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We will improve some estimates of Dwork and Gouvêa concerning the the U -
operators on overconvergent forms of integral weight. One consequence of our esti-
mates that is not evident from earlier results is that the U -operator applied to an
overconvergent form of integral weight bounded by one on a neighborhood of the
ordinary locus is still bounded by one on a neighborhood of the ordinary locus.

Let K be a complete local field contained in Cp with ring of integers RK . Fix N ,
(N, p) = 1. For r ∈ RK , Z(N, r) will denote the affinoid subdomain of X1(N) defined
over K where |Ep−1| ≥ |r| (so a neighborhood of the component of the ordinary locus
containing the cusp ∞). Let φ : Z(N, r) → Z(N, rp) be the canonical Frobenius,
which is defined when v(r) < 1/(p+ 1). Let S(N, r) := S(RK , N, r) denote the RK-
module of forms of weight 0 on Z(N, r) of absolute value at most 1, S(K,N, r) =
S(RK , N, r) ⊗ K, Z(r) = Z(1, r) and S(r) = S(1, r). For α ∈ RK/pRK , we set
v(α) = v(α̃) for any α̃ ∈ RK which reduces to α, if α 6= 0 and v(α) = ∞ otherwise.

Proposition 1. When N = 1, φ is defined on Z(r), v(r) < p/(p+ 1). Let h(j)
denote the Hasse invariant of any elliptic curve modulo p with j-invariant j mod p.
Then

(i) |φ(j) − jp| ≤ |p/h(j)|

(ii) Trφ(S(r)) ⊆ pr−(p+1)S(rp).

Proof. For a supersingular point e let ie = 3 if j(e) = 0, ie = 2 if j(e) = 1728 and
ie = 1 otherwise. Dwork asserts, at formula (7.8) of “p-adic Cycles,” that

φ(j) = jp + pk(j) +
∑

e

∞
∑

n=1

Ae,n

(j − βe)n

where k(j) is a polynomial in j of degree at most p − 1 over Zp, e runs over the
supersingular points modulo p, βe is a point in the residue class above e defined over
Qunr

p such that βā = a when a = 0 or 1728 and Ae,n ∈ Qunr
p such that

v(Ae,n) ≥
1

p+ 1
+ ien

(

p

p+ 1

)

.

Now v(j − βe) = iev(h(j)), if e = j̄ is supersingular and 0 < v(h(j)) < 1.
Thus

v

(

Ae,n

(j − βe)n

)

≥ 1 + (nie − 1)(
p

p+ 1
− v(h(j))) − v(h(j)),
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and (i) follows.
Part (ii) follows from part (i). Indeed, suppose v(r) = H and s = rie . For

a supersingular point e, let Ye(s)(j) = (j − βe)/s so that Ye(s) is a parameter on
the annulus Ae(r) = A[βe, |s|] = {x ∈ X(1) : |j(x) − βe| = |s|} around βe. Then
(i) implies φ induces a rigid analtytic morphism from Ae(r) to Aep(r

p) such that
|φ∗(Yep(s

p))−Ye(s)
p| ≤ |p/sp+1|. It follows that A0(Ae(r)) is finite and flat of degree

p over A0(Aep(s
p)) and the corresponding trace map Tre(s) is 0 modulo p/sp+1. We

know by [Ka] that A(Z(r)) is finite and flat over A(Z(rp)) and there is a trace map
Tr(r). As the diagram

A(Z(r))
Tr(r)
−→ A(Z(rp))

↓ ↓
A(Ae(r

ie ))
Tre(r

ie )
−→ A(Aep(r

pie ))

commutes for all supersingular points e, it follows that if f ∈ A0(Z(r)),

(Tr(r)f)|Ae(rp) ∈ (p/rp+1)A0(Aep(r
p))

for all e and thus by the maximum principle Tr(r)f ∈ (p/rp+1)A0(Z(rp)).

Corollary 2. Trφ(S(N, r)) ⊂ pr−(p+1)S(N, rp).

Proof. This follows from part (i) of the proposition and the fact that maps of
residue disks on X1(N) to residue disks on the X(1) are finite, ramified at 0 or 1728
where they have ramification indices 3 or 2. (See de Shalit’s [dS] for finer results.)

We can generalize the above to arbitrary weight and level. Let S(N, k, r) the
RK-module of weight k modular forms bounded by one on Z(N, r).

Lemma 3. Suppose k ≥ 0, N > 4, (N, p) = 1 and v(r) < 1/p. Then,

U(S(N, k, r)) ⊂
1

rp+1
S(N, k, rp).

Proof.

X1(N, r)
φ

−→ X1(N, rp)
↓ ↓

X(1, r)
φ

−→ X(1, rp)

is Cartesian. (Suppose α : µN → φ(E) is an embedding. Let α′ : µN → E be defined
by α′(ζ) = π̌(α(ζ)1/p) A1(N, r) = A(1, r)⊗φ A(N, rp)

Suppose N > 4. We now follow §2 of [CO]. Let f : E1(N) → X1(N) be the
universal elliptic curve and E(N, r) = E1(N)Z(N,r). Then, since v(r) < 1/(p+ 1), we
have a commutative diagram

E(N, r)
Φ

−→ E(N, rp)
↓ ↓

Z(N, r)
φ

−→ Z(N, rp)

where φ is the Tate-Deligne map and if f ′ : E′(rp) → Z(N, r) is the pullback of
E(N, rp) to Z(N, r), there is an isogeny over Z(N, r), π, from E(N, r) to E′(rp)
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(moding out by the canonical subgroup) such that Φ is the composition of π and the
natural map from E′(rp) to E(N, rp). Now using the fact that

f ′
∗Ω

1
E′(rp)/Z(N,r) = φ∗f∗Ω

1
E(N,rp)/Z(N,rp)

and that U : S(K,N, k, rp) → S(K,N, k, rp) can be described as 1
pV ◦Resr

p

r where V
is the composition

ω⊗k(Z(N, r))
(π̌∗)⊗k

−→ A(Z(N, r)) ⊗A(Z(N,rp)) ω
⊗k(Z(N, rp))

↓Trφ ⊗ 1

A(Z(N, rp))⊗A(Z(N,rp))ω
⊗k(Z(N, rp)) = ω⊗k(Z(N, rp))

and where ω = f∗Ω
1
Esm

1
(N)/X1(N)(log f

−1C) (see [CO]§2). This can be checked easily

on q-expansions. The lemma now follows from the previous corollary.
Using this we can conclude: Suppose now N > 4, k ≥ 0 and if k = 1, N ≤ 11.

Theorem 1. If p is at least 5 and 0 < v(r) < 1/(p+ 1), the submodule.

S(N, k, rp) + r−2S(N, k, rp) ∩ r2p−4S(N, k, r)

of S(N, k, rp)⊗K is stable under U .

Proof. Set T (r) = S(N, k, rp) + r−2S(N, k, rp) ∩ r2p−4S(N, k, r). First,

U(r2(p−2)S(N, k, r)) ⊂ rp−5S(N, k, rp),

by the previous corollary. So since p ≥ 5, we only have to show U(S(N, k, rp)) is
contained in T (r). Suppose f ∈ S(N, k, rp). Then we may write

f =
∞
∑

a=0

rpaba
Ea

p−1

= b0 +
rpb1
Ep−1

+ r2(p−1)s

where ba ∈ B(N, k, a) ⊂ ω⊗k+a(p−1)(X(N)) ((notation as in §2.6 of [Ka]) so has
weight k + a(p− 1)) and s ∈ S(N, k, r). Then

U(f) ≡ U(
rpb1
Ep−1

) mod S(N, k, rp),

using the previous corollary, because 2(p−1) ≥ p+1. And since rb1/Ep−1 ∈ S(N, k, r)

U(
rb1
Ep−1

) =
1

rp+1

∞
∑

a=0

rpab′a
Ea

p−1

where b′a ∈ B(N, k, a) using the previous lemma, again, and so

U(
rpb1
Ep−1

) ∈

(

r−2(b′0 +
rpb′1
Ep−1

)

)

+ r2p−4S(N, k, r) ∩ r−2S(N, k, rp).

Now both U(rpb1/Ep−1) and elements of r2p−4S(N, k, r) have q-expansions divisible
by rp since 2p− 4 > p. By the q-expansion principle [Ka] [ Cor. 1.6.2, 1.9.1] there
exists a weight k + p− 1 integral form b′′1 bounded by one such that

r−2(b′0Ep−1 + rpb′1) = rpb′′1 .
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Thus U(rpb1/Ep−1) ≡ rpb′′1/Ep−1 mod r2p−4S(N, k, r)∩r−2S(N, k, rp) and so U(f) ∈
T (r).

In particular, ||Un||S(K,N,k,rp) ≤ |r|−2, for n ≥ 0. This improves Lemma 3.11.7
of [Ka] and Proposition II.3.9 of [Go]. Although this result is valid for p = 5, it is not
enough to extend Dwork’s bound on the dimension of the unit root subspace Lemma
3.12.4 of [Ka].

Corollary 4. Suppose K is a finitely ramified extension of Qp. If s ∈ K,

v(s) < min{p/(p + 1), p/2e(K/Qp)}
(

e.g., if p > 2 and e(K/Qp) = [p/2] + 1 take

v(s) =
[p/2]

[p/2] + 1

)

, U(S(RK , N, k, s)) ⊆ S(RK , N, k, s).

Proof. If r ∈ K and rp = s, the previous theorem and the fact that U is defined
over Qp implies U(S(RK , N, k, s)) ⊂ S(K,N, k, s) ∩ r−2S(RK[r], N, k, s). However,
this equals S(RK , N, k, s) since v(r2) < 1/e(K/Qp)).

Corollary 5. Suppose K and L are finitely ramified extensions of Qp and K ⊆
L, s ∈ K and t ∈ L. Then U(S(RK , N, k, s)) ⊆ S(RL, N, k, t) if v(t) ≤ v(s)/p < 1

p+1 .

Proof.

U(S(RK , N, k, s)) ⊆ U(S(RL, N, k, tp))

⊆ S(RL, N, k, tp) + t−2S(RL, N, k, tp) ∩ t2p−4S(RL, N, k, t)

⊆ S(RL, N, k, t).
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