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Abstract

Recently, Witten showed that there is a natural action of the group
SL(2,Z) on the space of 3 dimensional conformal field theories with
U (1) global symmetry and a chosen coupling of the symmetry current
to a background gauge field on a 3–fold N . He further argued that,
for a class of conformal field theories, in the nearly Gaussian limit, this
SL(2,Z) action may be viewed as a holographic image of the well–known
SL(2,Z) Abelian duality of a pure U (1) gauge theory on AdS–like 4–
folds M bounded by N , as dictated by the AdS/CFT correspondence.
However, he showed that explicitly only for the generator T ; for the
generator S, instead, his analysis remained conjectural. In this paper,
we propose a solution of this problem. We derive a general holographic
formula for the nearly Gaussian generating functional of the correlators of
the symmetry current and, using this, we show that Witten’s conjecture
is indeed correct when N = S3. We further identify a class of homology
3–spheresN for which Witten’s conjecture takes a particular simple form.

1 Introduction and conclusions

Following a recent paper by Witten, the interest in 3 dimensional conformal
field theory has been revived. In [1], Witten considered the set CFT(N) of
all conformal field theories on a given spin Riemannian 3–fold N , which
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have a U(1) global symmetry. A field theory T ∈ CFT(N) is specified by
four sets of data: a) the field content; b) the overall sign of the symmetry
current j; c) the free parameters entering in the multipoint correlators of j;
d) the gauge invariant coupling of j to a background gauge field a. Thus, T

is completely described by the generating functional of the correlators of j

ZT (a) =
〈

exp
(√−1

∫

N
a ∧ ?j

)〉

T

. (1.1)

By the above assumptions, ZT (a) is gauge invariant, i. e.

ZT (a+ df) = ZT (a), (1.2)

where f is any function. Developing on original ideas of Kapustin and
Strassler [2], Witten showed that there is a natural action of the group
SL(2,Z) on CFT(N). That is, three operations S, T and C can be defined
on CFT(N) satisfying the algebra

S2 = C, (1.3a)

(ST )3 = 1, (1.3b)

C2 = 1. (1.3c)

The action of SL(2,Z) on CFT(N) is concretely defined by three operators
Ŝ, T̂ and Ĉ acting on the functionals ZT (a) according to

ŜZT (a) = ZST (a), (1.4a)

T̂ZT (a) = ZTT (a), (1.4b)

ĈZT (a) = ZCT (a). (1.4c)

Their explicit expressions, found by Witten in [1] (see also [3]), can be cast
as

ŜZT (a) =
∫
DbZT (b) exp

(√−1
2π

∫

N
b ∧ da

)
, (1.5a)

T̂ZT (a) = ZT (a) exp
(√−1

4π

∫

N
a ∧ da

)
, (1.5b)

ĈZT (a) = ZT (−a). (1.5c)
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Note that Ŝ involves the quantization of the field a. Its expression is only
formal. The normalization of the measure Db is unspecified. Further, gauge
fixing is tacitly assumed.

In [1], Witten considered the physically relevant case where N = S3.
There is an interesting subset CFT0(N) of 3 dimensional conformal field
theories, in which the SL(2,Z) action is concretely realized. These are the
large Nf limit of 3 dimensional field theories of Nf fermions with U(1) sym-
metry, which were studied a long time ago [4–7] as well as recently [8,9]
in connection with the low energy strong coupling regime of 3 dimensional
QED. For a T ∈ CFT0(N), the correlators of the current j are nearly Gauss-
ian. Conformal invariance and unitarity entail that ZT (a) is given by the
exponential of a quadratic expression in a depending on two real param-
eters τ1 ∈ R, τ2 ∈ R+, which can be organized in a complex parameter
τ = τ1 +

√−1τ2 ∈ H+. Since these parameters completely characterize
the field theory T , we can parameterize T ∈ CFT0(N) with τ ∈ H+ and
write ZT (a) as Z(a, τ). Witten showed that the SL(2,Z) action on CFT0(N)
reduces to the customary SL(2,Z) modular action on H+:

S(τ) = −1/τ, (1.6a)

T (τ) = τ + 1, (1.6b)

C(τ) = τ. (1.6c)

One thus has correspondingly

ŜZ(a, τ) = Z(a,−1/τ), (1.7a)

T̂Z(a, τ) = Z(a, τ + 1), (1.7b)

ĈZ(a, τ) = Z(a, τ). (1.7c)

Witten’s analysis has been generalized in [10] to higher spin conserved cur-
rents.
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The action S(A, τ) of a pure U(1) gauge theory on a compact spin 4–fold
M without boundary is given by

S(A, τ) =
√−1τ2

4π

∫

M
FA ∧ ?FA +

τ1

4π

∫

M
FA ∧ FA, (1.8)

where A is the gauge field and τ = τ1 +
√−1τ2 ∈ H+ with τ1 = θ/2π ∈ R,

τ2 = 2π/e2 ∈ R+. So, the partition function Z(τ) is a certain function of
τ ∈ H+. SL(2,Z) operators Ŝ, T̂ and Ĉ on Z(τ) can be defined by relations
analogous to (1.7) (with a suppressed). Under their action, Z(τ) behaves
as a modular form of weights χ+η

4 , χ−η
4 , where χ and η are respectively the

Euler characteristic and the signature invariant of M [11–15], a property
usually referred to as Abelian duality. If M has a non empty boundary ∂M ,
then the partition function Z(a, τ) depends also on the assigned tangent
component a of the gauge field A at ∂M . One expects that operators Ŝ,
T̂ and Ĉ can still be defined as in (1.7), though Abelian duality, as defined
above, does not hold in this more general situation.

In [1], Witten argued that, when N = S3, the SL(2,Z) action on CFT0(N)
may be viewed as a holographic image of the SL(2,Z) Abelian duality of a
pure U(1) gauge theory on M = B4, as implied by the Euclidean AdS/CFT
correspondence, inasmuch as the SL(2,Z) operators of CFT0(N) can be
equated to their gauge theory counterparts. (Here, B4 is the conformally
compactified hyperbolic 4–ball and S3 = ∂B4 carries the induced confor-
mal structure). He also indicated that this result should hold true for a
general 3–fold N bounding AdS–like 4–folds M . However, he showed that
explicitly only for the generator T ; for the generator S, instead, his analysis
remained to some extent conjectural. In this paper, we propose a solution
of this problem, which sheds some light on the holographic correspondence
between the boundary conformal field theory and the bulk gauge theory at
least at the linearized level.

Having holography in mind, we study in some detail Abelian gauge the-
ory on a general oriented compact 4–fold M with boundary. The geometric
framework appropriate for its treatment is provided by the theory of (rela-
tive) principal U(1) bundle, gauge transformations and connections. While
the notions of principal bundle, gauge transformation and connection are
familiar to many theoretical physicists, those of their relative counterparts
are much less so. Roughly speaking, a relative principal bundle (respec-
tively gauge transformation, connection) is an ordinary bundle (respectively
gauge transformation, connection), satisfying a suitable form of vanishing
boundary conditions on ∂M . The framework is mathematically elegant, is
natural, as it parallels closely that of the boundaryless case, and leads quite
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straightforwardly to the identification of the appropriate form of boundary
conditions of the relevant bulk fields.

In this paper, assuming the validity of the holographic correspondence,
we derive a general holographic formula for the nearly Gaussian generating
functional Z(a, τ) of the correlators of the symmetry current on a given 3–
fold N . Next, for definiteness, we concentrate on the case where a single
AdS–like 4–fold M bounded by N is required by holography. In this case,
Z(a, τ) is given simply by

Z(a, τ) = exp
(√−1S(Aa, τ)

)
, (1.9)

where Aa is the gauge field on M satisfying Maxwell’s equation whose tan-
gent component at the boundary equals a. We verify explicitly that (1.9)
is indeed correct when N = S3 and M = B4. We further obtain sufficient
topological conditions, which should be obeyed by general N and M in order
(1.9) to hold. Finally, we identify a class of homology 3–spheres N for which
Witten’s conjecture takes the simple form (1.9).

This paper is structured as follows. In sect. 2, we review the main prop-
erties of (relative) principal U(1) bundles, (relative) gauge transformations
and (relative) connection on manifolds with boundary. Many results that
hold for manifolds without boundary generalize in a non trivial manner. In
sect. 3, we recall the basic Green identities for general forms, discuss the
various choices of boundary conditions and describe the harmonic represen-
tation of (relative) cohomology. In sect. 4, we compute the action S(A, τ)
of eq. (1.8) for a 4–fold M with boundary as a functional of the tangential
boundary component of the gauge field. In sect. 5, we confirm Witten’s
claim of [1] that the nearly Gaussian generating functional Z(a, τ) of the
correlators of j for N = S3 is indeed given by (1.9) with M = B4. We
further derive sufficient topological conditions under which (1.9) holds for
a general 3–fold N bounding a 4–fold M . Finally, in sect. 6, we identify a
class of homology 3–spheres N fulfilling those conditions.

2 Principal bundles, gauge transformations, connections and
cohomology

Let M be a manifold with boundary ∂M . We denote by ι∂ : ∂M →M the
natural inclusion map. We further denote by d the de Rham differential of
M and by d∂ that of ∂M .

Below, we assume the reader has some familiarity with the basics of sheaf
cohomology (see [16,17] for background material). Relative cohomology is
tacitly assumed to mean relative cohomology of M modulo ∂M . For a sheaf
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of Abelian groups S over M , we denote by Hp(M,S ) the absolute p–th
sheaf cohomology group of S and by Hp(M,∂M,S ) the relative p–th sheaf
cohomology group of S . For an Abelian group G, G denotes the associated
constant sheaf on M . For an Abelian Lie group G, G denotes the sheaf of
germs of smooth G valued functions on M . In this paper, G will be one
of the groups Z, R, T (the circle group U(1)). We denote by Ωp(M) the
space of p–forms on M and by Ωp(M,∂M) the space of relative p–forms on
M . We attach a subscript Z to denote the corresponding subsets of p–forms
with integer (relative) periods. Analogous conventions hold for the absolute
sheaf cohomology and the p–forms of ∂M .

Below, we occasionally use the Čech model of (relative) cohomology, which
allows for a particularly simple and direct treatment. This requires the
choice of a good open cover {Oi} of M such that {Oi ∩ ∂M} is a good open
cover of ∂M .

2.1 The basic exact sequence

The cohomological classification of the groups of principal T bundles and
the associated groups of gauge transformations is based on a standard short
exact sequence of sheaves:

0 −→ Z i−→ R e−→ T −→ 0 (2.1.1)

where i(n) = n for n ∈ Z and e(x) = exp(2π
√−1x) for x ∈ R.

As is well known, with (2.1.1) there is associated a long exact sequence
of absolute sheaf cohomology

−→ Hp(M,Z) i∗−→ Hp(M,R) e∗−→ Hp(M,T) δ−→ Hp+1(M,Z) −→ . (2.1.2)

The sheaf R is fine and thus acyclic. Therefore, above, Hp(M,R) = 0 for
p > 0. H0(M,R) = Fun(M,R), the real valued functions on M .

Similarly, with (2.1.1) there is also associated a long exact sequence of
relative sheaf cohomology

−→ Hp(M,∂M,Z) i∗−→ Hp(M,∂M,R) e∗−→ Hp(M,∂M,T) δ−→ Hp+1(M,∂M,Z) −→ .
(2.1.3)

The fine sheaf R is acyclic also in relative cohomology. Therefore, above,
Hp(M,∂M,R) = 0 for p > 0. H0(M,∂M,R) = Fun(M,∂M,R), the real
valued functions on M which vanish on ∂M .
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For ∂M , one has a long exact sequence of cohomology analogous to (2.1.2):

−→ Hp(∂M,Z) i∂∗−→ Hp(∂M,R) e∂∗−→ Hp(∂M,T) δ∂−→ Hp+1(∂M,Z) −→ .
(2.1.4)

where Hp(∂M,R) = 0 for p > 0 and H0(∂M,R) = Fun(∂M,R).

In addition to the above long exact sequences, we have the absolute/relative
cohomology long exact sequence

−→ Hp(M,∂M,S ) −→ Hp(M,S ) ι∂∗−→ Hp(∂M,S ) δ−→ Hp+1(M,∂M,S ) −→,
(2.1.5)

where S is one of the sheaves Z, R, T. This sequence is compatible with the
sequences (2.1.2)–(2.1.4): the sequences (2.1.2)–(2.1.4) and (2.1.5) can be
arranged in a two dimensional commutative diagram with exact rows and
columns.

2.2 Principal T bundles

Let Princ(M) be the group of principal T bundles over M . (Below, we do
not distinguish between isomorphic bundles).

There is a natural isomorphism

Princ(M) ∼= H1(M,T), (2.2.1)

defined as follows. Let P ∈ Princ(M). Consider a set of local trivializations
of P . The matching of the trivializations of P is described by a T Čech 1–
cochain (Tij) on M . As is well known, the topology of P requires that (Tij)
is a 1–cocycle: TjkTik−1Tij = 1. If we change the set of local trivializations
used, the cocycle (Tij) gets replaced by a cohomologous cocycle (T ′ij): T ′ij =
TijVjVi

−1, for some T Čech 0–cochain (Vi). Thus, with P , there is associated
the cohomology class [(Tij)] ∈ H1(M,T). The resulting map Princ(M) →
H1(M,T) is easily shown to be an isomorphism.

From the long exact cohomology sequence (2.1.2), we obtain an isomor-
phism H1(M,T) ∼= H2(M,Z). So, taking (2.2.1) into account, we have the
isomorphism

Princ(M)
c∼= H2(M,Z). (2.2.2)

c assigns to a bundle P its Chern class c(P ). The preimage by c of the
torsion subgroup TorH2(M,Z) of H2(M,Z) is the subgroup Princ0(M) of
Princ(M) of flat principal T bundles.

The notion of relative principal bundle is a refinement of that of principal
bundle. A relative principal T bundle (P, t) on M consists of a principal T
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bundle P on M such that the principal bundle ι∂∗P on ∂M is trivial and a
trivialization t : ι∂∗P → ∂M × T. The relative principal T bundles form a
group Princ(M,∂M).

The cohomological description of the group of relative principal bundles
parallels that of the group of principal bundles, but cohomology is replaced
everywhere by relative cohomology, as we show next.

There is a natural isomorphism

Princ(M,∂M) ∼= H1(M,∂M,T), (2.2.3)

analogous to (2.2.1), defined as follows. Let (P, t) ∈ Princ(M,∂M). Con-
sider a set of local trivializations of P and the induced set of local trivial-
izations of ι∂∗P . The matching of the trivializations of P is described by a
T Čech 1–cochain (Tij) on M , as before, while the matching of the induced
trivializations of ι∂∗P and the trivialization t is described by a T Čech 0–
cochain (ti) on ∂M . These Čech data form a relative T Čech 1–cochain
(Tij , ti) on M . The topology of P and t requires that (Tij , ti) is a relative
1–cocycle: TjkTik

−1Tij = 1, as before, and further ι∂∗Tij = tjti
−1. If we

change the set of local trivializations used, the relative cocycle (Tij , ti) gets
replaced by a cohomologous relative cocycle (T ′ij , t′i): T ′ij = TijVjVi

−1,
as before, and further t′i = tiι∂

∗Vi, for some relative T Čech 0–cochain
(Vi) on M . Thus, with (P, t), there is associated the relative cohomol-
ogy class [(Tij , ti)] ∈ H1(M,∂M,T). The resulting map Princ(M,∂M) →
H1(M,∂M,T) is easily shown to be an isomorphism.

From the long exact relative cohomology sequence (2.1.3), we obtain an
isomorphism H1(M,∂M,T) ∼= H2(M,∂M,Z). So, taking (2.2.3) into ac-
count, we have the isomorphism

Princ(M,∂M)
c∼= H2(M,∂M,Z). (2.2.4)

c assigns to a relative bundle (P, t) its relative Chern class c(P, t). The
preimage by c of the torsion subgroup TorH2(M,∂M,Z) of H2(M,∂M,Z)
is the subgroup Princ0(M,∂M) of Princ(M,∂M) of flat relative principal T
bundles.

Of course, we can describe the group Princ(∂M) of principal T bundles
on ∂M in precisely the same way as we did for the group Princ(M) of
principal T bundles on M . So, the isomorphisms (2.2.1), (2.2.2) hold with
M , c replaced by ∂M , c∂ . The preimage by c∂ of TorH2(∂M,Z) is the
subgroup Princ0(∂M) of flat principal T bundles.
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2.3 Gauge transformation group

Let P ∈ Princ(M) be a principal T bundle. We denote by Gau(P ) the
group of gauge transformations of P .

There is a natural isomorphism

Gau(P ) ∼= H0(M,T), (2.3.1)

defined as follows. Let U ∈ Gau(P ). Consider a set of local trivializations of
P . The local representatives Ui of U in the various trivializing domains form
a T Čech 0–cochain (Ui) on M . As is well known, the global definedness
of U requires that (Ui) is a 0–cocycle: UjUi−1 = 1. If we change the set
of local trivializations used, the cocycle (Ui) is left unchanged. Thus, with
U there is associated a cohomology class [(Ui)] ∈ H0(M,T). The resulting
map Gau(P )→ H0(M,T) is easily shown to be an isomorphism. As Gau(P )
does not depend on P , we shall also denote it as Gau(M).

From the long exact cohomology sequence (2.1.2), we have a homomor-
phism H0(M,T) → H1(M,Z) with kernel H0(M,R)/i∗H0(M,Z). Taking
(2.3.1) into account, we obtain a homomorphism Gau(M) → H1(M,Z)
with kernel

Gauc(M) ∼= H0(M,R)/i∗H0(M,Z). (2.3.2)

Hence, we have a short exact sequence

0 −→ Gauc(M) −→ Gau(M)
q−→ H1(M,Z) −→ 0. (2.3.3)

q assigns to a gauge transformation U its characteristic class q(U). The
preimage by q of the torsion subgroup TorH1(M,Z) of H1(M,Z) is the
subgroup Gau0(M) of Gau(M) of flat gauge transformations.

A relative gauge transformation U of the relative principal T bundle
(P, t) ∈ Princ(M, ∂M) is a gauge transformation U of the underlying bun-
dle P whose pull–back ι∂

∗U equals the pull–back by t of the trivial gauge
transformations 1 of the bundle ∂M × T, ι∂∗U = t∗1. (Recall that ι∂∗U is
a gauge transformation of the bundle ι∂∗P and that t : ι∂∗P → ∂M × T
is a trivialization). We denote by Gau(P, t) the group of relative gauge
transformations of (P, t).

The cohomological description of the group of relative gauge transforma-
tions parallels that of the group of gauge transformations, but cohomology
is replaced everywhere by relative cohomology, as happens for the relative
principal bundles.
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There is a natural isomorphism

Gau(P, t) ∼= H0(M,∂M,T), (2.3.4)

defined as follows. Let U ∈ Gau(P, t). Consider a set of local trivializations
of P and the induced set of local trivializations of ι∂∗P . The local repre-
sentatives Ui of U in the various trivializing domains form a relative T Čech
0–cochain (Ui) on M . The global definedness of U and the triviality of ι∂∗U
require that (Ui) is actually a relative 0–cocycle: UjUi−1 = 1, ι∂∗Ui = 1.
If we change the set of local trivializations used, the relative cocycle (Ui) is
left unchanged. Thus, with U there is associated a relative cohomology class
[(Ui)] ∈ H0(M,∂M,T). The resulting map Gau(P, t) → H0(M,∂M,T) is
easily shown to be an isomorphism. As Gau(P, t) does not depend on (P, t),
we shall use also denote it as Gau(M,∂M).

From the long exact relative cohomology sequence (2.1.3), we have a ho-
momorphism H0(M,∂M,T)→ H1(M,∂M,Z) with kernel H0(M,∂M,R)/
i∗H0(M,∂M,Z). On account of (2.3.4), this yields a homomorphism Gau(M,
∂M)→ H1(M,∂M,Z) with kernel

Gauc(M,∂M) ∼= H0(M,∂M,R)/i∗H0(M,∂M,Z). (2.3.5)

Hence, we have a short exact sequence

0 −→ Gauc(M,∂M) −→ Gau(M,∂M)
q−→ H1(M,∂M,Z) −→ 0. (2.3.6)

q assigns to a relative gauge transformation U its relative characteristic
class q(U). The preimage by q of the torsion subgroup TorH1(M,∂M,Z) of
H1(M,∂M,Z) is the subgroup Gau0(M,∂M) of Gau(M,∂M) of flat relative
gauge transformations.

Of course, we can describe the group Gau(∂M) of gauge transformations
on ∂M in precisely the same way as we did for the group Princ(M) of
gauge transformations on M . So, the isomorphisms (2.3.1), (2.3.2) and
the short exact sequence (2.3.3) hold with M , q replaced by ∂M , q∂ . The
preimage by q∂ of TorH1(∂M,Z) is the subgroup Gau0(∂M) of flat gauge
transformations.

2.4 Connections and gauge transformations

Let P ∈ Princ(M) be a principal T bundle. We denote by Conn(P ) the
affine space of connections of P .

Let A ∈ Conn(P ) be a connection of P . Suppose that P is represented by
the T Čech 1–cocycle (Tij) with respect to a set of local trivializations. The
local representatives Ai of A in the various trivializing domains constitute a
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Ω1 Čech 0–cochain (Ai) on M . As is well known, the global definedness of
A requires that the 0–cochain (Ai) satisfies the matching relation Aj−Ai =
−√−1Tij−1dTij . Let (Tij), (T ′ij) be the cohomologous T Čech 1–cocycles
corresponding to two different choices of local trivializations of P , so that
T ′ij = TijVjVi

−1, for some T Čech 0–cochain (Vi). Then, the 0–cochains
(Ai), (A′i) representing A with respect to the two sets of local trivializations
are related as A′i = Ai −

√−1Vi−1dVi.

The curvature FA of a connection A ∈ Conn(P ) is defined by

FA = dA. (2.4.1)

This is a concise expression of the local relations FA|Oi = dAi. The proper-
ties of A listed in the previous paragraph ensure that FA does not depend
on the chosen local trivializations. Therefore, FA ∈ Ω2(M) is a 2–form. FA
is obviously closed:

dFA = 0. (2.4.2)
Further, FA/2π has integer periods, that is

1
2π

∫

S
FA ∈ Z, (2.4.3)

for any singular 2–cycle S. Recall that a singular p–cycle X of M is p–
chain X such that bX = 0, b being the singular boundary operator. Thus,
FA/2π ∈ Ω2

Z(M) and, so, it represents a class x(P ) of the integer lattice
H2
Z(M,R) of H2(M,R). Indeed, x(P ) is the image of the Chern class c(P ) of

P under the natural homomorphism H2(M,Z)→ H2(M,R). x(P ) vanishes
precisely for the flat bundles P ∈ Princ0(M). The above statements can
be shown in straightforward fashion using the Čech–de Rham cohomology
double complex.

A relative connection A of a relative principal T bundle (P, t) ∈ Princ(M,
∂M) is a connection A of the underlying bundle P whose pull–back ι∂

∗A
equals the pull–back by t of the trivial connection 0 of the bundle ∂M × T,
ι∂
∗A = t∗0. (Recall that ι∂∗A is a connection of the bundle ι∂∗P and that

t : ι∂∗P → ∂M × T is a trivialization). We denote by Conn(P, t) the affine
space of relative connections of (P, t).

Let A ∈ Conn(P, t) be a relative connection of (P, t). Suppose that (P, t)
is represented by the relative T Čech 1–cocycle (Tij , ti) with respect to a set
of local (induced) trivializations. The local representatives Ai of A in the
various trivializing domains form a relative Ω1 Čech 0–cochain (Ai). The
global definedness of A and the triviality of ι∂∗A require that the relative
0–cochain (Ai) satisfies the matching relation Aj − Ai = −√−1Tij−1dTij ,
as before, and further that ι∂∗Ai = −√−1ti−1d∂ti. Let (Tij , ti), (T ′ij , t′i)
be the cohomologous relative T Čech 1–cocycles on M corresponding to two
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different choices of local (induced) trivializations, so that T ′ij = TijVjVi
−1,

t′i = tiι∂
∗Vi for some relative T Čech 0–cochain (Vi). Then, the relative

0–cochains (Ai), (A′i) representing A with respect to the two sets of local
(induced) trivializations are related again as A′i = Ai −

√−1Vi−1dVi.

The curvature FA of a relative connection A ∈ Conn(P, t) is simply the
curvature FA of A viewed as a connection of P and is thus given by (2.4.1).
In addition, however, FA satisfies the boundary conditions

ι∂
∗FA = 0. (2.4.4)

Thus, FA ∈ Ω2(M,∂M) is a relative 2–form. FA still satisfies (2.4.2) and,
so, is closed. Further, FA/2π has integer relative periods, that is it sat-
isfies (2.4.3) for any relative singular 2–cycle S. Recall that a relative
singular p–cycle X is a singular p–chain X such that bX is supported in
∂M . Thus, FA/2π ∈ Ω2

Z(M,∂M) and, so, it represents a class x(P, t) of
the integer lattice H2

Z(M,∂M,R) of H2(M,∂M,R). x(P, t) is the image of
the relative Chern class c(P, t) of (P, t) under the natural homomorphism
H2(M,∂M,Z)→ H2(M,∂M,R). x(P, t) vanishes precisely for the flat rela-
tive bundles (P, t) ∈ Princ0(M,∂M). The above statements can be shown
using the relative Čech–de Rham cohomology double complex.

For a gauge transformation U ∈ Gau(M), we define

BU = −√−1U−1dU. (2.4.5)

As for the curvature of a connection, this is a concise expression of the local
relations BU |Oi = −√−1U−1

i dUi, in which the right hand side does not
depend on the chosen local trivialization. BU ∈ Ω1(M) is a 1–form. BU is
obviously closed:

dBU = 0. (2.4.6)

Further, BU/2π has integer periods, that is

1
2π

∫

S
BU ∈ Z, (2.4.7)

for any singular 1–cycle S. Thus, BU/2π ∈ Ω1
Z(M) and, so, it represents

a class z(U) of the integer lattice H1
Z(M,R) of H1(M,R). z(U) is the im-

age of the characteristic class q(U) of U under the natural homomorphism
H1(M,Z)→ H1(M,R) and vanishes precisely for the flat gauge transforma-
tions U ∈ Gau0(M).

A gauge transformation U ∈ Gau(M) acts on a connection A ∈ Conn(P )
of a principal T bundle P as

AU = A+BU . (2.4.8)
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By (2.4.6), the curvature FA is gauge invariant:

FAU = FA. (2.4.9)

Note that the gauge transformation group is smaller than the invariance
group of the curvature FA. Indeed, FA is invariant under shifts of A by an
arbitrary closed 1–form.

With any relative gauge transformation U ∈ Gau(M,∂M) there is asso-
ciated a 1–form BU defined as in (2.4.5). In addition, however, BU satisfies
the boundary conditions

ι∂
∗BU = 0. (2.4.10)

Thus, BU ∈ Ω1(M,∂M) is a relative 1–form. BU still satisfies (2.4.6) and,
so, is closed. Further, BU/2π has integer relative periods, so that it satisfies
(2.4.7) for any relative singular 1–cycle S. Thus, BU/2π ∈ Ω1

Z(M,∂M)
and, so, it represents a class z(U) of the integer lattice H1

Z(M,∂M,R) of
H1(M,∂M,R). z(U) is the image of the relative characteristic class q(U) of
U under the natural homomorphism H1(M,∂M,Z) → H1(M,∂M,R) and
vanishes precisely for the flat relative gauge transformations U ∈ Gau0(M,
∂M).

The action of a relative gauge transformation U ∈ Gau(M,∂M) on a
relative connection A ∈ Conn(P, t) of a relative principal T bundle (P, t) is
again given by (2.4.8). By (2.4.10), (2.4.4) is preserved.

We can describe the affine space Conn(P∂) of connections of a bundle P∂ ∈
Princ(∂M) and the action of the gauge transformation group Gau(∂M) on it
in precisely the same way as we did for affine space Conn(P ) of connections
of a bundle P ∈ Princ(M) and the action of the gauge transformation group
Gau(M) on it.

2.5 Extendability of principal bundles and gauge transforma-
tions on ∂M to M

Every bundle P ∈ Princ(M) yields by pull–back a bundle P∂ ∈ Princ(∂M),
viz P∂ = ι∂

∗P . The converse is however false: in general, not every bundle
P∂ ∈ Princ(∂M) is the pull–back of some bundle P ∈ Princ(M). When this
does indeed happen, we say that P∂ is extendable to M . It is important
to find out under which conditions a given bundle P∂ ∈ Princ(∂M) is ex-
tendable. To this end, consider the absolute/relative cohomology long exact
sequence (2.1.5) with S = Z. We can exploit the isomorphisms (2.2.4),
(2.2.2) and its analogue for ∂M to draw the commutative diagram



908 4-D ABELIAN DUALITY AND SL(2,Z) ACTION...

H1(∂M,Z) δ−→ H2(M,∂M,Z) −→ H2(M,Z) ι∂
∗
−→ H2(∂M,Z) δ−→ H3(M,∂M,Z)

c

x
c

x
c∂

x

Princ(M,∂M) −→ Princ(M) ι∂
∗
−→ Princ(∂M) (2.5.1)

in which the lines are exact and the vertical mappings are isomorphisms. The
interpretation of the second line is quite simple. The first mapping associates
with every relative bundle (P, t) ∈ Princ(M,∂M) the underlying bundle
P ∈ Princ(M), the second associates with every bundle P ∈ Princ(M) its
pull–back bundle P∂ = ι∂

∗P ∈ Princ(∂M). This interpretation goes over to
the first line.

By the exactness of (2.5.1), a bundle P∂ ∈ Princ(∂M) is the pull–back of
a bundle P ∈ Princ(M) if and only if

δ(c∂(P∂)) = 0. (2.5.2)

Hence, the obstruction to the extendability of P∂ is a class of H3(M,∂M,Z).
When P∂ satisfies (2.5.2), P∂ is in general the pull–back of several bundles
P on M , i. e. P∂ has several extensions to M . Again, by the exactness
of (2.5.1), its extensions are parameterized by the group of relative bundles
Princ(M,∂M), in a generally non one–to–one fashion. The parameterization
is one–to–one if H1(∂M,Z) = 0.

A similar analysis can be carried out for gauge transformations. Every
gauge transformation U ∈ Gau(M) yields by pull–back a gauge transfor-
mation U∂ ∈ Gau(∂M), viz U∂ = ι∂

∗P . The converse is however false: in
general, not every gauge transformation U∂ ∈ Gau(∂M) is the pull–back
of some gauge transformation U ∈ Gau(M). When this does indeed hap-
pen, we say that U∂ is extendable to M . As for principal bundles, it is
important to find out under which conditions a given gauge transformation
U∂ ∈ Gau(∂M) is extendable. In practice, this can be done only for gauge
transformation classes. To this end, introduce the gauge transformation
class groups

Class(M) = Gau(M)/Gauc(M), (2.5.3)
Class(M,∂M) = Gau(M,∂M)/Gauc(M,∂M) (2.5.4)

and Class(∂M), which is given by (2.5.3) with M replaced by ∂M . Next,
onsider again the absolute/relative cohomology long exact sequence (2.1.5)
with S = Z. We can exploit the short exact sequences (2.3.3), (2.3.6) and
its analogue for ∂M to draw the commutative diagram
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H0(∂M,Z) δ−→ H1(M,∂M,Z) −→ H1(M,Z) ι∂
∗
−→ H1(∂M,Z) δ−→ H2(M,∂M,Z)

q

x
q

x
q∂

x
Class(M,∂M) −→ Class(M)

ι∂∗−→ Class(∂M) (2.5.5)
in which the lines are exact and the vertical mappings are isomorphisms.
In the second line, the first mapping associates with every relative gauge
transformation class [U ] ∈ Class(M,∂M) the underlying gauge transforma-
tion class [U ] ∈ Class(M), the second associates with every gauge trans-
formation class [U ] ∈ Class(M) its pull–back gauge transformation class
[U∂ ] = [ι∂∗U ] ∈ Class(∂M). This interpretation extends to the first line.

By the exactness of (2.5.5), a gauge transformation class [U∂ ] ∈ Class(∂M)
is the pull–back of a gauge transformation class [U ] ∈ Class(M) if and only
if

δ(q∂([U∂ ])) = 0. (2.5.6)
Hence, the obstruction to the extendability of [U∂ ] is a class ofH2(M,∂M,Z).
When [U∂ ] satisfies (2.5.6), [U∂ ] is the pull–back of several gauge transfor-
mation classes [U ] ∈ Class(M), i. e. [U∂ ] has several extensions to M .
Again, by the exactness of (2.5.5), its extensions are parameterized by the
group of relative gauge transformations Gau(M,∂M) in a non one–to–one
fashion, since H0(∂M,Z) 6= 0.

3 Green identities, boundary conditions and harmonic forms

Let M be a compact oriented m–manifold with boundary ∂M . Let g be a
metric on M . Let g∂ = ι∂

∗g be the induced metric on ∂M . We denote by
n the outward unit normal field to ∂M . Actually, n is defined in a collar
neighborhood of ∂M .

3.1 Basic Green identities

Let d∗ = (−1)mp+m+1 ? d? denote the formal adjoint of d, with p the form
degree. The basic integral identity relating d and d∗ is∫

M
dα ∧ ?β −

∫

M
α ∧ ?d∗β =

∮

∂M
ι∂
∗α ∧ ?∂ι∂∗j(n)β, (3.1.1)

for α ∈ Ωp(M), β ∈ Ωp+1(M), where j(n) is the contraction operator asso-
ciated with n. 1 (3.1.1) follows easily from Stokes’ theorem upon using the
identity ι∂∗ ? β = ?∂ι∂

∗j(n)β.

1In local coordinates j(n)αi1···ip−1 = niαii1···ip−1 for any p–form α.
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From (3.1.1), a number of other basic integral identities follow. Let ∆ =
dd∗ + d∗d be the Hodge Laplacian. For α, β ∈ Ωp(M), one has

∫

M
α ∧ ?∆β −

∫

M
dα ∧ ?dβ −

∫

M
d∗α ∧ ?d∗β (3.1.2)

=
∮

∂M

[
ι∂
∗d∗β ∧ ?∂ι∂∗j(n)α− ι∂∗α ∧ ?∂ι∂∗j(n)dβ

]

(1st Green identity) and

∫

M
α ∧ ?∆β −

∫

M
β ∧ ?∆α =

∮

∂M

[
ι∂
∗d∗β ∧ ?∂ι∂∗j(n)α (3.1.3)

−ι∂∗α ∧ ?∂ι∂∗j(n)dβ − ι∂∗d∗α ∧ ?∂ι∂∗j(n)β + ι∂
∗β ∧ ?∂ι∂∗j(n)dα

]

(2nd Green identity) [18].

For any form degree p, a p–form Green operator G of the Hodge Laplacian
∆ is a symmetric distributional biform of bidegree (p, p) on M×M satisfying
the equation

∆Gx = ?δx, (3.1.4)
for all x ∈ M \ ∂M , where Gx is the p–form obtained by fixing one of the
arguments of Gx at x and δx is the Dirac distribution for p–forms centered in
x. The existence and uniqueness of Green operators depend on the boundary
conditions imposed.

A p–form α ∈ Ωp(M) is harmonic, if ∆α = 0. The harmonic p–forms of
M form a subspace Harmp(M) of Ωp(M).

Let G be a Green operator of the Hodge Laplacian ∆ on p–forms. Using
the 2nd Green identity, one can show that, for any α ∈ Harmp(M),

α(x) = (−1)p(m−p)
∮

∂M

[
ι∂
∗d∗Gx ∧ ?∂ι∂∗j(n)α (3.1.5)

−ι∂∗α ∧ ?∂ι∂∗j(n)dGx − ι∂∗d∗α ∧ ?∂ι∂∗j(n)Gx + ι∂
∗Gx ∧ ?∂ι∂∗j(n)dα

]
,

for all x ∈ M \ ∂M . This expression simplifies to a considerable extent,
when α and G obey a suitable set of boundary conditions. It is possible to
extend the right hand side of (3.1.5) to x ∈ ∂M by using a suitable limiting
procedure.
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3.2 Boundary conditions and Hilbert structures

There are several relevant choices of boundary conditions. All these are com-
binations of two basic types of boundary conditions: normal and tangential.
For α ∈ Ωp(M), these can be stated in the form

normal : ι∂
∗α = 0; (3.2.1a)

tangential : ι∂
∗j(n)α = 0. (3.2.1b)

It is not difficult to show that if α satisfies normal (tangential) boundary
conditions, then ?α satisfies tangential (normal) boundary conditions. Note
that α ∈ Ωp(M,∂M) precisely when α satisfies normal boundary conditions.

The basic choices of boundary conditions are: Dirichlet, Neumann, abso-
lute and relative [18,19]. For α ∈ Ωp(M), these take the form below.

Dirichlet : ι∂
∗α = 0, ι∂∗j(n)α = 0; (3.2.2a)

Neumann : ι∂
∗d∗α = 0, ι∂∗j(n)dα = 0; (3.2.2b)

absolute : ι∂
∗j(n)α = 0, ι∂∗j(n)dα = 0; (3.2.2c)

relative : ι∂
∗α = 0, ι∂∗d∗α = 0. (3.2.2d)

For a set B of boundary conditions, we denote by Ωp
B(M) the space of p–

forms obeying the boundary conditions B. We further denote by Harmp
B(M)

the corresponding space of harmonic p–forms and by bBp its dimension (p–th
B Betti number).

Ωp(M) is a preHilbertian space with the standard inner product
∫
M α∧?β,

for α, β ∈ Ωp(M). When a set of boundary conditions B of the list (3.2.1)
is imposed, the right hand side of (3.1.1) vanishes. So, (3.1.1) becomes a
true Hilbert space relation. (3.1.1) shows that d∗ is the adjoint of d as
suggested by the notation. Similarly, when a set of boundary conditions B
of the list (3.2.2) is imposed, the right hand sides of the Green identities
(3.1.2), (3.1.3) vanish. Again, (3.1.2), (3.1.3) become genuine Hilbert space
relations. (3.1.2) implies that a p–form α ∈ Ωp

B(M) is harmonic if and only
if it is closed an coclosed, i. e. dα = 0, d∗α = 0. (3.1.3) entails the Hodge
Laplacian ∆ on Ωp

B(M) is self adjoint.

For a form degree p and a set B of boundary conditions of the list (3.2.2),
we denote by GB a p–form Green operator of the Hodge Laplacian ∆ sat-
isfying the boundary conditions B in both arguments (cf. eq. (3.1.4)). GB
exists and is unique only if the Betti number bBp = 0.
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There are several versions of Hodge orthogonal decomposition theorem
on a manifold with boundary. Here, we report the ones which will be useful
in the following.

Ωp(M) = dΩp−1
nor (M)⊕ d∗Ωp+1

tan (M)⊕ kerd ∩ kerd∗ ∩ Ωp(M), (3.2.3a)

Ωp(M) = dΩp−1(M)⊕ d∗Ωp+1
tan (M)⊕Harmp

abs(M), (3.2.3b)

Ωp(M) = dΩp−1
nor (M)⊕ d∗Ωp+1(M)⊕Harmp

rel(M). (3.2.3c)

3.3 Harmonic representation of cohomology and Poincarè dual-
ity

In the following, only absolute and relative boundary conditions will play a
role.

On a manifold with boundary, both absolute and relative cohomology
have a harmonic representation. Indeed, one has the isomorphisms

Hp(M,R) ∼= Harmp
abs(M), (3.3.1a)

Hp(M,∂M,R) ∼= Harmp
rel(M), (3.3.1b)

[18,19]. (3.3.1) follows easily from the Hodge orthogonal decomposition
theorems (3.2.3b), (3.2.3c) and the equivalence of the de Rham cohomology
and the sheaf cohomology of R. This justifies the name given to these sets
of boundary conditions. It also shows that the Betti numbers babsp, brelp are
finite. The Hodge star operator ? preserves harmonicity and interchanges
absolute and relative boundary conditions. Thus, one has the isomorphism

Harmp
abs(M)

?∼= Harmm−p
rel (M). (3.3.2)

As a consequence,
babsp = brelm−p. (3.3.3)

From (3.3.1), (3.3.2), one recovers the Poincaré duality relation

Hp(M,R) ∼= Hm−p(M,∂M,R). (3.3.4)

The Poincaré duality pairing of forms α ∈ Harmp
abs(M), β ∈ Harmm−p

rel (M)
is given as usual by

∫
M α ∧ β [18,19].

We denote by Harmp
absZ(M), Harmp

relZ(M) the images in Harmp
abs(M),

Harmp
rel(M) of the integer lattices Hp

Z(M,R), Hp
Z(M,∂M,R) of Hp(M,R),

Hp(M,∂M,R) under the isomorphisms (3.3.1), respectively. α ∈
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Harmp
absZ(M) if and only if

∫
S α ∈ Z for any singular p–cycle S of M .

α ∈ Harmp
relZ(M) if and only if

∫
S α ∈ Z for any relative singular p–cycle S

of M .

4 The gauge theory action

Let M be a compact oriented 4–fold with boundary ∂M . Let g be a metric
on M and g∂ = ι∂

∗g be the induced metric on ∂M .

4.1 The gauge theory action

Let P ∈ Princ(M) and P∂ ∈ Princ(∂M) be principal T bundles on M and
∂M , respectively, such that

ι∂
∗P = P∂ . (4.1.1)

The gauge theory action is the functional of the connection A ∈ Conn(P )
defined by

S(A, τ) =
√−1τ2

4π

∫

M
FA ∧ ?FA +

τ1

4π

∫

M
FA ∧ FA, (4.1.2)

where
τ = τ1 +

√−1τ2, τ1 ∈ R, τ2 ∈ R+ (4.1.3)
(cf. eq. (2.4.1)). S(A, τ) is invariant under the action of the group of gauge
transformations Gau(M) (cf. subsect. 2.3 and eq. (2.4.8)).

Since M has a boundary, it is natural to require that the connection A
satisfies an appropriate set of boundary conditions. There is essentially only
one natural choice of the latter, namely

ι∂
∗A = A∂ , (4.1.4)

where A∂ ∈ Conn(P∂) is a fixed connection. These boundary conditions are
not preserved the action of Gau(M). But they are by that of the group of
relative gauge transformations Gau(M,∂M) (cf. subsect. 2.3).

The field equations are obtained by varying S(A, τ) with respect to A ∈
Conn(P ) with the boundary conditions (4.1.4) respected. The allowed vari-
ations of A are therefore 1–forms δA ∈ Ω1(M) such that ι∂∗δA = 0, i. e.
δA ∈ Ω1

nor(M) satisfies normal boundary conditions (cf. eq. (3.2.1a)). Pro-
ceeding in this way, one finds that a gauge field A satisfying the boundary
conditions (4.1.4) is classical if it is solution of the usual vacuum Maxwell
field equations

d∗FA = 0. (4.1.5)
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In view of quantizing the theory, we resort to the customary classical–
background–quantum–splitting method, which we implement as follows. We
factorize the bundle P ∈ Princ(M) as

P = PcP̄ , (4.1.6)

where Pc ∈ Princ(M) is a fiducial reference bundle such that

ι∂
∗Pc = P∂ (4.1.7)

and P̄ ∈ Princ(M) is a bundle such that ι∂∗P̄ is trivial. Next, we endow
P̄ with a trivialization t̄ of ι∂∗P̄ , obtaining in this way a relative bundle
(P̄ , t̄) ∈ Princ(M,∂M) (cf. subsect. 2.2). One needs t̄ in order to carry
out the decomposition of the connections of P described below. Next, we
choose fiducial reference connections Ac ∈ Conn(P ) and Ac∂ ∈ Conn(P∂)
such that

ι∂
∗Ac = Ac∂ . (4.1.8)

We further demand that Ac satisfies the field equations (4.1.5),

d∗FAc = 0. (4.1.9)

We then write the generic connections A ∈ Conn(P ) and A∂ ∈ Conn(P∂)
as follows:

A = Ac + Ā+A+ v, (4.1.10)
A∂ = Ac∂ + a. (4.1.11)

Here, Ā ∈ Conn(P̄ , t̄) is a relative connection and A ∈ Ω1(M), v ∈ Ω1(M)
and a ∈ Ω1(∂M) are 1–forms on M and ∂M , respectively. Ā satisfies the
boundary conditions (2.4.4),

ι∂
∗FĀ = 0 (4.1.12)

and the field equations (4.1.5),

d∗FĀ = 0. (4.1.13)

By (2.4.2), (4.1.12), (4.1.13), FĀ ∈ Harm2
rel(M) is a harmonic 2–form satis-

fying relative boundary conditions (cf. eq. (3.2.2d)). As FĀ is the curvature
of a relative connection, FĀ/2π has integer relative periods (cf. eq. (2.4.3)).
Hence, FĀ/2π ∈ Harm2

relZ(M). A satisfies the boundary conditions

ι∂
∗A = a, (4.1.14)

the field equations
d∗dA = 0 (4.1.15)

and the Lorenz gauge fixing condition

d∗A = 0. (4.1.16)

A is determined by a up to a certain ambiguity, as will be shown in the next
subsection. v satisfies the normal boundary conditions

ι∂
∗v = 0. (4.1.17)
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Thus, v ∈ Ω1
nor(M). v is the bulk quantum fluctuation. Since this is a

gauge theory, gauge fixing is required by quantization. We fix the gauge by
imposing the customary Lorenz gauge fixing condition

d∗v = 0. (4.1.18)

Consequently, v satisfies relative boundary conditions and, so, v ∈ Ω1
rel(M).

It is easy to check that A and A∂ , as given in (4.1.10), (4.1.11), fulfill (4.1.4).

A simple calculations shows that

S(A, τ) = S(Ac + Ā, τ) + S(A, τ) +
√−1τ2

2π

∮

∂M
a ∧ ?∂ι∂∗j(n)FĀ (4.1.19)

+
√−1τ2

2π

∮

∂M
a ∧ ?∂ι∂∗j(n)FAc +

τ1

2π

∮

∂M
a ∧ ι∂∗FAc

+
√−1τ2

4π

∫

M
dv ∧ ?dv.

To obtain (4.1.18), one exploits Stokes’ theorem, the boundary conditions
(4.1.12), (4.1.14) and (4.1.17) and the field equations (4.1.9), (4.1.13), (4.1.15).
The next step will be the computation of the various contributions in the
right hand side of (4.1.19).

4.2 Calculation of the action S(A, τ)

The calculation of the action S(A, τ) requires the previous calculation of
the 1–form field A. A, in turn, should satisfy (4.1.14)–(4.1.16). Thus, the
computation of A involves the solution of a certain boundary value problem.
Abstractly, the problem can be stated in the following form

d∗dω = 0, d∗ω = 0, (4.2.1a)

ι∂
∗ω = a, (4.2.1b)

with ω ∈ Ω1(M) and ∈ Ω1(∂M). Next, we shall discuss whether the problem
admits a solution ω and whether the solution, when it exists, is unique.
Further, we shall provide an expression of ω in terms of a valid under certain
conditions.

In (4.2.1a), the condition d∗ω = 0 fixes the gauge. It is important to
ascertain whether it does so completely. To this end, let us consider the
boundary value problem (4.2.1), without gauge fixing:

d∗dω = 0, (4.2.2a)

ι∂
∗ω = a. (4.2.2b)
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Assume that (4.2.2) has a solution ω. If λ ∈ Ω0(M) and ι∂∗dλ = d∂ι∂
∗λ = 0,

then ω′ = ω+dλ is also a solution of (4.2.2). Of course, this degeneracy is due
to the gauge symmetry of the problem (4.2.2). Let us now impose on ω the
gauge fixing condition d∗ω = 0. Then, d∗ω′ = 0, provided the gauge function
λ satisfies d∗dλ = 0. Since d∂ι∂∗λ = 0, ι∂∗λ = b01∂ for some b0 ∈ R. (Here,
we assume ∂M to be connected for simplicity. The argument generalizes
to the case where ∂M has several connected components in straightforward
fashion). Now define λ̄ = λ− b01. Then, d∗dλ̄ = 0 and ι∂

∗λ̄ = 0. From the
1st Green identity (3.1.2) with α = β = λ̄, one finds that dλ̄ = 0. From the
definition of λ̄, it follows that dλ = 0. Therefore, ω = ω′. In conclusion, the
gauge symmetry is completely fixed by the fixing condition.

Let us analyze under which conditions the boundary value problem (4.2.1)
has a unique solution, assuming it has at least one. Let ω1, ω2 be two
solutions of the problem and let $ = ω2 − ω1 be their difference. Then,
$ satisfies ∆$ = 0, ι∂∗$ = 0, ι∂∗d∗$ = 0, i. e. $ ∈ Harm1

rel(M) is a
harmonic 1–form obeying relative boundary conditions. Thus, from (3.3.1b),
the solution of the boundary value problem (4.2.1), if any, is unique if the
1st relative cohomology space vanishes:

H1(M,∂M,R) = 0. (4.2.3)

Let us assume first that (4.2.3) is fulfilled. As explained in subsect. 3.2,
the vanishing of brel1 ensures that there is a unique relative Green operator
Grel of the Hodge Laplacian ∆ on Ω1

rel(M). Grel satisfies

∆Grelx = ?δx, (4.2.4a)

ι∂
∗Grelx = 0, ι∂

∗d∗Grelx = 0, (4.2.4b)

for x ∈M \∂M . Substituting Grel in the identity (3.1.5) and using (4.2.4b),
we conclude that, if the boundary value problem (4.2.1) has a solution ω,
this is necessarily given by the expression:

ω(x) =
∮

∂M
a ∧ ?∂ι∂∗j(n)dGrelx, (4.2.5)

where x ∈M \ ∂M . To show the existence of a solution of (4.2.1), we have
only to verify that the right hand side of (4.2.5) satisfies (4.2.1).

Recall that the spectrum of the Hodge Laplacian ∆ on Ω1
rel(M) is discrete

and that each eigenvalue has finite multiplicity [18,19]. Let λr be the eigen-
values of ∆ on Ω1

rel(M) counting multiplicity and let φr be the corresponding
normalized 1–eigenforms, so that ∆φr = λrφr. Recalling that brel1 = 0 and
using the Hodge decomposition (3.2.3c), it is simple to show that λr > 0 and
that φr is either closed or coclosed, for every r. The relative Green function
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is therefore
Grel(x, x′) = −

∑
r

λr
−1φr(x)φr(x′), (4.2.6)

for x, x′ ∈M . In (4.2.5), there appears the kernel

H(x, x′) = (ι∂∗j(n)d)(x′)Grel(x, x′), (4.2.7)

where x ∈M \ ∂M , x′ ∈ ∂M . Substituting (4.2.6) in (4.2.7), we find that

H(x, x′) = −
∑
r

λr
−1φr(x)(ι∂∗j(n)d)(x′)φr(x′). (4.2.8)

Using (4.2.8), it is straightforward to show that

∆(x)H(x, x′) = 0, d∗(x)H(x, x′) = 0, (4.2.9)

for x ∈ M \ ∂M , x′ ∈ ∂M . To this end, we note that
∑

r φr(x) ? φr(x′) =
δx(x′) = 0, for x ∈M \ ∂M , x′ ∈ ∂M and that, in (4.2.8), only the coclosed
φr contribute. From (4.2.9), it is now apparent that ω as given by (4.2.5)
satisfies (4.2.1a) in M \∂M . It remains to check that ω extends smoothly to
∂M and that the boundary condition (4.2.1b) is verified. We do not know
how to do this in general. Below, we assume that the verification is possible.

When (4.2.3) does not hold, the above discussion must be modified. There
is no reason in principle why the problem (4.2.1) should not have a solution
ω. In this case, however, ω is determined by a only up to the addition of
an arbitrary element $ ∈ Harm1

rel(M) and is no longer given by a simple
expression of the form (4.2.5). The combination dω, conversely, is uniquely
determined by a, since d$ = 0. From (4.2.1), it is obvious that dω depends
linearly on a.

Let us assume again that (4.2.3) is fulfilled. From (4.1.14)–(4.1.16), A
satisfies the boundary value problem (4.2.1). As (4.2.3) holds, it is given
by (4.2.5). Using the above considerations, it is now easy to compute the
action S(A, τ). One finds

S(A, τ) =
√−1τ2

4π

∮

∂M
a ∧ ?∂ι∂∗j(n)dA+

τ1

4π

∮

∂M
a ∧ d∂a, (4.2.10)

where, in the first term,

A(x) =
∮

∂M
a ∧ ?∂ι∂∗j(n)dGrelx. (4.2.11)

Note that the first term contains effectively the kernel

K(x, x′) = (ι∂∗j(n)d)(x)(ι∂∗j(n)d)(x′)Grel(x;x′), (4.2.12)

where x, x′ ∈ ∂M . K is a symmetric distributional biform of bidegree (1, 1)
on ∂M × ∂M .
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It is convenient to write the above expression in more explicit tensor
notation. For every point x ∈ ∂M , there is an open neighborhood O of x in
M and a diffeomorphism φ : O → (R− ∪ {0})× R3 such that φ(O ∩ ∂M) =
{0}×R3. So, there are local coordinates xi, i = 1, 2, 3, 4, at the boundary,
which split as (x0, xa), where x0 is valued in R−∪{0} and xa is valued in R,
a = 1, 2, 3. Locally, the boundary is defined by the condition x0 = 0 and
is parameterized by the xa. We denote by middle lower case Latin letters
i, j, k, ... bulk 4 dimensional tensor indices and by early lower case Latin
letters a, b, c, ... boundary 3 dimensional tensor indices. The outward unit
normal vector field is given by

ni = g0i/g00 1
2 . (4.2.13)

The induced metric g∂ on ∂M and the totally antisymmetric tensor ε∂ are
given by

g∂ab = gab ◦ ι∂ , g∂
ab =

(
gab − ga0g0b/g00

) ◦ ι∂ , (4.2.14)

ε∂abc =
(
g00 1

2 ε0abc
) ◦ ι∂ . (4.2.15)

The action S(A, τ) reads then

S(A, τ) =
√−1τ2

4π

∮

∂M

∮

∂M
d3xg∂

1
2 (x)d3x′g∂

1
2 (x′)g∂ab(x)g∂a

′b′(x′) (4.2.16)

× ab(x)ab′(x′)Kaa′(x;x′) +
τ1

4π

∮

∂M
d3xg∂

1
2 (x)ε∂abc(x)aa(x)∂bac(x),

where the kernel Kaa′(x;x′) is given by

Kaa′(x;x′) = g00 1
2 (x)g0′0′ 1

2 (x′)
[
∂0∂
′
0′Grelaa′(x, x′) (4.2.17)

−∂0∂
′
a′Grela0′(x, x′)− ∂a∂′0′Grel0a′(x, x′) + ∂a∂

′
a′Grel00′(x, x′)

]
,

with x, x′ ∈ ∂M .

When (4.2.3) does not hold, the above calculation is not applicable. For
reasons explained above, even though A is not uniquely determined by a,
being affected by an additive ambiguity in Harm1

rel(M), the combination dA
is and depends linearly on a. Since the action S(A, τ) depends quadratically
on dA, by (4.1.2), S(A, τ) is a well defined quadratic functional of a. It is
easy to see that S(A, τ) is still given by an expression of the form (4.2.16).
However, now, the kernel K in no longer given by (4.2.17).

So, regardless whether (4.2.3) holds or not, we can write in general

S(A, τ) = S(a, τ), (4.2.18)

where S(a, τ) is the quadratic functional of a given by the right hand side
of (4.2.16) in terms of the kernel K. When (4.2.3) is fulfilled, K is given by
(4.2.17).
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4.3 Calculation of the action S(Ac + Ā, τ)

Let {Fr|r = 1, . . . , b2} be a basis of the integer lattice Harm2
relZ(M) of har-

monic 2 forms obeying relative boundary conditions and having relative
integer periods, where b2 ≡ brel2 = babs2 (cf. eq. (3.2.2d) and subsects. 3.2,
3.3).

The intersection matrix Q of M is defined by

Qrs =
∫

M
Fr ∧ Fs. (4.3.1)

As well known, Q is a symmetric integer b2 × b2 matrix characterizing the
topology of M . When ∂M 6= ∅, Q is generally singular. (Recall that,
instead, if ∂M = ∅, Q is unimodular).

The Hodge matrix H of M is defined by

Hrs =
∫

M
Fr ∧ ?Fs. (4.3.2)

As
∫
M F ∧ ∗F is a norm on Harm2(M), H is a positive definite symmetric

b2 × b2 matrix.

From (4.1.12), (4.1.13) and the remarks below those relations one has
immediately that

FĀ = 2π
∑
r

krFr, (4.3.3)

where kr ∈ Z. So, FĀ is completely characterized by the lattice point k ∈
Zb2 .

Using (4.1.2), (4.3.1)–(4.3.3), we obtain

S(Ac + Ā, τ) = S(Ac, τ) + πkt(τ1Q+
√−1τ2H)k (4.3.4)

+kt
[√−1τ2

∫

M
F ∧ ?FAc + τ1

∫

M
F ∧ FAc

]
,

where matrix notation is used.

4.4. Calculation of the term
√−1τ2

2π

∮
∂M a ∧ ?∂ι∂∗j(n)FĀ

Using (4.3.3), this term is easily computed. The result is
√−1τ2

2π

∮

∂M
a ∧ ?∂ι∂∗j(n)FĀ =

√−1τ2k
t

∮

∂M
a ∧ ?∂ι∂∗j(n)F, (4.4.1)

where matrix notation is used again.
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The computation of S(A, τ) is now complete.

5 4–d Abelian duality and SL(2,Z) action of 3–d conformal
field theory

We now have all the results needed to discuss Witten’s claim in [1] that
the SL(2,Z) action in nearly Gaussian 3–dimensional conformal field theory
is a holographic image of the well–known Abelian duality of 4–dimensional
gauge theory. 2

5.1 The SL(2,Z) action

Let M̂ be an oriented compact 3–fold. Let M̂ be endowed with a conformal
structure γ̂ and a compatible spin structure σ̂. (Below, we shall denote all
objects relating to M̂ with a hat). Consider a 3–dimensional conformal field
theory on M̂ having a global U(1) symmetry with symmetry current ̂. Fix
a bundle P̂ ∈ Princ(M̂) and couple ̂ to a background gauge connection
Â ∈ Conn(P̂ ) (cf. subsect. 2.2, 2.4). The coupling yields a generating
functional ZP̂ (Â) of the correlators of ̂ depending on the bundle P̂ of a
form analogous to (1.1).

As explained in the introduction, the functional ZP̂ (Â) completely char-
acterizes the conformal field theory with the chosen gauge coupling. So, the
SL(2,Z) action on the set of all such field theories with gauge coupling can
be expressed as the action of SL(2,Z) operators Ŝ, T̂ , Ĉ on the family of
the corresponding functionals ZP̂ (Â).

Taking (1.5) as a model, the expression of the operators Ŝ, T̂ , Ĉ can be
cast in a relatively more precise fashion as follows:

ŜZP̂ (Â) =
∑

Q̂∈Princ(M̂)

∫

B̂∈Conn(Q̂)

DB̂

%(M̂)
ZQ̂(B̂) exp

(√−1
2π

∫

M̂
B̂ ∧ d̂Â

)
, (5.1.1a)

T̂ZP̂ (Â) = ZP̂ (Â) exp
(√−1

4π

∫

M̂
Â ∧ d̂Â

)
, (5.1.1b)

ĈZP̂ (Â) = ZP̂−1(−Â), (5.1.1c)

2I thank E. Witten for explaining me some crucial points of the discussion of subsects.
5.1, 5.2 below.
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where %(M̂) = vol(Gau(M̂)) is the formal volume of the group of gauge
transformations on M̂ (cf. subsect. 2.3). The level 1 mixed Chern Simons
action 1

2π

∫
M̂ B̂∧ d̂Â with Â ∈ Conn(P̂ ), B̂ ∈ Conn(Q̂) appearing in (5.1.1a)

is defined according to the procedure expounded in Witten’s paper [1]. This
requires choosing an oriented compact 4–fold M with ∂M = M̂ and bundles
P, Q ∈ Princ(M) extending P̂ , Q̂ together with connections A ∈ Conn(P ),
B ∈ Conn(Q) extending Â, B̂. Then, 1

2π

∫
M̂ B̂ ∧ d̂Â = 1

2π

∫
M FB ∧ FA

mod 2πZ independently from all choices. Recall that the extendability of a
bundle R̂ ∈ Princ(M̂) to a bundle R ∈ Princ(M) is governed by the exact
sequence (2.5.1). In general, for a given 3–fold M̂ , there is no universal
choice of M doing the job. Several M may be needed to allow for the
extension of all possible bundles R̂ ∈ Princ(M̂). In particular, for a pair
of bundles P̂ , Q̂ ∈ Princ(M̂), there may be no 4–fold M allowing for the
simultaneous extension of both. In that case, the corresponding term in the
sum over Q̂ ∈ Princ(M̂) in (5.1.1a) is supposed to be absent. The level
1/2 Chern Simons action 1

4π

∫
M̂ Â ∧ d̂Â with Â ∈ Conn(P̂ ) appearing in

(5.1.1b) is defined again according to the procedure expounded in Witten’s
paper. In this case, it is necessary to choose an oriented compact 4–fold M
with ∂M = M̂ , such that there are a metric g of M whose pull–back to
M̂ belongs to γ̂ and a spin structure σ of M subordinated to g extending
σ̂, and a bundle P ∈ Princ(M) extending P̂ together with a connection
A ∈ Conn(P ) extending Â. Then, 1

4π

∫
M̂ Â∧ d̂Â = 1

4π

∫
M FA ∧FA mod 2πZ

independently from all choices. Again, for reasons already explained, there
is no universal choice of M doing the job in general.

Next, let us analyze the gauge invariance of the functional ZP̂ (Â). Accord-
ing to (1.2), for given bundle P̂ ∈ Princ(M̂) and connection Â ∈ Conn(P̂ ),
ZP̂ (Â) should be invariant under any topologically trivial gauge transfor-
mation:

ZP̂ (ÂÛ ) = ZP̂ (Â), (5.1.2)

for Û ∈ Gauc(M̂) (cf. subsect. 2.3 and eq. (2.4.8)). More generally, one may
demand that ZP̂ (Â) should be invariant under any gauge transformation
Û ∈ Gau(M̂). However, there are problems associated with this point of
view. If we insist that ZP̂ (Â) is the generating functional of the correlators
of the conserved current ̂ and, thus, is of a form analogous to (1.1), (5.1.2)
must definitely hold for Û ∈ Gauc(M̂). Conversely, (5.1.2) can hold for a
general Û ∈ Gau(M̂) only if the current ̂ satisfies in addition a suitable
quantization condition, which is not guaranteed in general. (Recall that,
by (2.4.8), ÂÛ = Â + B̂Û , where B̂Û ∈ Ω1

Z(M̂) is a closed 1–form with
integer periods). Further, the Ŝ, T̂ operators defined in (5.1.1a), (5.1.1b)
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are manifestly compatible with (5.1.2) if Û ∈ Gauc(M̂), but they are not if
Û ∈ Gau(M̂). In fact, the gauge transformation of the Chern Simons actions
entering (5.1.1a), (5.1.1a) requires extending a gauge transformation Û ∈
Gau(M̂) to a gauge transformation U ∈ Gau(M), where M is the compact
oriented 4–fold with ∂M = M̂ required by the definition of those actions.
Recall that the extendability of a gauge transformation V̂ ∈ Gau(M̂) to a
gauge transformation V ∈ Gau(M) is governed by the exact sequence (2.5.5)
and, for a given M , is not guaranteed in general. So, it seems plausible that
one should demand only the restricted version of gauge invariance (5.1.2).
Besides, ŜZP̂ (Â), as defined in (5.1.1a), has obviously a larger invariance:
it is invariant under shifts of Â by a closed 1–form B̂ ∈ Ω1(M̂). This does
not seem to be compatible with the interpretation of ŜZP̂ (Â) as generating
functional of the correlators of a conserved current ̂ such as (1.1), unless all
closed 1–forms B̂ ∈ Ω1(M̂) are exact, i. e.

H1(M̂,R) = 0. (5.1.3)

Below, we shall therefore consider only 3-folds M̂ satisfying (5.1.3). Since
M̂ is a compact oriented 3–fold, TorH1(M̂,Z) = 0. (This is a simple con-
sequence of the universal coefficient theorem for cohomology). As a conse-
quence, one has

H1(M̂,Z) = 0. (5.1.4)

Then, the short exact sequence (2.3.3) entails that

Gau(M̂) = Gauc(M̂). (5.1.5)

Hence, all gauge transformations on M̂ are topologically trivial.

By Poincarè duality, (5.1.3) implies that

H2(M̂,R) = 0. (5.1.6)

It follows that

H2(M̂,Z) = TorH2(M̂,Z). (5.1.7)

By the isomorphism (2.2.2), we have then

Princ(M̂) = Princ0(M̂). (5.1.8)

So, all principal bundles on M̂ are flat.

Before proceeding, one should keep in mind, however, that (5.1.3) is a
mere simplifying assumption, not a consistency requirement. (5.13) may
indeed be relaxed, though at the price of complicating the formalism.
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5.2 Witten’s holographic conjecture

Let us now come to Witten’s conjecture. For the class of large N nearly
Gaussian 3 dimensional conformal field theories on an oriented compact
3–fold M̂ with conformal structure γ̂ and compatible spin structure σ̂, con-
sidered by Witten, the generating functional ZP̂ (Â, τ) depends on a modular
parameter τ ∈ H+, parameterizing the various field theories, and satisfies
the modular relations

ŜZP̂ (Â, τ) = ZP̂ (Â,−1/τ), (5.2.1a)

T̂ZP̂ (Â, τ) = ZP̂ (Â, τ + 1), (5.2.1b)

ĈZP̂ (Â, τ) = ZP̂ (Â, τ), (5.2.1c)

with Ŝ, T̂ , Ĉ defined by (5.1.1) (cf. eq. (1.7)). According to Witten’s
holographic conjecture, these 3 dimensional conformal field theories are ob-
tainable via holography from 4 dimensional Abelian gauge theory on 4–folds
M bounded by M̂ . The τ dependence of ZP̂ (Â, τ) is a consequence of that
of the gauge theory action S(A, τ) (cf. eqs. (4.1.2), (4.1.3)). Finally, the
relations (5.2.1) follow from the Abelian duality of gauge theory [11–15].

The conjecture can be formulated in a relatively more precise fashion as
follows. In the holographic correspondence, the conformal field theory on
the given 3–fold M̂ is constructed by summing over 4–folds M that have M̂
as their boundary. In general, no particular M contributes the full answer
and the individual M , which do contribute, do so only to some topological
sectors of the conformal field theory [20,21]. The conjecture can thus be
stated as

ZP̂ (Â, τ) =
∑

M∈M(P̂ )

ZM
P̂

(Â, τ), (5.2.2)

where M(P̂ ) is an appropriate set of oriented compact 4–folds M such that
∂M = M̂ and ZM

P̂
(Â, τ) is the partition function of Abelian gauge theory

on M with boundary conditions specified by the data P̂ , Â. Unfortunately,
neither the content of the set M(P̂ ) nor the relative normalization of the
individual contributions ZM

P̂
(Â, τ) are known in general.

For a given P̂ ∈ Princ(M̂), each 4–fold M ∈ M(P̂ ) must have the fol-
lowing properties. First, in compliance with the principles of the AdS/CFT
correspondence, there exists an asymptotically hyperbolic Einstein metric
gAHE of M with a double pole at M̂ having the conformal structure γ̂ of M̂
as conformal infinity (see ref. [22]). Second, there exists a spin structure σ
of M subordinated to some conformal compactification g of gAHE extending
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the spin structure σ̂ of M̂ (see again ref. [22]). Third, there exists a bundle
P ∈ Princ(M) extending P̂ . 3 Finally, the set M(P̂ ) must be independent
from the data γ̂, σ̂ at least for γ̂, σ̂ belonging to a reasonably broad class.

For given σ̂, γ̂, P̂ ∈ Princ(M̂) and M ∈ M(P̂ ), an explicit expression of
ZM
P̂

(Â, τ) can be obtained. To be consistent with the notational conven-

tions of sect. 4, we set σ̂ = σ∂ , γ̂ = γ∂ , P̂ = P∂ and, accordingly, we denote
a generic connection Â ∈ Conn(P̂ ) as A∂ ∈ Conn(P∂) and the functional
ZM
P̂

(Â, τ) as ZMP∂ (A∂ , τ). The gauge theory partition function ZMP∂ (A∂ , τ)
involves a sum over the set of the asymptotically hyperbolic Einstein met-
rics gAHE of M with a double pole at ∂M having γ∂ as conformal infinity
modulo the action of the diffeomorphisms of M inducing the identity on ∂M
and, for each such gAHE , a sum over the set of the spin structures σ of M
subordinated to some conformal compactification g of gAHE and extending
σ∂ . It further involves a sum over the set of the bundles P ∈ Princ(M) such
that ι∂∗P = P∂ and a functional integration over the set of the connections
A ∈ Conn(P ) such that ι∂∗A = A∂ [11–15]. However, below, in order to
keep the formulas reasonably simple, we shall not explicitly indicate the first
two summations. Taking all this into account, ZMP∂ (A∂ , τ) is given by

ZMP∂ (A∂ , τ) (5.2.3)

=
∑

P∈Princ(M),ι∂∗P=P∂

∫

A∈Conn(P ),ι∂∗A=A∂

DA

%(M,∂M)
exp

(√−1S(A, τ)
)
,

where S(A, τ) is the gauge theory action (4.1.2) and %(M,∂M) = vol(Gau
(M,∂M)) is the formal volume of the group of relative gauge transforma-
tions (cf. subsect. 2.3). The metric g contained in the action S(A, τ) is a
conformal compactification of the relevant asymptotically hyperbolic Ein-
stein metric gAHE .

Following the treatment of sect. 4, we decompose the bundle P as in
(4.1.6) and the connections A and A∂ as in (4.1.10), (4.1.11). Proceeding in
this way, (5.2.3) can be cast as

ZMP∂ (Ac∂ + a, τ) (5.2.4)

=
∑

(P̄ ,t̄)∈Princ(M,∂M)

∫

v∈Ω1
nor

Dv

%(M,∂M)
exp

(√−1S(Ac + Ā+A+ v, τ)
)
.

Recall that, here, Princ(M,∂M) is the group of relative principal bundles
on M and Ā ∈ Conn(P̄ , t̄) is a chosen relative connection of the relative

3In reference [20], it is argued that, in general, there might be additional contributions
from branes on M . For these, this condition may be relaxed. For simplicity, we shall
ignore this possibility in the following analysis.
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bundle (P̄ , t̄) (cf. subsect. 2.2, 2.4). The action S(A, τ) in the above ex-
pression is given by (4.1.19), (4.2.18), (4.3.4) and (4.4.1). The functional
integration of the quantum fluctuations v is Gaussian and thus trivial. It
yields a factor τ brel1/2

2 for reasons analogous to those leading to a factor
τ

(b1−1)/2
2 in the boundaryless case of [12,15]. On account of (2.2.4), the sum

over Princ(M,∂M) can be turned into a sum over the degree 2 relative
Z cohomology group H2(M,∂M,Z). The integrand depends only on the
free part of the latter, as is evident from the calculation of subsect. 4.3.
So, the sum over H2(M,∂M,Z) reduces to one over the lattice Zb2 times
a factor t2rel = |TorH2(M,∂M,Z)|. Therefore, the τ dependent factor of
ZMP∂ (Ac∂ + a, τ) is of the form

ZMP∂ (Ac∂ + a, τ) = exp
{√−1

[
S(Ac, τ) + S(a, τ) (5.2.5)

+
√−1τ2

2π

∮

∂M
a ∧ ?∂ι∂∗j(n)FAc +

τ1

2π

∮

∂M
a ∧ ι∂∗FAc

]}

·t2rel τ
brel1/2
2

∑

k∈Zb2
exp

{√−1
[
πkt(τ1Q+

√−1τ2H)k

+kt
(√−1τ2

∫

M
F ∧ ?FAc + τ1

∫

M
F ∧ FAc

+
√−1τ2

∮

∂M
a ∧ ?∂ι∂∗j(n)F

)]}
.

To convince ourselves that Witten’s conjecture is reasonable, let us ex-
amine a fully computable example in detail. Suppose that M̂ = S3 and
that γ̂ and σ̂ are respectively the conformal structure of the standard round
metric of S3 and the spin structure of S3 subordinated to it. (σ̂ is uniquely
determined for H1(S3,Z2) = 0). Since H1(S3,Z) = 0, (5.1.3) is satisfied.
As H2(S3,Z) = 0, Princ(S3) contains only the trivial bundle 1̂, by the
isomorphism (2.2.2). There is a distinguished 4–fold M with ∂M = S3,
namely M = B4. B4 admits an asymptotically hyperbolic Einstein metric
with a double pole at ∂B4 having the conformal structure γ̂ as conformal
infinity, namely the standard Poincaré metric gP . The latter is also the
only such metric modulo diffeomorphisms of B4 inducing the identity on
∂B4. Further, B4 supports a unique spin structure σ subordinated to the
obvious conformal compactification g of gP , which necessarily extends the
spin structure σ̂. Bundle extendability is obviously not an issue in this case.
It is therefore reasonable to assume, given the simplicity of the topological
setting, that M(1̂) = {B4}. (5.2.2) then states that

Z1̂(Â, τ) = ZB
4

1̂
(Â, τ). (5.2.6)
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Choosing conveniently Ac∂ = 0, Pc = 1 and Ac = 0 and recalling that B4

is cohomologically trivial, (5.2.5) yields simply

ZB
4

1̂
(a, τ) = exp

(√−1S(a, τ)
)
. (5.2.7)

As conformal compactification of gP , we take the flat metric g induced by
the natural inclusion of B4 into R4 with standard flat metric. Since B4

satisfies condition (4.2.3), the calculation of S(a, τ) of subsect. 4.2 can be
used.

Let O be the open subset of B4 obtained by removing a closed segment
joining the center of B4 and a point of the boundary ∂B4. Using appropriate
adapted local coordinates xi = (x0, x) as in subsect. 4.2, we can identify O
with (R−∪{0})×R3 and gij with δij . When the support of a is contained in
O, as we assume below, the computation is amenable by standard calculus.

The relative Green operator Grelij′(x;x′) on 1–forms (cf. subsect. 4.2) is
given explicitly by

Grelij′(x;x′) = − 1
4π2

[ δij′

(x0 − x′0′)2 + (x− x′)2
− δij′ − 2δi0δ0′j′

(x0 + x′0′)2 + (x− x′)2

]
.

(5.2.8)
The first term is harmonic for x′ 6= x and ensures that the distributional
equation

∂k∂kGrelij′(x;x′) = δij′δ(x− x′) (5.2.9)

is satisfied, as required by (4.2.4a). The second term is harmonic everywhere
and is required to make sure that the relative boundary conditions

Grelia′(x; 0, x′) = 0, ∂′j
′
Grelij′(x; 0, x′) = 0 (5.2.10)

are fulfilled, in compliance with (4.2.4b).

From (4.2.17), the kernel Kaa′(x;x′) is given by

Kaa′(x;x′) = ∂0∂
′
0′Grelaa′(0, x; 0, x′) + ∂a∂

′
a′Grel00′(0, x; 0, x′). (5.2.11)

Substituting (5.2.8) into (5.2.11), one gets

Kaa′(x;x′) = − 2
π2|x− x′|4

[
δaa′ − 2

(x− x′)a(x− x′)a′
|x− x′|2

]
. (5.2.12)

The Green operator (5.2.8) has the explicit Fourier representation

Grelij′(x;x′) = −1
2

∫
d3k

(2π)3

1
k

exp(
√−1k · (x− x′)) (5.2.13)

{
δij′ exp(−k|x0 − x′0′ |)− [δij′ − 2δi0δ0′j′

]
exp(−k|x0 + x′0

′ |)
}
.
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Inserting (5.2.13) into (5.2.11), one gets

Kaa′(x;x′) =
∫

d3k

(2π)3
exp(
√−1k · (x− x′))

(
δaa′ − kaka′

k2

)
k. (5.2.14)

It is now easy to compute the action S(a, τ) in Fourier representation.
Setting

aa(k) =
∫
d3x exp(−√−1k · x)aa(x) (5.2.15)

and substituting (5.2.14) into (4.2.16), one gets through a simple calculation

S(a, τ) =
√−1
4π

∫
d3k

(2π)3
aa(k)ab(−k)

[
τ2

(
δab− kakb

k2

)
k+ τ1εabckc

]
. (5.2.16)

Inserting (5.2.16) into (5.2.7) and plugging the result in (5.2.6), we find
that Z1̂(Â, τ), as given by (5.2.6), has precisely the same form as the gener-
ating functional of the correlators of the symmetry current of the 3 dimen-
sional conformal field theory on S3 corresponding to the large N limit of a
3 dimensional field theory of N fermions with U(1) symmetry, computed by
Witten in [1]. This indicates that Witten’s conjecture is correct in this par-
ticular case. However, to be completely sure that it holds for more general
3–folds M̂ satisfying (5.1.3), we have to test it in other ways.

To perform the test, one needs an explicit expression of ZP̂ (Â, τ), which is
not readily available in general. The test is further complicated by the fact
that expression (5.2.2) is not fully explicit for reasons explained above. A
possible strategy to overcome these difficulties consists in making a reason-
able hypothesis on the content of the set M(P̂ ) and imposing that ZP̂ (Â, τ),
as given by (5.2.2), satisfies (5.2.1). In this way, on one hand one tests the
conjecture, on the other one obtains various conditions which limit the va-
lidity of the hypothesis made. This is the strategy that we shall follow in the
rest of this section. Before proceeding further, however, one should keep in
mind that the generating functional ZP̂ (Â, τ) has no natural normalization
a priori. So, in practice, (5.2.1) holds in general only up to factors indepen-
dent from Â but possibly dependent on τ . On the other hand, this the best
one can hope to find out using (5.2.2), since the overall normalization of the
gauge theory partition functions ZM

P̂
(Â, τ) is arbitrary.

In practice, the strategy described can be implemented only for some
particularly simple choice of the 3–fold M̂ with conformal structure γ̂ and
compatible spin structure σ̂. Suppose that there is a distinguished 4–fold
M with ∂M = M̂ with the following properties valid for a broad class of
data γ̂, σ̂.
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i) There exists an asymptotically hyperbolic Einstein metric gAHE of M
with a double pole at M̂ having γ̂ as conformal infinity.

ii) There exists a spin structure σ of M subordinated to some conformal
compactification g of gAHE extending σ̂.

iii) Every bundle P̂ ∈ Princ(M̂) is extendable to a bundle P ∈ Princ(M).

For simplicity, we assume that M has no connected components without
boundary. This setting is the simplest generalization of that of the 3–sphere
S3 just treated. (Further examples of such situation will be illustrated in
the next section). It is then conceivable that M(P̂ ) = {M}. Assuming this,
(5.2.2) yields the statement

ZP̂ (Â, τ) = ZM
P̂

(Â, τ), (5.2.17)

where ZM
P̂

(Â, τ) = ZMP∂ (A∂ , τ) is given by (5.2.5). As a partial test of the
conjecture, we shall check whether and under which conditions ZMP∂ (A∂ , τ)
fulfills (5.2.1) with ZP̂ (Â, τ) replaced by ZMP∂ (A∂ , τ).

5.3 Conditions on the 4–fold M

In the standard boundaryless case, when b2 > 0, Abelian duality requires
that the following conditions are met (cf. eq. (4.3.1), (4.3.2)) [12–15].

i) The intersection matrix Q is unimodular

detQ = ±1. (5.3.1)

ii) The modified Hodge matrix

H̃ = Q−1H (5.3.2)

satisfies
H̃2 = 1. (5.3.3)

These have to be satisfied also in the present context in order ZMP∂ (A∂ , τ) to
satisfy (5.2.1a), unless we are willing to envisage some sort of completely new
mechanism. Now, we shall show that these conditions cannot be fulfilled on
an oriented compact 4–fold M with boundary with b2 > 0.

Let {Fabs
r| r = 1, . . . , b2}, {Frelr| r = 1, . . . , b2} be reciprocally dual bases

of the spaces Harm2
abs(M), Harm2

rel(M), respectively. Then,∫

M
Fabs

r ∧ Frels = δrs. (5.3.4)
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By the isomorphism (3.3.2), there is an invertible b2×b2 matrix H such that

?Frelr = HrsFabs
s. (5.3.5)

Define a b2 × b2 matrix Q by either relations∫

M
Fabs

r ∧ Fabs
s = (H−1QH−1)rs, (5.3.6a)

∫

M
Frelr ∧ Frels = Qrs. (5.3.6b)

Now, assume that the matrixQ is invertible. The difference Fabs
r−Q−1rsFrels

is harmonic and orthogonal to all the Fabs
r, by (5.3.4)–(5.3.6). By the Hodge

decomposition theorem (3.2.3b), it follows then that

Fabs
r = Q−1rs(Frels + dhs), (5.3.7)

for certain 1–forms hr ∈ Ω1(M). From (5.3.5), it follows that∫

M
Fabs

r ∧ ?Fabs
s = H−1rs, (5.3.8a)

∫

M
Frelr ∧ ?Frels = Hrs. (5.3.8b)

Substituting (5.3.7) in (5.3.8a) and using (5.3.8b), it is easy to show that

H = QH−1Q−R, (5.3.9)

where R is the b2 × b2 matrix

Rrs =
∫

M
dhr ∧ ?dhs. (5.3.10)

In order (Q−1H)2 = 1, this matrix must vanish. This can happen if and
only if dhr = 0 for all r. From (5.3.7), it then follows that Harm2

abs(M) =
Harm2

rel(M). In general, such identity does not hold, unless both spaces
vanish. This contradicts the assumption that b2 > 0.

We conclude that, in order ZMP∂ (A∂ , τ) to satisfy (5.2.1a), we must have

H2(M,R) = H2(M,∂M,R) = 0. (5.3.11)

From (5.3.11), we have therefore

H2(M,Z) = TorH2(M,Z), H2(M,∂M,Z) = TorH2(M,∂M,Z).
(5.3.12)

By the isomorphisms (2.2.2), (2.2.4), we conclude that

Princ(M) = Princ0(M), Princ(M,∂M) = Princ0(M,∂M). (5.3.13)

Thus, all (relative) principal bundles onM are flat. Note that this conclusion
is consistent with (5.1.8) and the holographic formula (5.2.3).
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5.4 Final simplified expression of ZMP∂ (A∂ , τ)

From (5.1.8), (5.3.13), we are allowed to chose the reference connections Ac,
Ac∂ so that

FAc = 0. (5.4.1)

This allows for a simplification of eq. (5.2.5). The expression of the func-
tional ZMP∂ (A∂ , τ) becomes in this way

ZMP∂ (Ac∂ + a, τ) = t2rel τ
brel1/2
2 exp

(√−1S(a, τ)
) ≡ Z(a, τ). (5.4.2)

The factor t2rel τ
brel1/2
2 is irrelevant for reasons explained at end of subsect.

5.2. So, it can be dropped. By (5.4.2), ZMP∂ (Ac∂ + a, τ) is independent from
the bundle P∂ ∈ Princ(∂M) and the reference connection Ac∂ ∈ Conn(P∂).
(5.4.2) is essentially (1.9) Then, as is easy to see, the SL(2,Z) operators Ŝ,
T̂ , Ĉ defined in (5.1.1), when acting on ZMP∂ (A∂ , τ), take the simpler form
(1.5), with ZT (a) replaced by Z(a, τ), and the relations (5.2.1) reduce into
those (1.7). Note that the sum in (5.1.1a) is actually finite, since, by (5.1.8),
Princ(M̂) is a finite group.

As a check, let us now verify that the gauge invariance requirement (5.1.2)
is fulfilled by ZMP∂ (A∂ , τ). In terms of the functional Z(a, τ) of eq. (5.4.1),
this takes precisely the form (1.2), with ZT (a), d replaced by Z(a, τ), d∂ .
Suppose we shift the background 1–form a ∈ Ω1(∂M) by an exact 1–form
d∂f , where f ∈ Ω0(∂M). To see what happens, let us go back to the
boundary value problem (4.2.1). Under the shift, the 1–form ω ∈ Ω1(M)
gets replaced by ω + $ + dϕ, where the relative harmonic 1–form $ ∈
Harm1

rel(M) is arbitrary and the 0–form ϕ ∈ Ω0(M) satisfies d∗dϕ = 0,
with ι∂

∗ϕ = f . Indeed, by an argument similar to that leading to (4.2.3),
one shows that the solution of this boundary value problem, if any, is unique
if H0(M,∂M,R) = 0. This is indeed the case by a general theorem, since
M has no connected components without boundary. The vanishing of brel0

ensures the existence and uniqueness of a relative Green operator Lrel for the
Hodge Laplacian ∆ on Ω0

rel(M). Using Lrel, one can compute ϕ in terms of
f through the general identity (3.1.5): ϕ(x) = − ∮∂M f ∧ ?ι∂∗j(n)dLrelx. It
follows that under the shift of a by d∂f , dω is invariant. In our calculation,
ω is the connection A (cf. subsect. 4.1). Hence, under the shift, the gauge
curvature dA is invariant. Since the action S(a, τ) = S(A, τ) depends on a
through dA, we have

S(a+ d∂f, τ) = S(a, τ). (5.4.3)

By (5.4.1), Z(a, τ) satisfies (1.2) as required.
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6 Discussion and examples

In the previous section, we tested Witten’s holographic conjecture for the
oriented compact 3–folds M̂ satisfying (5.1.3) for which there exists a dis-
tinguished oriented compact 4–fold M with ∂M = M̂ with the following
properties.

i) Every bundle P̂ ∈ Princ(M̂) is extendable to M .

ii) For every conformal structure γ̂ and compatible spin structure σ̂ of M̂
varying in some broad class, there exists an asymptotically hyperbolic Ein-
stein metric gAHE of M with a double pole at M̂ having γ̂ as conformal
infinity and there exists a spin structure σ of M subordinated to some con-
formal compactification g of gAHE extending σ̂.

We found that the validity of the conjecture requires thatM satisfies (5.3.11).
Next, we shall look for sufficient conditions for such an M to exist. Before
proceeding further, however, it is necessary to remark that the conditions,
which we shall find, are not necessary for the validity of the conjecture,
which may hold true for a more general topological setting than the one
considered here, and are ultimately motivated only by simplicity.

We tackle the problem by the following strategy. We consider an appro-
priate set of pairs (M̂,M) with ∂M = M̂ and look for sufficient conditions
for property i and ii to hold.

6.1 Simple admissible pairs

A pair (M̂,M) formed by an oriented compact 3–folds M̂ and an oriented
compact 4–fold M with ∂M = M̂ is said admissible if M̂ satisfies (5.1.3), M
satisfies (5.3.11) and M has no connected components without boundary.

Let (M̂,M) be an admissible pair. From (5.1.3), (5.3.11) and from
Poincarè duality, we have

Hp(M,∂M,R) ∼= H4−p(M,R) = 0, p = 0, 2, (6.1.1a)
H1(∂M,R) ∼= H2(∂M,R) = 0. (6.1.1b)

The vanishing of the relative cohomology space for p = 0 is a general theo-
rem.



932 4-D ABELIAN DUALITY AND SL(2,Z) ACTION...

As we saw above, things simplify considerably when (4.2.3) holds, i. e
when (6.1.1a) holds also for p = 1. When this does happen, the admissible
pair (M̂,M) is said simple.

Let (M̂,M) be a simple admissible pair. From (6.1.1) and the abso-
lute/relative cohomology long exact sequence (2.1.5) with S = R, we con-
clude that

Hp(M,∂M,R) ∼= H4−p(M,R) = 0, p = 0, 1, 2, 3. (6.1.2)

Thus, M has trivial real (relative) cohomology and is so M is acyclic. From
(6.1.1b), we have further that

H3−p(∂M,R) ∼= Hp(∂M,R) ∼= Hp(M,R) p = 0, 1, (6.1.3)

with the three terms vanishing for p = 1. This relation implies in particular
that M is connected if and only if ∂M is.

Below, we shall concentrate on simple admissible pairs, for simplicity.

6.2 Sufficient condition for property i to hold

Let (M̂,M) be a simple admissible pair. There is an obvious sufficient
condition for the validity of property i. Recall that, by the isomorphism
(2.2.2), Princ(M̂) ∼= H2(M̂,Z). If

H2(M̂,Z) = 0, (6.2.1)

then
Princ(M̂) = 0, (6.2.2)

i. e. M̂ supports only the trivial bundle 1̂. 1̂ is obviously extendable to the
4–fold M (cf. subsect. 2.5). So property i holds trivially. Note that, by
Poincaré duality, (6.2.1) implies and, thus, is compatible with (5.1.3).

If M̂ is connected, it follows from (6.2.1) that M̂ is an integer homology 3–
sphere. In that case, M is a rational homology 4–ball, for reasons explained
at the end of subsect. 6.1.

The pairs (M̂,M) where M̂ is an integer homology 3-sphere and M is a
contractible 4–fold constitute an interesting class of simple admissible pairs
of the type just described having property i, since, cohomologically, they
are indistinguishable from the pair (S3, B4), for which Witten’s conjecture
was explicitly checked in subsect. 5.2. The integer homology 3–spheres M̂
bounding a contractible 4–fold form a class of 3–folds that has been exten-
sively studied. Such a class includes a subset of the well–known Brieskorn



ROBERTO ZUCCHINI 933

3–folds, which now we describe. Let p, q, r ∈ N be relative prime. The
Brieskorn homology 3–sphere Σ(p, q, r) is by definition

Σ(p, q, r) = {z | z ∈ C3, |z|2 = 1, (z1)p + (z2)q + (z3)r = 0}. (6.2.3)

Σ(p, q, r) is a naturally oriented smooth compact 3–fold. If the triple (p, q, r)
belongs to the following list

(p, ps− 1, ps+ 1), p even, s odd (6.2.4a)
(p, ps± 1, ps± 2), p odd (6.2.4b)

(2, 2s± 1, 4(2s± 1) + 2s∓ 1), s odd (6.2.4c)
(3, 3s± 1, 6(3s± 1) + 3s∓ 2), (6.2.4d)
(3, 3s± 2, 6(3s± 2) + 3s∓ 1), (6.2.4e)

with p, s ∈ N, then Σ(p, q, r) bounds a a contractible 4–fold B(p, q, r)
[23,24]. So, the pairs (Σ(p, q, r), B(p, q, r)) with (p, q, r) belonging to the list
(6.2.4) are simple admissible and have property i.

6.3 Sufficient condition for property ii to hold

To the best of our knowledge, there are no general theorems ensuring that
a simple admissible pair (M̂,M) admits an asymptotically hyperbolic Ein-
stein metric gAHE of M with a double pole at M̂ having a given conformal
structure γ̂ of M̂ as conformal infinity. The matter has not been settled
completely yet even for the pair (S3, B4). The analysis of specific examples
indicates that the general solubility of the existence problem for given M̂
depends on both the set C of conformal structures of M̂ considered and the
topology of M . Partial results can be found in [25], which we summarize
next.

Let M be an oriented compact 4–fold with boundary. Let C(∂M) be
the set of the non negative conformal structures γ∂ of ∂M , i. e. contain-
ing a non flat representative metric g∂ with non negative scalar curvature.
Let ĒAHE(M) be the set of the asymptotically hyperbolic Einstein metrics
gAHE of M with a double pole at ∂M whose conformal infinity is contained
in C(∂M) modulo the action of the diffeomorphisms of M inducing the iden-
tity on ∂M . C(∂M), ĒAHE(M) have natural structures of smooth Banach
manifolds. Let ΠM : ĒAHE(M) → C(∂M) the natural map that associates
to any gAHE ∈ ĒAHE(M) its conformal infinity ΠM (gAHE) ∈ C(∂M). In
[25], it is shown that, if the sequence

H1(∂M,R) −→ H2(M,∂M,R) −→ 0 (6.3.1)
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induced by the inclusion map ι∂ is exact, then ΠM is a proper Fredholm
map of index 0. It is then possible to define an integer valued degree of the
map ΠM :

degΠM =
∑

g∈ΠM−1(γ∂)

(−1)indg ∈ Z. (6.3.2)

Here, γ∂ ∈ C(∂M) is a structure, whose choice is immaterial. indg is the
index of the elliptic operator Lg obtained by linearization of the Einstein
equations at g and is defined as the maximal dimension of the subspaces
of the domain of Lg on which Lg is a negative definite bilinear form with
respect to the standard L2 inner product. Then, if

degΠM 6= 0, (6.3.3)

ΠM is surjective. In that case, for every γ∂ ∈ C(∂M), there is a metric
gAHE ∈ ĒAHE(M) having γ∂ as conformal infinity.

From the above considerations, it seems natural to set

C = C(M̂), (6.3.4)

for any simple admissible pair (M̂,M). It is remarkable that, since M sat-
isfies (5.3.11), (6.3.1) is exact and, so, degΠM can be defined. So, for a
simple admissible pair (M̂,M), there is an asymptotically hyperbolic Ein-
stein metric gAHE for any given conformal structure γ̂ ∈ C, if (6.3.3) holds.
In [26], it was shown that the solubility of the above existence problem im-
plies that H1(M,∂M,Z) = 0. This condition implies (4.2.3), which holds
anyway, since (M̂,M) is simple by assumption.

Recall that a Riemannian oriented manifoldX can support spin structures
if and only if its 2nd Stiefel–Whitney class w2(X) vanishes and that, in that
case, its spin structures are parametrized byH1(X,Z2) [27]. Recall also that,
for every oriented 3–fold X, w2(X) = 0 [27]. For every 3–fold M̂ satisfying
(5.1.3) and every conformal structure γ̂ ∈ C(M̂), M̂ supports precisely one
spin structure σ̂ compatible with γ̂, since w2(M̂) = 0 and H1(M̂,Z2) = 0,
by (5.1.4) and the universal coefficient theorem. Let (M̂,M) be a simple
admissible pair such that (6.3.3) holds and that

w2(M) = 0. (6.3.5)

Let γ̂ ∈ C(M̂) and let gAHE ∈ ĒAHE(M) be an asymptotically hyperbolic
Einstein metric of M having γ̂ as conformal infinity. Let σ̂ be the unique spin
structure of M̂ compatible with γ̂. Let g be a conformal compactification of
gAHE and σ be a spin structure of M subordinated to g. Then, σ extends
automatically σ̂, since σ induces a spin structure on M̂ which necessarily
coincides with σ̂. We conclude that an admissible pair (M̂,M) has property
ii, if it satisfies (6.3.3) and (6.3.5).
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The simple admissible pairs (Σ(p, q, r), B(p, q, r)) with (p, q, r) in the list
(6.2.4) satisfy (6.3.5), since B(p, q, r) is contractible. It would be interesting
to determine which of these pairs satisfy also (6.3.3). Unfortunately, this is
not known presently to the best of our knowledge.
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