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Abstract

We describe quantum symmetries associated with the F4 Dynkin di-
agram. Our study stems from an analysis of the (Ocneanu) modular
splitting equation applied to a partition function which is invariant un-
der a particular congruence subgroup of the modular group.

1 Introduction

Modular invariant partition functions of the affine SU(2) conformal field
theory models have been classified long ago [1]; they follow an ADE clas-
sification. There are three infinite series called An, D2n, D2n+1 and three
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exceptional cases called E6, E7 and E8. The terminology was justified from
the fact that exponents of the corresponding Lie groups appear in the expres-
sion of the corresponding partition functions but, originally, this labelling
using Dynkin diagrams was only a name since the diagram itself was not an
ingredient in the construction. Later, and following in particular the work
of [17], [16], the corresponding field theory models were built directly from
the data associated with the diagrams themselves.

About ten years ago, the occurrence of ADE diagrams in the affine SU(2)
classification was understood in a rather different way. One observation (al-
ready present in reference [17]) is that the vector space spanned by the
vertices of a diagram An possesses an associative and commutative algebra
structure encoded by the diagram itself : this so-called “graph algebra” has
a unit τ0 (the first vertex), one generator τ1 (the next vertex) and multi-
plication of a vertex τp by τ1 is given by the sum of the neighbors of τp.
So, τ1τp = τp−1 + τp+1 when p < n − 1 and τ1τn−1 = τn−2. The structure
constants of this algebra (which can be understood as a quantum version of
the algebra of SU(2) irreps at roots of unity) are positive integers. In some
cases (An, D2n, E6, E8), the vector space spanned by the vertices of a cho-
sen Dynkin diagram of type ADE also enjoys self-fusion, i.e., admits, like
An itself, an associative algebra structure, with structure constants that are
positive integers, together with a multiplication table “related” to the graph
algebra of the corresponding An. Another important observation is that this
vector space is always a module over the graph algebra of An where n+1 is
the Coxeter number of the chosen diagram. For instance the vector spaces
spanned by vertices of the diagrams E6 and D7 are modules over the graph
algebra of A11 (their common Coxeter number is 12). The Ocneanu con-
struction [12] associates with every ADE Dynkin diagram G a special kind
of weak Hopf algebra (or quantum groupoid). This bialgebra B(G) is finite
dimensional and semi-simple for its two associative structures. Existence of
a coproduct on the underlying vector space (and on its dual) allows one to
take tensor producst of irreducible representations (or co-representations)
and decompose them into irreducible components. One obtains in this way
two – usually distinct – algebras of characters. The first, called the fusion
algebra of G, and denoted A(G), can be identified with the graph algebra
of An, where n + 1 is the Coxeter number of G (this number is defined in
a purely combinatorial way, and does not require any reference to the the-
ory of Lie algebras or Coxeter groups). The second algebra of characters
is called the algebra of quantum symmetries and denoted Oc(G); it is an
associative – but not necessarily commutative – algebra with two (usually
distinct) generators. It comes with a particular basis, and the multiplication
of its basis elements by the two generators is encoded by a graph called the
Ocneanu graph of G. The character algebra Oc(G) is a bimodule over A(G)
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with integer structure constants; this bimodule structure is encoded by a
set of “toric matrices” and one of them can be identified with the modular
invariant partition function for a physical system. The others, which are
not modular invariant, can be physically interpreted, in the framework of
Boundary Conformal Field Theory, as partition functions in the presence
of defects, see [18]. Physical applications of this general formalism may be
found in statistical mechanics [15], string theory or quantum gravity, but
this is not the subject of the present paper.

Modular invariance can be investigated either directly, by associating ver-
tices τp of the graph An with explicit functions χp defined on the upper - half
plane (the characters of an affine Kac-Moody algebra), or more simply, by
checking commutation relations between a particular toric matrix and the
two generators S and T of the SL(2, Z) group in a particular representation
(Verlinde-Hurwitz, [11], [21] ). The matrix S, as given by the Verlinde for-
mula, is actually a non-commutative analog of the table of characters for a
finite group and can be obtained directly from the multiplication table of
the graph algebra of An.

The theory that was briefly summarized above can be generalized from
SU(2) to SU(N) and, more generally, to any affine algebra associated with
a chosen Lie group. The familiar simply laced ADE Dynkin diagrams are
associated with the affine SU(2) theory, but more general Coxeter-Dynkin
systems (each system being a collection of diagrams together with their
corresponding quantum groupoids) can be obtained [13]. For instance the
Di Francesco - Zuber diagrams [8], [9] are associated with the SU(3) system.

What notion comes first? The chosen diagram, member of some Coxeter-
Dynkin system? Its corresponding quantum groupoid? Or the associated
modular invariant? The starting point may be a matter of taste... How-
ever, from a practical point of view, it is probably better to start from the
combinatorial data provided by a given modular invariant. Indeed, apart
from SU(2) and, to some extent, SU(3), the Coxeter-Dynkin system itself
is not a priori known, whereas existence of several algorithms, mostly due
to T. Gannon, allows one to explore up to rather high levels the possibly
new modular invariants associated with every choice of an affine Kac-Moody
algebra. The primary data is then a given modular invariant – a sesquilinear
form in the characters of some affine Kac-Moody algebra. From the reso-
lution, over the positive integers, of a particular equation, called “equation
of modular splitting” (more about it later), one can determine first the set
of toric matrices, and then the algebra of quantum symmetries. The associ-
ated Dynkin diagram – an ADE diagram in the case of the SU(2) system
– or, more generally, the particular member of some higher Coxeter-Dynkin
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system becomes an outcome of the construction, not a starting point. The
SU(3) system of diagrams was already essentially determined by [8], [9],
then recovered by A. Ocneanu using the modular splitting technique to-
gether with the known classification of SU(3) modular invariants obtained
by T.Gannon [10]. It was also the route followed by [14] in his classification
of the SU(4) system. In all these examples, starting from a modular invari-
ant partition function, one obtains a diagram that is simply laced (i.e., an
ADE diagram, for the SU(2) system), or is a generalization of what could
be defined as a “simply laced diagram”, for the higher systems.

In the present paper we are only interested in the affine SU(2) system
and we want to start from a partition function which is not modular invari-
ant but which is nevertheless invariant under some particular congruence
subgroup. Our starting point is the so-called “F4 partition function” which
appears as a kind of Z2 orbifold of the E6 modular invariant (its name comes
from the fact that exponents of the Lie group F4 appear in its expression).
After the work of [7], this partition function was discussed in [22]. Our pur-
pose is neither to propose any physical conformal field theory model that
would lead to this expression nor to investigate its analytical properties but
rather to analyze the equation of modular splitting corresponding to this
particular choice of a modular non-invariant expression and see what alge-
braic structure it gives. Starting from this data, we shall determine, in turn,
a set of toric matrices and an algebra of quantum symmetries (described by
an Ocneanu graph). Actually we do not even suppose that we “know” what
the diagram F4 is : it will appear as a subgraph of the graph of quantum
symmetries. We shall not try here to generalize our study to cover other
non-ADE cases of the SU(2) system, and shall not investigate, either, the
non simply laced diagrams belonging to higher systems. Since we want to
focus on the modular splitting technique itself, we shall not try to use or
modify, in this non-simply laced case, the definitions of the product and
coproduct that usually lead to a quantum groupöıd structure, but the fact
that one can solve the equation of modular splitting, define toric matrices
and determine an algebra of quantum symmetries together with two alge-
bras of characters obeying the usual quadratic sum rules is by itself a non
trivial result that suggests further developments.

The algorithms that we use in order to solve the relevant equations and
determine the algebraic quantities of interest have been developed by the
authors, but it may well be that more efficient techniques have been found
by others1 . If so, this information is not available. Although devoted to the
study of a particular member of an unusual class (a non-ADE example), we

1The results presented long ago in [12] or [14], for instance, require the use of analogous
techniques.
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believe that the present paper may be of interest for the reader who wants
to see how the general technique based on the equation of modular splitting
works, since it does not seem to be documented in the literature. Apart from
considerations of computing efficiency, it should not be too hard to adapt
the following analysis to study other cases, simply laced or not, associated
with any Coxeter-Dynkin system2 .

Before ending this introduction, let us stress the fact that the present pa-
per does not require any knowledge of the theory of Lie algebras or quantum
groups (or quantum groupoids). All the algebras used in the following are
associative algebras, not Lie. A sentence like “the algebra An” means actu-
ally “the associative graph algebra corresponding to the diagram An” and
we usually identify a given Dynkin diagram with the vector space spanned
by its vertices.

2 Toric matrices from modular splitting

Invariance of the partition function

For the SU(2) system, there are three modular invariant partition functions
at Coxeter number κ = 12: they are respectively associated with the di-
agrams A11, D7 and E6. The first case (also called “diagonal”) is given
by

ZA11 =
10∑

n=0

|χn|2 .

Modular invariance of this expression can be explicitly checked by perform-
ing the transformations T : τ → τ + 1 and S : τ → −1/τ ; to do that,
one can use explicit expressions for the eleven characters χp of affine SU(2)
at level 10, for instance in terms of theta functions. Another possibility,
which is simpler, is to represent S and T by 11 × 11 matrices, namely

Sij =
√

2
π

sin(π (i+1)(j+1)
κ

), 0 ≤ i, j ≤ κ−2, and Tij = exp[2iπ( (j+1)2

4κ
− 1

8)]δij ,

and check that they commute with the modular matrix M associated with
Z (the relation between the two being of course, Z = χMχ). Commutation
is obvious since M is the diagonal unit matrix 1l11.

The E6 partition function is given by

ZE6 = |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2 .

2See the forthcoming paper [20] where an exceptional simply laced example of the
SU(4) system is studied.
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Its modular invariance can be checked as above but the associated modular
matrix is non-trivial. ZE6 is a sum of three modulus squared “generalized
characters” λ1 = χ0 + χ6, λ2 = χ3 + χ7, and λ3 = χ4 + χ10. M has 12 non
- zero entries equal to 1. This is related to the fact that the Ocneanu graph
has 12 points, three of them being ambichiral. The corresponding algebra
is commutative.

We now turn to F4, which is our object of study, with partition function

ZF4 = |χ0 + χ6|2 + |χ4 + χ10|2 .

The fact that it is not modular invariant is obvious from the modular
transformations of the generalized characters of E6: Under τ → −1/τ ,

λ1 → (1/2)(λ1 + λ2) − (1/
√

2)λ2,

λ2 → (1/
√

2)(λ3 − λ1),

λ3 → (1/2)(λ1 + λ2) + (1/
√

2)λ2.

Under τ → τ + 1, λ1 → e
19iπ

24 λ1, λ2 → e
10iπ

24 λ2, λ3 → e
−5iπ

24 λ3. However,
these relations also show that ZF4 is invariant under the transformations

τ −→ τ + 2 and τ −→ τ
2τ+1 that span a congruence subgroup3 Γ

(2)
0 of

SL(2, Z) at level 2. It is actually easier to show this by checking explicitly
that the modular matrix associated with ZF4 , namely

M =

0
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B

B
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C

C
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C

C

C

C

C

A

commutes with the generators T 2 and ST−2S of Γ
(2)
0 . Notice that the ex-

ponents of the Lie group F4 appear on the diagonal of M , hence the name
chosen for this partition function. From the fact that ZF4 is a sum of two
squares, one expects two ambichiral points in the Ocneanu graph (indeed
it will turn out to be so). M has 8 non - zero entries equal to 1, this
could suggest that the corresponding Ocneanu graph has the same number
of vertices... however, as we shall see, this is not so.

3We do not use the corresponding projective group.
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Toric matrices (definition)

Let m, n, . . . (rather than τm, τn, or χm, χn) denote the vertices of A11 and
x, y, . . . the vertices of the Ocneanu graph Oc to be found. As already
mentioned, Oc should be a bi-module over A11 so that there exist a collection
of 11 × 11 toric matrices Wx,y, with positive integer entries, such that

mx n =
∑

y

(Wx,y)m,n
y.

These are “toric matrices with two twists” (x and y). If o is the number of
vertices in Oc – it will be determined later – the number of such matrices is
of course o2 but many of them may cöıncide. Since A11 and Oc play a dual
role, it is useful to introduce the 112 matrices Vm,n of size o × o by

(Vm,n)x,y = (Wx,y)m,n
.

The algebra of quantum symmetries has a unit, called 0, a particular vertex
of Oc, so that we have also “ matrices with one twist” W0,y and Wx,0.
When the example under study corresponds to a simply laced situation (for
instance the ADE cases of the usual SU(2) system) and if the algebra Oc
is commutative. one shows that Wx,y = Wy,x. However, we are now in a
new situation and should keep our mind open. The resolution of the general
modular splitting equation will, in any case, determine all these quantities.

Equations of modular splitting

The general equation of modular splitting expresses associativity of a bi-
module structure and reads

(mn)x( p q) = (m (n x p) q).

The products (mn) or ( p q) belong to the fusion algebra, i.e., for instance, to
A11, and involve its structure constants defined by mn =

∑
p Np

m,n p. They
are completely symmetric in their three indices. These positive integers are
determined, recursively, by the – truncated – SU(2) algebra of compositions
of spins. For A11 one obtains 11 matrices Nm of size 11× 11, determined by
the equations N1 Nm = Nm−1+Nm+1 , with N0 = 1l11 and N1, the adjacency
matrix of the diagram A11. One obtains in particular, N1 N10 = N9 since
N11 vanishes. Of course Np

m,n = (Nm)p n. Using toric matrices, the general
modular splitting equation reads therefore

∑

m′′,n′′

(Nm′′)m′,m (Nn′′)n′,n (Wx,y)m′′n′′ =
∑

z

(Wx,z)mn
(Wz,y)m′n′
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This general equation, valid for any simply laced graph belonging to a
Coxeter-Dynkin system, together with its proof and interpretation, in terms
of associativity of a bi-module structure, was obtained in the thesis [19];
it generalizes the “modular splitting equation” described in [14]. The later
can be obtained from the former by setting x = y = 0, so that its left hand
side involves only known quantities, namely the matrix M = W0,0 associated
with the given graph (in the simply laced cases, it is the modular invariant),
and the fusion coefficients. It reads

∑

m′′,n′′

(Nm′′)m′,m (Nn′′)n′,n Mm′′n′′ =
∑

z

(Wz,0)m′n′ (W0,z)mn

or, in terms of tensor products,
∑

mn

Nm ⊗ Nn Mm,n =
∑

z∈Oc

τ ◦ (Wz,0 ⊗ W0,z).

Here τ denotes a tensorial flip (compare explicit indices in the two previous
equations). The left and side – call it K – is therefore a known matrix
of size 121 × 121 (in this case), with positive integer entries, and the right
hand side involves a set of toric matrices (with one twist), to be determined.
Each term of this right hand side should be a matrix of rank 1 with positive
integer coefficients. Only one member of this family is a priori known,
namely M = W0,0 which is our initial data. The indexing set on the right
hand side of the modular splitting equation defines the set of vertices of
the Ocneanu graph. The problem at hand is analogous to those related
with convex decompositions in abelian monöıds. In the simply laced cases
(where Wx,0 = W0,x for all x), each term appearing on the right hand side
is a tensor square composed with the flip. In the non simply laced case, as
we shall see, the situation is slightly more complicated. Notice that, in any
case, calling “toric vectors” wx,y the line-vectors obtained by “flattening”
the toric matrices Wx,y (i.e., (wx,y)k = Wx,y[p, q] with k = ((p − 1) × 11) + q ),
one can write the modular splitting equation as follows: K =

∑
z Kz where

each matrix Kz – of size 121× 121 with positive integral entries – should be
of rank 1, and its k-th line is equal to

Kz[k] = (wz,0)k wz,0.

Resolution of the equations

The algorithm used to solve this set of equations (over the positive integers)
is slightly different for the known simply-laced case and for the example that
we study in this paper. Let us first summarize what we would do in the usual
situation and call n the total number of vertices of the corresponding fusion
graph.
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The simply laced case

• The first line of K – a line vector with n2 components – is just the
“flattened” invariant matrix M .

• One does not assume that Wx,y is equal to Wy,x but takes nevertheless
Wx

.
= Wx,0 = W0,x.

• The rank r(K) of K can be calculated. This tells us that the dimension
of the vector space spanned by the n2 lines of K can be expanded on
a set of r(K) basis vectors wx = wx,0 (the toric vectors). Once a
toric vector w is found, the corresponding toric matrix is obtained by
partitioning its entries into n lines of length n.

• The problem is to determine whether a given line of K is a toric vector
or if it is a positive integral linear combination of such vectors, and
in that later case, one has to find the number of such terms in the
sum. We choose the (non canonical) scalar product for which the
basis of toric vectors is orthonormal; for every line of K we write
K[p] =

∑
x a(x)wx and the norm square of the vector K[p] is therefore∑

a(x)2. The fundamental observation is that this number (call it ℓ[p])
is equal to the diagonal matrix element K[p, p].

• Since K is known, we first consider the list of values of p for which
K[p, p] = 1. Since several line vectors K[p] and K[p′] may cöıncide for
distinct values of p, p′, we actually build a restricted list. For p in this
list, every line vector K[p] is then automatically a toric vector.

• We next consider the list (actually a restricted list, as above) of values
of p for which K[p, p] = 2. The corresponding line vectors K[p] should
be the sum of two toric vectors, and there are three cases. Either K[p]
is the sum of two already determined toric vectors, or it is the sum of
an already determined toric vector and a new one, else it is equal to
twice a new toric vector. For every value of p belonging to the new
restricted list, it is enough to calculate the set of differences K[p]−wx

were wx runs in the set of the already determined toric vectors, and
impose that all the components of such differences should be positive
integers.

• The next step is to consider the set of values of p for which K[p, p] = 3,
etc. and generalize the previous discussion in an straightforward way.
The process stops, ultimately, since the rank of the system is finite.
At the end, we obtain a set of r(K) toric vectors which are either lines
of K of linear combinations of lines of K.

• The integer r(K) may be strictly smaller than the number o of vertices
of the Ocneanu graph. This happens when distinct quantum symme-
tries x are associated with the same toric matrix Wx. This is for
example the case of the graph D4 where the rank is 5 but where o = 8.
A method to determine such multiplicities is to plug the results for wx
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(actually for the matrices Wx) back into the modular splitting equa-
tion. If there are no multiplicities, this equation is readily checked. If
it does not hold, one has to introduce appropriate multiplicities in the
right hand side (introduce unknown coefficients and solve). In the case
of E6, the rank is 12, the final list of toric vectors is obtained from lines
1, 2, 3, 10, 11, 12, 13, 14, 21, 22, 23, 4− 10 of K, the last one being equal
to a difference of two lines4 , and the modular splitting equation holds
“on the nose”, so o = 12 also. In the case of D4, the rank is 5, the
list of toric vectors is K[1], K[2], K[6], K[3]/2, K[7]/3 but the modular
splitting equation holds only by introducing multiplicities 2 and 3 for
the last two5 , the number of quantum symmetries o is therefore 8.

The case of F4 (non simply laced)

• As usual, the first line K[1] of K – a line vector with 121 components
– is just the “flattened” invariant matrix M .

• The rank of K is 20. We present the results according to the decompo-
sition number ℓ[p] relative to the line vector K[p] of K, with p running
from 1 to 121. The twenty toric vectors can be taken as follows.

ℓ[p] = 1w[p] = K[p] with p = 1, 2, 3, 10, 11, 12, 13, 14, 21, 22, 23, 24

ℓ[p] = 2w[4] = K[4] − w[10] = K[4] − K[10]

w[15] = K[15] − w[21] = K[15] − K[21]

w[25] = K[25]/2, w[34] = K[34] − w[22] = K[34] − K[22]

w[35] = K[35] − w[21] = K[35] − K[21]

ℓ[p] = 3w[26] = (K[26] − w[24])/2 = (K[26] − K[24])/2

w[36] = (K[36] − w[14])/2 = (K[36] − K[14])/2

ℓ[p] = 5w[37] = (K[37] − w[13] − w[15] − w[35])/2

= K[37] − K[13] − K[15] + 2K[21] − K[35])/2.

• We re - label the toric vectors in such a way that the index x of wx

runs from 0 to 19.

w0 = w[1], w1 = w[2], w2 = w[3], w3 = w[4], w4 = w[10],
w5 = w[11], w6 = w[12], w7 = w[13], w8 = w[14], w9 = w[15],
w10 = w[21], w11 = w[22], w12 = w[23], w13 = w[24], w14 = w[25],
w15 = w[26], w16 = w[34], w17 = w[35], w18 = w[36], w19 = w[37].

4Using the notations of [2] or [3], these toric vectors correspond respectively to
W00, W01, W02, W05, W40, W10, W11, W21, W51, W50, W20, W30.

5Using the notations of [12] or [3], they correspond respectively to W0, W1ǫ, W1, W2 =
W ′

2, Wǫ = W2ǫ = W ′
2ǫ.
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There is a one to one correspondence between toric matrices Wx,0 and
the previously determined toric vectors wx which have 121 compo-
nents: just partition them into 11 lines of 11 elements. At a later
stage we shall write the generators Ox of the algebra Oc in terms of
tensor products, for this reason, the following distinct notations ap-

pear in this paper: Wx = Wx,0 = Wab′ whenever Ox = a
·
⊗ b. We hope

that no confusion should arise between the notations Wab′ and Wx,y.

Explicitly the twenty toric matrices Wx are as follows.
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W19 =
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. . . 1 . 1 . . . 1 .
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W3 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

. . . 1 . . . 1 . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . 1 . . . 1 . . .

. . . . . . . . . . .

. . . 1 . . . 1 . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .
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. . . . . . . . . . .

. . . 1 . . . 1 . . .

. . . . . . . . . . .

. . . 1 . . . 1 . . .

. . . . . . . . . . .

. . . 1 . . . 1 . . .

. . . . . . . . . . .
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We have moreover the following identifications

W6 = (W1)
T ; W12 = (W2)

T ; W16 = (W3)
T ; W11 = (W4)

T

W13 = (W8)
T W17 = (W9)

T W18 = (W15)
T

Notice that W0, W5, W7, W10, W14, W19 are symmetric (self-dual). Among
them, two will be called “ambichiral”, namely W0 and W5 for the reason that
they correspond to the ambichiral generators of the algebra Oc (intersection
of the two chiral sub-algebras).

As expected from the presence of the 1/2 coefficients in the list giving
the vectors w[p], the modular splitting equation does not hold if we im-
pose Wx,0 = W0,x and sum only on the corresponding 20 terms on the right
hand side. One possibility is two introduce a multiplicity two for entries
w14 = w[25], w15 = w[26], w18 = w[36], w19 = w[37]; this indeed works, in
the sense that the modular splitting equation is then satisfied. With such a
choice, the number of quantum symmetries would be o = 24, rather than 20.
However, the algebra of quantum symmetries later determined by this choice
incorporates several arbitrary coefficients that cannot be fixed by require-
ments of positivity and integrality alone. Since we are in “Terra Incognita”
(namely quantum symmetries of non simply laced diagrams), we prefer to
explore another possibility, which also allows us to solve the modular split-
ting equation and leads to a nice algebra of quantum symmetries (and, as
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we shall see, to the emergence of the diagram F4). Our choice is to keep only
the previously determined 20 terms, no more, but without imposing equal-
ity of Wx,0 and W0,x. This choice is natural in view of the fact that these
matrices actually “count” a number of essential paths between the origin 0
and x on the Ocneanu graph itself, and the fact that in the present case,
the graph is not symmetric (all edges are not bi-oriented). In general, the
solution to the modular splitting equation, for a given invariant matrix M is
not necessarily unique, although some later considerations may impose extra
conditions that, ultimately, lead to rejection of one or another solution. At
the moment, we investigate one solution (which is both minimal in terms of
number of quantum symmetries and natural from the path interpretation
point of view) and explore the consequences.

In order for the modular splitting equation to be satisfied, we therefore
take W0,x = 2Wx,0 when x = 14, 15, 18, 19 and W0,x = Wx,0 for the others.
As we shall see, this corresponds to the fact that the F4 diagram contains
an oriented edge.

3 Quantum symmetries and Ocneanu graph

Determination of the two chiral generators O1 and O′
1

Call K0 the rectangular matrix (121 × 20) obtained by decomposing each
line vectors of K on the (flattened) toric matrices. For instance the fourth
line K[4] of K is equal to w[4] + w[5], so its components are

(0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Call L0 the rectangular matrix obtained by transposing the matrix (20×121)
obtained by flattening each component of the column vector (twenty lines)
containing the toric matrices.

When Wx,0 = W0,x it is easy to see that K0 = L0 but this is not so in the
present case.

If E0 denotes the essential matrix (also called “intertwiner”) associated
with the origin of an ADE diagram (for the SU(2) system or higher gener-
alizations), and if G1 denotes the corresponding adjacency matrix, it is so
that E1

.
= N1 . E0 = E0 . G1 where N1 is the generator of the fusion alge-

bra (adjacency matrix of the appropriate An diagram). E1 cöıncides with
the essential matrix associated with the next vertex (after the origin) and
describes essential paths emanating from it.
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We have the following analogy: K0 (or L0) play the same role as E0, but
now G1 should be replaced by one of the two generators of the algebra of
quantum symmetries, and N1 should be replaced by N0 ⊗N1 (so we replace
the fusion algebra by its tensor square). In other words, we determine the
generator O1 by solving the intertwining equation

N0 ⊗ N1 . K0 = K0 . O1

The other chiral generator O′
1 is determined by solving the same equation,

but replacing N0 ⊗ N1 by N1 ⊗ N0. At this level it is interesting to recall
that, in this analogy between the vector space of a diagram and its algebra
of quantum symmetries, the fusion algebra should be replaced by its tensor
square, and the role of fused adjacency matrices (the Fab matrices of refer-
ences [3] that represent the action of An on a given diagram) is played by
the toric matrices themselves.

In the present situation (non simply laced), we could hesitate between
L0 and K0, but the choice actually does not matter : it turns out that this
arbitrariness corresponds to the arbitrariness in the association between the
asymmetric F4 graph and a particular adjacency matrix or its transpose.

In general, after having solved the modular splitting equation (and there
is no necessarily uniqueness of the solution), we have to solve a generalized
intertwining identity (the one just given) in order to find the two chiral gen-
erators. Notice that the solution could be non unique, even after imposing
integrality and positivity, but in the present case the solution is unique and
we list6 below the two matrices O1 and O′

1, of dimension 20 × 20, which
solve these equations.

O1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

. 1 . . . . . . . . . . . . . . . . . .

1 . 1 . . . . . . . . . . . . . . . . .

. 1 . 1 1 . . . . . . . . . . . . . . .

. . 1 . . . . . . . . . . . . . . . . .

. . 1 . . 1 . . . . . . . . . . . . . .

. . . . 1 . . . . . . . . . . . . . . .

. . . . . . . 1 . . . . . . . . . . . .

. . . . . . 1 . 1 . . . . . . . . . . .

. . . . . . . 1 . 1 1 . . . . . . . . .

. . . . . . . . 1 . . . . . . . . . . .

. . . . . . . . 1 . . 1 . . . . . . . .

. . . . . . . . . . 1 . . . . . . . . .

. . . . . . . . . . . . . 1 . . . . . .

. . . . . . . . . . . . 1 . 2 . . . . .

. . . . . . . . . . . . . 1 . 1 . . . .

. . . . . . . . . . . . . . 1 . . . . .

. . . . . . . . . . . . . . . . . 1 . .

. . . . . . . . . . . . . . . . 1 . 2 .

. . . . . . . . . . . . . . . . . 1 . 1

. . . . . . . . . . . . . . . . . . 1 .

1
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

6The reader already recognizes, from the structure of O1, two subdiagrams of type E6

and two others of type F4.
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O
′

1
=
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. . . . 1 . . . . . . . . 1 . . . . . .
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Now that we have obtained the two algebraic generators, the algebra Oc
that they span is determined as well (take linear combinations of powers and
products). However we shall exhibit a particular basis of linear generators.
To find them, one possibility is to first determine the set of matrices Vm,n

that describe, in a dual way, the full set of toric matrices Wx,y with two
twists.

Determination of the toric matrices with two twists

The Vm,n are obtained by solving the general intertwining equation (notice
that O1 = V0,1 and O′

1 = V1,0).

Nm ⊗ Nn . K0 = K0 . Vm,n.

The solution is unique. Of course, we shall not list these 112 square matrices
of dimension 12 × 12 and we shall not give, either, the list of toric matrices
with two twists, but remember that they are determined by the relation

(Wx,y)m,n
= (Vm,n)

x,y
.

One can then check that the generalized equation of modular splitting (the
one that involves the Wx,y rather than the Wx,0) is satisfied.

Determination of the linear generators Ox of Oc

The structure constants Oxyz are defined by the equations

Wy,x =
∑

z

Oxyz Wz
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where Wz = Wz,0. Notice that, in the present case, Oxyz = Ozyx but
Oxyz 6= Oyxz in general. Matrices Ox are defined by their coefficients as
follows : (Ox)yz = Oxyz. We have

Ox Oy =
∑

z

Oxzy Oz

and any two generators Ox and Oy commute, because of the symmetry
properties of the structure constants.

One could be tempted to consider the (non-commutative) family of ma-
trices Zy defined by the equation (Zy)xz = Oxyz but one can see that this
family is not multiplicatively closed; moreover Z0 does not even cöıncide
with the identity matrix, since it has diagonal coefficients equal to 2 in
positions x = 14, 15, 18, 19.

When the Ocneanu diagram possesses geometric symmetries, for instance
in the case of the D diagrams, it may be that the general solution involve
parameters that should be fixed by imposing positivity and integrality, and
that one solution is only determined up to a discrete transformation reflect-
ing the classical symmetries (this amounts to re-label the vertices x). In
the present case, however, everything is perfectly determined and we obtain
the twenty generators of the Ocneanu diagram – They are 20× 20 matrices.
Rather than giving this list explicitly (it would be typographically heavy !),
we shall express them in terms of the already known and explicitly given
chiral generators O1 and O′

1. Call O0 the unit matrix 1l20.

O0 O6 = O
′

1
O12 = O6.O

′

1
− O0 O16 = O12.O

′

1
− O6 − O11

O1 O7 = O1 · O
′

1
↓ ↓

O2 = O
2

1
− O0 O8 = O2 · O

′

1
O13 = O12 · O1 O17 = O16 · O1

O5 = O
4

1
− 4O

2

1
+ 2O0 O9 = O3 · O

′

1
O14 = O13 · O1 − O12 O18 = O17 · O1 − O16

O4 = O1 · O5 O10 = O4 · O
′

1
O15 = O14 · O1 − 2O13 O19 = O18 · O1 − 2O17

O3 = O2.O1 − O4 − O1 O11 = O5 · O
′

1
O14 = O15 · O1(check) O18 = O19 · O1(check)

The full multiplication table (that we don’t display because it is 20× 20)
defines a 20 dimensional algebra Oc with linear generators Ox, with x ∈
{0, 1, 2, 3, . . . 18, 19}. It is generated, as an algebra, by the two matrices as-
sociated with vertices 1 and 6 (called chiral generators). We call it “algebra
of quantum symmetries of F4”. Multiplication of any single linear generator
Ox by the two chiral ones is encoded by a graph: the Ocneanu graph of F4.
It will be described later.
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The Ocneanu algebra as a the tensor square of a graph algebra

For all simply laced diagrams belonging to the SU(2) system or to an higher
system, the algebra of quantum symmetries turns out to be related, in one
way or another, to the tensor square of some graph algebra. For instance
Oc(E6) is the tensor square of the graph algebra of E6 taken above the
graph subalgebra generated by the ambichiral vertices 0, 4, 3. We remind
the reader that E6 admits self - fusion, with graph algebra given by the
following table.

t t t t t

t

0 1 2 5 4

3

∗ 0 3 4 1 2 5

0 0 3 4 1 2 5
3 3 0 + 4 3 2 1 + 5 2
4 4 3 0 5 2 1
1 1 2 5 0 + 2 1 + 3 + 5 2 + 4
2 2 1 + 5 2 1 + 3 + 5 0 + 2 + 2 + 4 1 + 3 + 5
5 5 2 1 2 + 4 1 + 3 + 5 0 + 2

It is natural to try to realize Oc(F4), that we obtained by solving the
modular splitting equation, directly in terms of some analogous algebraic
construction. ¿From the fact that F4 is an orbifold of E6, it is easy to make
an educated guess, and, by calculating the corresponding multiplication ta-

ble, check that it is indeed correct. We claim that Oc(F4) = E6

·
⊗ E6 where

·
⊗ denotes the tensor product taken, not above the complex numbers but
above the subalgebra J generated by vertices 0 and 4 of E6. In other words,
we identify a ∗ u ⊗ b and a ⊗ u ∗ b as soon as u ∈ J .

The twenty generators of Oc(F4) are realized as follows.
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0 = 0
·

⊗ 0 = 4
·

⊗ 4 = 0

1 = 1
·

⊗ 0 = 5
·

⊗ 4 = 1 6 = 0
·

⊗ 1 = 4
·

⊗ 5 = 1′

2 = 2
·

⊗ 0 = 2
·

⊗ 4 = 2 12 = 0
·

⊗ 2 = 4
·

⊗ 2 = 2′

3 = 3
·

⊗ 0 = 3
·

⊗ 4 = 3 16 = 0
·

⊗ 3 = 4
·

⊗ 3 = 3′

4 = 5
·

⊗ 0 = 1
·

⊗ 4 = 5 11 = 0
·

⊗ 5 = 4
·

⊗ 1 = 5′

5 = 4
·

⊗ 0 = 0
·

⊗ 4 = 4

7 = 1
·

⊗ 1 = 5
·

⊗ 5 = 11′

10 = 5
·

⊗ 1 = 1
·

⊗ 5 = 15′

8 = 2
·

⊗ 1 = 2
·

⊗ 5 = 21′ 13 = 1
·

⊗ 2 = 5
·

⊗ 2 = 12′

14 = 2
·

⊗ 2 = 22′

9 = 3
·

⊗ 1 = 3
·

⊗ 5 = 31′ 17 = 1
·

⊗ 3 = 5
·

⊗ 3 = 13′

15 = 3
·

⊗ 2 = 32′ 18 = 2
·

⊗ 3 = 23′

19 = 3
·

⊗ 3 = 33′

Labels on the left correspond to the original notation {0, 1, 2 . . . 19} that
we have been using before, while underlined labels on the right refer to
tensor products of E6 vertices (as defined7 by the above E6 diagram, like in
[12], [2] or [19]). Because of this labeling convention, notice that 4 = 5 and
5 = 4. Using the above realization, one recovers the multiplication table of
quantum symmetries. For instance, 21′ × 23′ = (22′)2 + (2′)2. Indeed,

8 × 18 = (2
·
⊗ 1) × (2

·
⊗ 3) = (2 ∗ 2)

·
⊗ (1 ∗ 3) = (0 + 2 + 2 + 5)

·
⊗ (2)

= (0 ⊗ 2)2 + (2 ⊗ 2)2 = 12 + 12 + 14 + 14

We therefore recover the matrix product equality O8 × O18 = 2O12 + 2O14.

The Ocneanu graph

Using E6

·
⊗ E6 notation for the vertices, the F4 Ocneanu graph is given as

follows:

7Warning: There are several conventions in the literature.
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2 2’

3 3’

11’

21’ 12’

31’ 13’

32’ 23’

33’

22’

0

1 1’

5 5’

4=4’

15’=51’

It is the Cayley graph of multiplication of the linear generators of Oc by
the two generators O1 and O′

1, called the chiral generators. It is the union
of two distinct graphs called left and right graphs, involving the same set
of vertices. They are drawn in two different colors (or solid and dashed
lines). One can obtain one graph from the other by performing a symmetry
with respect to the vertical axis. The six vertices that belong to this axis of
symmetry are the self-dual points.

The subalgebra generated by the unit and the left chiral generator 1
is the left chiral subalgebra. It is spanned by vertices {0, 1, 2, 5, 4, 3} and
corresponds to the connected component of the identity of the left chiral
graph. The subalgebra generated by the unit and the right chiral generator
1′ is the right chiral subalgebra. It is spanned by vertices {0, 1′, 2′, 5′, 4′, 3′}
and corresponds to the connected component of the identity of the right
chiral graph. The intersection of these two subalgebras is spanned by the
set of ambichiral points, namely the two-element set {0, 4}. These points
are self-dual.

Because of these symmetry considerations, we discuss only the left graph.
It is itself given by the union of four disjoint connected graphs, two of type
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E6, that we call respectively E = E6[1] (the left chiral subalgebra) and e =
E6[2] (span of 1′, 11′, 21′, 51′, 5′, 31′), and two of type F4, that we call F =
F4[1] (span of 32′, 22′, 12′, 2′) and f = F4[2] (span of 33′, 23′, 13′, 3′). The
description of the right graph is similar. Notice that F4 Dynkin diagrams
emerge from our resolution of the equations of modular splitting.

The first E6 (left) subgraph called E describes the subalgebra generated
by O1. The other E6 (left) subgraph called e is not a subalgebra of Oc but
a module over E. The two subgraphs of type F4 called F and f are also
modules over E, but their properties are very different. Writing the full
multiplication table would be too long, but the interested reader can easily
do it, either using 20×20 matrices, or, more simply, using the multiplication
table of the graph algebra of E6 together with the realization of generators
of Oc(F4) in terms of tensor products (see previous section). We have the
following relations between the different subspaces:

× E e F f

E E e F f
e e E + F e + f F
F F e + f E + F e
f f F e E

4 Actions, coactions and sum rules

As written in the introduction, the Ocneanu quantum groupoid associated
with a simply laced diagram G (with r vertices) belonging to the SU(2)
system, or to an higher system, possesses two – usually distinct – algebras
of characters. The first, called the fusion algebra of G, and denoted A(G),
can be identified with the graph algebra of the graph An (for a proper
choice of n). The second algebra of characters, called the algebra of quan-
tum symmetries, is denoted Oc(G). The fusion algebra A(G) = An acts on
the vector space spanned by the vertices of the graph G, and this action is
explicitly described by the so-called “fused adjacency matrices” Fp. These
matrices have therefore the same commutation relations as the fusion ma-
trices Np (the generators of An) but their size is smaller since it is r × r,
where r is the number of vertices of G. In the same way, but at the dual
level (coaction), the algebra of quantum symmetries Oc(G) acts on G and
this is described by the so-called “quantum symmetry fused matrices” Σx

of G. These matrices have therefore the same commutation relations as the
quantum symmetry matrices Ox (the generators of Oc(G)) but their size is
smaller since it is again r × r. See [2], [3] for explicit expressions of these
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matrices in various ADE cases. In the simply laced situation, there is a gen-
eral theory [12] (see also [6], [18]) that tells us how to build first, a product
law – composition – defined as composition of graded endomorphisms of
essential paths (“horizontal paths”) on the given graph, then a co-product
law – associated, via the choice of a scalar product, to convolution – by
using the composition of endomorphisms of the so - called “vertical paths”.
However, to our knowledge, for a non simply-laced diagram like the one we
study here, the general theory is not known. Our purpose, in this section, is
therefore very modest, in the sense that we shall only mimic what we would
have done in the simply laced situation, and describe what we find. This is
admittedly rather naive, since when counting dimensions, for instance, we
take the oriented double line of the F4 diagram (between vertices a2 and a1)
as a pair of two essential paths of length one, and this is maybe not what
should be done.

Fused matrices Fp relative to the fusion generators Np of A11

We first consider the action of A11 implemented by matrices Fp, to be found.
The simplest determination stems from the fact that A11 is a truncated
version of the algebra of characters of SU(2), so that the Fp’s are obtained
from the usual recurrence formula (composition of spins) FpF1 = Fp−1 +
Fp+1, and the seed: F0 = 1l4 and F1 is equal to the adjacency matrix G1 of
the graph F4. This recurrence relation has a period (2 × 12) and one can
check that F10F1 = F9 since F11 vanishes. For 12 ≤ p ≤ 23, Fp+12 = −Fp

but we are only interested here in the positive part. Notice that F1 is not
symmetric, since the graph F4 itself, with vertices a0, a1, a2, a3, is not8

(two oriented edges between vertices a2 and a1 but only one oriented edge
between a1 and a2). We obtain the following 11 matrices and check that
(FpFq) ai = Fp (Fq ai), as it should.

F0 F1 F2

0

B

@

1 . . .

. 1 . .

. . 1 .

. . . 1

1

C

A

0

B

@

. 1 . .

1 . 2 .

. 1 . 1

. . 1 .

1

C

A

0

B

@

. . 2 .

. 2 . 2
1 . 2 .

. 1 . .

1

C

A

F3 F4 F5

0

B

@

. 1 . 2
1 . 4 .

. 2 . 1
1 . 1 .

1

C

A

0

B

@

1 . 2 .

. 3 . 2
1 . 3 .

. 1 . 1

1

C

A

0

B

@

. 2 . .

2 . 4 .

. 2 . 2

. . 2 .

1

C

A

and Fp = F10−p for p = 6, . . . , 10. From the fused adjacency matrices
Fp we can obtain four essential matrices Ea that are rectangular 4 × 11

8The reader may check that C = 21l − G1 is the usual Cartan matrix of F4
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matrices defined by (Ea)b,n = (Fn)a,b. The F ’s and the E’s determine the
induction/restriction rules between the graphs A11 and F4.

Fused matrices Σx relative to the quantum symmetry generators
Ox of Oc

We now turn to the determination of matrices Σx. We shall present two
methods. The most direct uses the fact that these matrices provide a 4 × 4
realization of Oc. It is enough to define Σ0 = 1l4, to set Σ1 = Σ6 equal
to the adjacency matrix of the F4 diagram and use the same relations that
determine all matrices Ox from O0, O1 and O6 (equivalently, solve the system
of equations ΣxΣy = Oxzy Σz with given structure constants Oxyz).

Another method uses our realization of Oc(F4) as a fibered tensor prod-

uct E6

·
⊗ E6. Remember that the (left, for instance) graph of quantum

symmetries is a union of four graphs E, e, F, f , two of type E6, two of type
F4, so that any single connected component describes a module action over
the subalgebra associated with the first subgraph (E). In this way we obtain
four sets of matrices: sE

u (of dimension 6 × 6), se
u (of dimension 6 × 6), sF

u

(of dimension 4 × 4), and sf
u (of dimension 4 × 4). In all cases, u runs from

0 to 5, so that these are six-elements sets. The elements of the first set
sE cöıncide with the already known generators of the graph algebra of E6.
What we have to use in this section is the second module9 of type F4 (called
f) and the matrices sf that express the action E × f ⊂ f . Remember also
that we have f × f ⊂ E. These matrices are as follows:

s
f
0

s
f
1

s
f
3

s
f
3

0

B

@

1 . . .

. 1 . .

. . 1 .

. . . 1

1

C

A

0

B

@

. 1 . .

1 . 2 .

. 1 . 1

. . 1 .

1

C

A

0

B

@

. . 2 .

. 2 . 2
1 . 2 .

. 1 . .

1

C

A

0

B

@

. . . 2

. . 2 .

. 1 . .

1 . . .

1

C

A

and sf
4 = sf

1 , sf
5 = sf

0 . From the expressions giving the linear generators
of Oc as tensor products of E6 vertices, we obtain Σx = sa.sb, whenever

x = a
·
⊗ b.

9In this respect the situation is similar to the analysis of E7, which appears as a
subgraph of its own algebra of quantum symmetries and as a module over the graph
algebra of D10, itself a subalgebra of Oc(E7).
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The two methods give the same result and we obtain the following 20
matrices:

Σ0 Σ1 Σ2

0

B

@

1 . . .

. 1 . .

. . 1 .

. . . 1

1

C

A

0

B

@

. 1 . .

1 . 2 .

. 1 . 1

. . 1 .

1

C

A

0

B

@

. . 2 .

. 2 . 2
1 . 2 .

. 1 . .

1

C

A

Σ3 Σ7 Σ8
0

B

@

. . . 2

. . 2 .

. 1 . .

1 . . .

1

C

A

0

B

@

1 . 2 .

. 3 . 2
1 . 3 .

. 1 . 1

1

C

A

0

B

@

. 2 . 2
2 . 6 .

. 3 . 2
1 . 2 .

1

C

A

and Σ5 = Σ19/2 = Σ0, Σ4 = Σ6 = Σ11 = Σ15/2 = Σ18/2 = Σ1, Σ9 =
Σ12 = Σ17 = Σ2, Σ16 = Σ3, Σ10 = Σ14/2 = Σ7, Σ13 = Σ8. Notice that
Σ14, Σ15, Σ18, Σ19, as matrices over positive integers, can be divided by 2.

As another check of the correctness of the previous calculation, there ex-
ists a relation that holds between matrices Fp and matrices Σx. It could ac-
tually be used to determine the former from the later, although this method
would be more complicated than the one we followed. This relation reads:
Fn =

∑
y(W0,y)n,0 Σy and stems from the compatibility between actions of

A11 and Oc on the diagram F4 and the fact that the unit 0 of Oc indeed
acts trivially.

Sum rules

• Quadratic sum rule. Being both semi-simple and co-semi-simple, the
following quadratic sum rule holds for the Ocneanu quantum groupoid
associated with a simply laced diagram:

∑
p d2

p =
∑

x d2
x, where dp =∑

a,b(Fp)a,b gives the dimensions of the simple blocks for the first alge-

bra structure, and dx =
∑

a,b(Σx)a,b gives the dimensions of the simple

blocks for the second algebra structure (actually the algebra structure
defined on the dual). If we take G = E6 for instance, we get

dp = {6, 10, 14, 18, 20, 20, 20, 18, 14, 10, 6}
dx = {6, 8, 6, 10, 14, 10, 10, 14, 10, 20, 28, 20}

and we check that
∑

p d2
p =

∑
x d2

x = 2512.
In the case of the non simply laced diagram G = F4, analogous

calculations for dp and dx lead to the following values:

dp = {4, 7, 10, 13, 14, 14, 14, 13, 10, 7, 4}
dx = {4, 7, 10, 6, 7, 4, 7, 14, 20, 10, 14, 7, 10, 20, 28, 14, 6, 10, 14, 8}.
Notice that

∑
p d2

p = 1256, which is half the E6 result; this could be
expected since F4 is a Z2 orbifold of E6. However, this value is not
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equal to
∑

x d2
x. This could also be expected if we remember that

vertices 14, 15, 18, 19 play a special role (like the “long roots” in the
theory of Lie algebras): these are the values for which W0,x = 2Wx,0

(no factor 2 for the others) and for which the Σx matrices can be
divided by 2. For this reason, we introduce another set of matrices,

setting Σ̃x = Σx/2 for those four values, and equality otherwise. We

also introduce the corresponding dimensions d̃x, which are equal to
dx except for the four special vertices where the values are divided

by 2. We find
∑

x dxd̃x = 2512 and notice that this value is twice
the value of the sum

∑
p d2

p. It would be natural to introduce a qua-
dratic form in the vector space Oc, diagonal and taking the value 1
on the basis generators Ox, except in positions 15, 16, 19, 20 where the
coefficients would be equal to 2 . The conclusion is that the usual qua-
dratic sum rule almost works, in the sense that it is somehow twisted
by the appearance of factors 2 which should be understood from the
fact that basis generators Ox of quantum symmetries have two differ-
ent lengths (corresponding to short and long roots in the theory of
Lie algebras). These results are not compatible with the existence of
a quantum groupöıd structure (in the usual sense) since the candi-
dates for algebras of characters associated with the two multiplicative
structure – that would be respectively described by the semi-simple
algebras Oc (20 blocks) or the direct sum of two copies of the graph
algebra A11( twice 11 blocks) – do not have the same dimension. A
more general type of algebraic structure seems to be needed.

• Linear sum rule. It is an observational fact (not yet understood) that
the following linear sum rule also holds10 :

∑
p dp =

∑
x dx, for most

ADE cases; and when it does not, one also knows how to “correct” the
rule by introducing natural prefactors. In the case of E6, for instance,
this sum equals 156. For the graph F4 however,

∑
p dp = 110 whereas∑

x dx = 220. This is also compatible with the previous discussion.
• Quantum sum rule. For ADE diagrams G with n vertices σi the

quantum mass m(G) is defined by:

m(G) =
n−1∑

a=0

(q dim(σi))
2

where the quantum dimensions q dim of the vertex σi is given by the i-
component of the normalized Perron-Frobenius vector, associated with

the highest eigenvalue (here β = 1+
√

3√
2

). To get these quantities for

the vertices of Oc, we assign β to both chiral generators, impose that
q dim is an algebra morphism and use recurrence formulae for Ox.

10This was noticed in [18]
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For ADE cases, the following property can be verified (see [19]): if
we denote the fusion algebra of the graph G by A(G) (a graph algebra
of type An) and the algebra of quantum symmetries by Oc(G), one
finds that m(A(G)) = m(Oc(G)). Moreover, for a graph with self-
fusion, and if it is so that Oc(G) is isomorphic, as an algebra, with
G⊗J G, then m(Oc(G)) = (m(G) × m(G))/m(J). For instance in the
E6 case

m(E6) = 4(3 +
√

3) and

m(Oc(E6)) = m(E6)×m(E6)
m(J)

= 24(2 +
√

3) = m(A11).

However, for the non simply laced diagram F4, the q dim are as
follows (x = 0, . . . 19)

q dim{E, e, F, f} =
n“

1, 1+
√

3√
2

, 1 +
√

3,
√

2, 1+
√

3√
2

, 1
”

,

“

1+
√

3√
2

, 2 +
√

3,
√

2(2 +
√

3), 1 +
√

3, 2 +
√

3, 1+
√

3√
2

”

,

`

1 +
√

3,
√

2(2 +
√

3), 2(2 +
√

3),
√

2(1 +
√

3)
´

,

`√
2, 1 +

√
3,
√

2(1 +
√

3), 2
´¯

Like for the quadratic sum rule we introduce quantum dimensions

q̃ dim(x) equal to q dim(x) except for the four vertices 14, 15, 18, 19
where the values are divided by 2. One finds11 :

m(Oc(F4)) =
P

n−1
a=0

“

q dim(x)q̃ dim(x)
”2

= m(E) + m(e) + m(F ) + m(f) = 48(2 +
√

3) = 2m(A11)

with m(E) = m(f) = 4(3 +
√

3) and m(e) = m(F ) = 4(9 + 5
√

3).
• Quadratic modular double sum rule. The modular splitting relation

implies the following. Call dN
p =

∑
q,r(Np)q,r, dW ′

x =
∑

y,z(Wx,0)y,z

and dW ′′

x =
∑

y,z(W0,x)y,z, then (take traces):
∑

p,q

dN
p dN

q Mp,q =
∑

x

dW ′

x dW ′′

x .

Once the Wx are determined, one should verify that this sum rule
holds. In the simply laced case E6, for instance, one easily checks this
identity, with dW ′

x = dW ′′

x for all x given by

dW = {20, 28, 20, 20, 28, 20, 12, 16, 12, 34, 48, 34}
(sum of squares is 8328) and

dN = {11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11}
11Using the graph algebra of F4 defined in the following section, one finds rather

m(F4) = m(E6)/2.
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for A11 so that the M -norm square defined by the E6 modular matrix
M is also 8328. In the case of F4 we have the same dimension vector
dN with its M -norm square (equal to 4232) now defined by the M
matrix of F4, but dW ′

x 6= dW ′′ and we have to take

dW ′ = {8, 12, 16, 8, 12, 8, 12, 18, 24, 12, 18, 12, 16, 24, 16, 8, 8, 12, 8, 4}
together with

dW ′′ = {8, 12, 16, 8, 12, 8, 12, 18, 24, 12, 18, 12, 16, 24, 32, 16, 8, 12, 16, 8}
– notice the factor 2 for entries 15, 16, 19, 20 – so that the right hand
side of this sum rule is also 4232, as it should.

5 Miscellaneous comments

Comparison with a direct method using self-fusion on F4

Remember that the diagram F4 emerged from our analysis of the modular
splitting equation and that we started from a given partition function. Now,
we would like to reverse the machine and start from the diagram F4 itself.
We imitate techniques initiated in [2] and developed in [3], [19].

• From the diagram, we find its adjacency matrix and call it G1. From
its eigenvalues 2cos(r π/12), we find the exponents r = 1, 5, 7, 11. In

particular the highest eigenvalue is β = 1+
√

3√
2

= 2 cos(π
κ
) with κ = 12

gives the value of the Coxeter number – not the dual Coxeter num-
ber, which is different (and equals 9) since the diagram is not simply
laced. The quantum dimensions of the vertices are given by the nor-
malized Perron-Frobenius vector associated with β, and we obtain the

q-numbers [1], [2], [2], [1], for q = e
iπ

κ , so q2×12 = 1.
• The fused adjacency matrices Fp are obtained by checking that the

vector space of the diagram F4 is indeed an A11 module and by im-
posing the usual SU(2) recurrence relation for the Fp’s, together with
the seed F0 = 1l4 and F1 = G1. Vertices of the diagram F4 are labelled
as follows:

a0 a1 a2 a3
s s s s-

¾

¾

a) Oriented graph F4

∼
a0 a1 a2 a3

s s c c

b) Coxeter-Dynkin F4 diagram
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• One is tempted to analyze the possibility of defining a graph algebra
structure for the diagram F4. This is indeed possible. The multipli-
cation table given below is determined by imposing associativity, once
the multiplications by 0 (unity) and 1 (adjacency matrix) have been
defined.

· a0 a1 a2 a3

a0 a0 a1 a2 a3

a1 a1 a0 + a2 2a1 + a3 a2

a2 a2 2a1 + a3 2a2 + 2a0 2a1

a3 a3 a2 2a1 2a0

The graph matrices Ga, a = 0, 1, 2, 3, obtained from this table, cöıncide
with the first four matrices Σx, but the reader will notice immediately
that this table cannot be obtained, by restriction, from the multiplica-
tion table of Oc. Indeed, there are only two candidates (F or f). The
second one is ruled out by the fact that f ×f ⊂ E. The first one is not
a subalgebra either since F × F ⊂ E + F , and even if we artificially
project the result (right hand side) to F , the obtained table will differ
from the one just given. The conclusion is that there is no hope to use
the above graph algebra structure on F4 to recover the modular matrix
M that we used as the starting point of the whole analysis carried out
in this paper. Let us nevertheless proceed.

• Potential candidates for the ambichiral vertices can be obtained by
imposing that the eigenvalues of the T modular operator (they are
well defined for the vertices of A11) are also well defined under the
induction rules (see [4] for details and examples). This constraint
selects the set {a0, a3} so that a natural guess for the corresponding

algebra of quantum symmetries would be F4

·
⊗ F4 where the algebra

structure of each factor was described in the previous paragraph and
where the tensor product is taken above the subalgebra generated by
{a0, a3}. The new modular matrix Mnew = (W0,0)

new is then given by

Ered
0 (Ered

0 )T where the reduced essential matrix Ered
0 is obtained from

E0 by keeping only the first and last column and replacing the two
others by zeros. It is equal to

M
new

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 . . . 1 . 1 . . . 1
. . . . . . . . . . .

. . . . . . . . . . .

. . . 1 . . . 1 . . .

1 . . . 1 . 1 . . . 1
. . . . . . . . . . .

1 . . . 1 . 1 . . . 1
. . . 1 . . . 1 . . .

. . . . . . . . . . .

. . . . . . . . . . .

1 . . . 1 . 1 . . . 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

As expected, it differs from the matrix M = W0 = W0,0. However
it is interesting to notice that both are related by by a conjugacy:
Mnew/2 = S−1 M S, where S stands for one of the two generators of



982 F4 QUANTUM SYMMETRIES

the modular group in this representation. We find that the bilinear
form obtained from W00 is invariant under the action of the congruence

subgroup S−1Γ
(2)
0 S = gen

{
S−1T 2S, S−1(ST−2S)S

}
conjugated with

Γ
(2)
0 . This can be directly verified by calculating the commutators

[
S−1T 2

11S, W00

]
= 0,

[
S−1(ST−2S)11S, W00

]
= 0.

Notice that Mnew (which has 20 non-zero entries) is equal to the sum
of the three matrices W0, W4 and W33′ associated with three self-dual
points of the graph Oc(F4).

So, we can indeed define self-fusion on the diagram F4 but this associative
algebra structure does not seem to be simply related with the so-called F4

modular matrix. Still another possibility would be to work with a sym-
metrized form of the F4 diagram, i.e., with an “adjacency matrix” that
incorporates non-integer matrix elements (q-numbers equal to

√
2). This

possibility is actually quite interesting but will not be discussed here. It
does not seem to allow one to recover the F4 modular matrix M , either.

A relative equation of modular splitting

From the fact that the diagram F4 is, geometrically, a Z2 orbifold of E6
(identify pair of vertices (0, 4), (1, 5) of the later), we are tempted to consider
an action of the graph algebra of E6 (this graph has self-fusion) on the vector
space of F4. Call GE6

u the six 6 × 6 generators of the E6 graph algebra and
FE6

u the six 4 × 4 matrices implementing the action of E6 on F4. The
multiplication table of E6 was given before. Its graph matrices obey the
usual relations:

GE6

0 = 1l6 GE6

1

GE6

2 = (GE6

1 )2 − GE6

0 GE6

3 = −GE6

1 · (GE6

4 − (GE6

1 )2 + 2GE6

0 )GE6

1

GE6

4 = (GE6

1 )4 − 4(GE6

1 )2 · GE6

1 + 2GE6

0 GE6

5 = GE6

1 GE6

4 .

To obtain the fused matrices FE6
u relative to this action, we set FE6

0 = 1l4,

FE6
1 = G1 (the adjacency matrix of F4) and impose that the FE6

u should
obey the same algebra relations as the GE6

u .

Exactly as we had an action of A11 on F4, implemented by matrices Fp,
we have a (relative) action of E6 on F4, implemented by matrices FE6

u . For
this reason we are led to consider a “relative” theory of modular splitting
(and a corresponding equation) with A11 replaced by E6. In particular the
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graph matrices Np of A11 – the usual fusion matrices – are replaced by the
generators GE6

u of the graph algebra of E6. With u, v ∈ E6. we define
“relative” toric matrices by

u x v =
∑

y

(WE6
x,y)

u,v
y.

The relative equation of modular splitting reads (τ is a tensorial flip):
∑

u,v

GE6
u ⊗ GE6

v M rel
u,v =

∑

x∈Oc

τ ◦ (WE6
x,0 ⊗ WE6

0,x).

M rel describes the same F4 partition function as before, but in terms of
generalized characters12 :

χ0 + χ6, χ1 + χ5 + χ7, χ2 + χ4 + χ6 + χ8,

χ3 + χ5 + χ9, χ4 + χ10, χ3 + χ7.

If P denotes the matrix of this linear transformation (it is the first essential
matrix, i.e., the “intertwiner” of the E6 theory), we have M = PM relP T .
The E6 invariant, in terms of these generalized characters, with the above
ordering, is diagonal and reads diag (1, 0, 0, 0, 1, 1) whereas the F4 modular
matrix is M rel = diag (1, 0, 0, 0, 1, 0). The equation of modular splitting
is then solved exactly as we did in a previous section, with the technical
advantage that the size of the matrices that we have to manipulate is much
smaller (36 × 36 rather than 121 × 121). Same comment for most objects
of the theory: the analogue of K0 is 36× 20 (rather than 121× 20) and the
relative toric matrices are 6×6 (rather than 11×11). The twenty generators
Ox are the same (their size is 20×20) and the graph of quantum symmetries
is determined as before. It is easy to translate the relative E6 theory to the
“usual” one (that uses the action of the A11 graph algebra) by using the –
rectangular – essential matrix P . It is technically easier to work with this
relative theory, but the drawback is that the E6 case should be analyzed
first. This is why we did not follow this method in our presentation.

Acknowledgments

This work was certainly influenced by conversations with A. Ocneanu,
O. Ogievetsky and G. Schieber. We want to thank them here.

12In our formalism, they are obtained from essential matrices of the E6 diagram as
described, for instance, in [5].



984 F4 QUANTUM SYMMETRIES

References

[1] A.Cappelli, C.Itzykson and J.B. Zuber, The ADE classification of min-

imal and A
(1)
1 conformal invariant theories, Comm. Math. Phys. 13

(1987), 1.

[2] R. Coquereaux, Notes on the quantum tetrahedron, Moscow Math. J.
2(1) (Jan.-March 2002), 1–40, hep-th/0011006.

[3] R. Coquereaux and G. Schieber, Twisted partition functions for ADE
boundary conformal field theories and Ocneanu algebras of quantum

symmetries, J. of Geom. and Phys. 781 (2002), 1–43, hep-th/0107001.

[4] R. Coquereaux and G. Schieber, Determination of quantum symmetries

for higher ADE systems from the modular T matrix, J. Math. Phys.
44 (2003), 3809–3837, hep-th/0203242.

[5] R. Coquereaux and M. Huerta, Torus structure on graphs and twisted

partition functions for minimal and affine models, J. of Geom. and
Phys. 48(4) (2003), 580–634, hep-th/0301215.

[6] R. Coquereaux and R. Trinchero, On Quantum symmetries of ADE

graphs, Advances in Theor. and Math. Phys. 8(1) (2004), hep-
th/0401140.

[7] B. Dubrovin, Differential geometry of the space of orbits of a Coxeter

group, hep-th/9303152, SISSA-29/93/FM.

[8] P. Di Francesco and J.-B. Zuber, in ‘Recent Developments in Conformal
Field Theories’, Trieste Conference 1989 (S. Randjbar-Daemi, E Sezgin
and J.-B. Zuber eds.), World Scientific 1990;
P. Di Francesco, Int. J. Mod. Phys. A7 (1992), 407–500.

[9] F. Di Francesco and J.-B. Zuber, SU(N) Lattice integrable models as-

sociated with graphs, Nucl. Phys B338 (1990), 602–646.

[10] T. Gannon, The Classification of affine su(3) modular invariants,
Comm. Math. Phys. 161 (1994), 233–263.
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