BPS supermultiplets
of this type, we simply get the total number of BPS states in this sector.
On the other hand, for states carrying odd units of winding along S̃1, the
(−1)FL quantum number must be −1, and as a result, Tr(−1)FL over such
BPS supermultiplets gives an answer that is negative of the total number
of BPS states in that sector. Thus, Ω4 is non-zero for both sectors. Black
hole entropy for this system will continue to vanish, however, due to an
argument of [12] that shows that the leading term in the expression for black
hole entropy has a universal form independent of compactification and hence
vanishing of the entropy of the black hole representing fundamental string
in type II string theory on T 6 automatically implies the vanishing of the
black hole entropy in this new asymmetric orbifold. Thus, we see that there
is a mismatch between Ω4 and eSBH even at the leading order.

The exact interpretation of this discrepancy is not completely clear to
us. We note, however, that unlike the heterotic case, where for a given
charge Q the total number of BPS states and hence also the index Ω4 is a
function of the combination N = Q2/2 only up to exponentially suppressed
terms, here Ω4 can take different values for different charges even if Q2 is the
same for these charges. Up to exponentially suppressed corrections, these
values differ from each other by a − sign. Thus, if we replace dN by (Ω4)N

in equation (2.18), we no longer have a well-defined expression; the result
depends on the representative state that we use to compute (Ω4)N . This
could be the reason why the correspondence between black hole entropy and
Ω4 of BPS states does not hold in this case.
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