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We will improve some estimates of Dwork and Gouvéa concerning the the U-
operators on overconvergent forms of integral weight. One consequence of our esti-
mates that is not evident from earlier results is that the U-operator applied to an
overconvergent form of integral weight bounded by one on a neighborhood of the
ordinary locus is still bounded by one on a neighborhood of the ordinary locus.

Let K be a complete local field contained in C,, with ring of integers Rx. Fix N,
(N,p) =1. Forr € Rg, Z(N,r) will denote the affinoid subdomain of X (V) defined
over K where |E,_1| > |r| (so a neighborhood of the component of the ordinary locus
containing the cusp oo). Let ¢: Z(N,r) — Z(N,rP) be the canonical Frobenius,
which is defined when v(r) < 1/(p+1). Let S(NV,r) := S(Rk, N,r) denote the Rx-
module of forms of weight 0 on Z(N,r) of absolute value at most 1, S(K,N,r) =
S(Rg,N,r)® K, Z(r) = Z(1,r) and S(r) = S(1,r). For a € Rg/pRk, we set
v(a) = v(&) for any & € R which reduces to a, if o # 0 and v(a) = oo otherwise.

PROPOSITION 1. When N =1, ¢ is defined on Z(r), v(r) < p/(p+1). Let h(j)
denote the Hasse invariant of any elliptic curve modulo p with j-invariant j mod p.
Then

(4) lp(5) — %1 < [p/h(j)]
) Try(S(r)) C pr_(”+1)5'(7°”).

Proof. For a supersingular point e let i, = 3 if j(e) = 0, i, = 2 if j(e) = 1728 and
i = 1 otherwise. Dwork asserts, at formula (7.8) of “p-adic Cycles,” that

é(j) = 37 + pk(j +ZZ J_ﬁ

e n=1

where k(j) is a polynomial in j of degree at most p — 1 over Z,, e runs over the
supersingular points modulo p, 3. is a point in the residue class above e defined over
Q,"" such that 3; = a when a =0 or 1728 and A, , € Q,"" such that

1 p
> — — .
v(Aen) 2 pr1 ! fem <p+1)

Now v(j — Be) = icv(h(j)), if e = j is supersingular and 0 < v(h(j)) < 1.
Thus

(@ f}’;) > > 1t (nie = 1)(- = o(h())) = v(h(3),
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and (i) follows.

Part (ii) follows from part (i). Indeed, suppose v(r) = H and s = r‘. For
a supersingular point e, let Y (s)(j) = (j — B.)/s so that Y.(s) is a parameter on
the annulus A.(r) = A[fe,|s|]] = {z € X(1) : |j(x) — Be| = |s|} around B.. Then
(i) implies ¢ induces a rigid analtytic morphism from A.(r) to Aer(r?) such that
|¢* (Yer (sP)) — Ye(s)P| < |p/sPHL|. Tt follows that A°(A.(r)) is finite and flat of degree
p over A%(Ag»(sP)) and the corresponding trace map Tr.(s) is 0 modulo p/sP*t. We
know by [Ka| that A(Z(r)) is finite and flat over A(Z(r?)) and there is a trace map
Tr(r). As the diagram

Az T8 Azer))
\L i Tre(r'e) \L i
A(Ac(r)) = A(Aep (1P))

commutes for all supersingular points e, it follows that if f € A°(Z(r)),

(Tr(r) )l a.r) € (/17T A% (Aen (17))
for all e and thus by the maximum principle Tr(r)f € (p/rPT1)A%(Z(rP)).
COROLLARY 2. Trg(S(N,7)) C pr=®+DS(N,rP).

Proof. This follows from part (i) of the proposition and the fact that maps of
residue disks on X7 (N) to residue disks on the X (1) are finite, ramified at 0 or 1728
where they have ramification indices 3 or 2. (See de Shalit’s [dS] for finer results.)

We can generalize the above to arbitrary weight and level. Let S(N,k,r) the
Ry-module of weight k& modular forms bounded by one on Z(N,r).

LEMMA 3. Suppose k >0, N >4, (N,p) =1 and v(r) < 1/p. Then,

1
U(S(N,k’,’l")) - mS(N,k:,rp).
Proof.

Xi(N,r) -2 Xy(N,rP)

1 . \

X(L,r) -5 X(1,7)
is Cartesian. (Suppose a: uny — ¢(FE) is an embedding. Let o’: uy — E be defined
by o (¢) = m(a(¢)"/?) Ai(N,7) = A(1,7) ® A(N,rP)
Suppose N > 4. We now follow §2 of [CO]. Let f: E1(N) — Xi(N) be the
universal elliptic curve and E(N,7) = E1(N) 4y, Then, since v(r) <1/(p+1), we
have a commutative diagram

E(N,r) -2 E(N,r?)

\ \
Z(N,r) -2 Z(N,r?)

where ¢ is the Tate-Deligne map and if f': E'(rP) — Z(N,r) is the pullback of
E(N,rP) to Z(N,r), there is an isogeny over Z(N,r), w, from E(N,r) to E'(rP)
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(moding out by the canonical subgroup) such that ® is the composition of = and the
natural map from E’(r?) to E(N,r?). Now using the fact that

FeQ )y z2(n ) = O F QBN o) j2(N 09

and that U: S(K, N, k,r?) — S(K, N,k,rP) can be described as %Vo Res”” where V
is the composition
(7*)®F
wO(Z(N, 7)) —> A(Z(N,1)) @ a(z(n.ro)) w2 (Z(N,7P))
1Trg®1
A(Z(N, ") @ a(z(N oy w®(Z(N,1P)) = w®F(Z(N,rP))
and where w = f*Q}Efm(N)/Xl(N)(log f71C) (see [COJ§2). This can be checked easily

on g-expansions. The lemma now follows from the previous corollary.
Using this we can conclude: Suppose now N >4, k>0 andif k=1, N <11.

THEOREM 1. Ifp is at least 5 and 0 < v(r) < 1/(p+ 1), the submodule.
S(N,k,rP) +r 2S(N, k,7?) N r**~*S(N, k,r)
of S(N,k,r?) ® K is stable under U.
Proof. Set T(r) = S(N,k,rP) +r=2S(N,k,r?) Nr?’~4S(N, k,r). First,
U@2P=2S(N, k,r)) C rP5S(N, k,rP),

by the previous corollary. So since p > 5, we only have to show U(S(N,k,r?)) is
contained in T'(r). Suppose f € S(N,k,rP). Then we may write

rPab,
f= m

z;) By
prl
= by +

"t
where b, € B(N,k,a) C w®+e@=D(X(N)) ((notation as in §2.6 of [Ka]) so has
weight k 4+ a(p — 1)) and s € S(IV, k,r). Then

+ 2Py

prl

U =U(5

) mod S(N, k,rP),

p—1
using the previous corollary, because 2(p—1) > p+1. And since 7by /Ep—1 € S(N, k,r)

rby 1 Py,

U —
(E%—l) rptl _OAE§_1

where b/, € B(N, k,a) using the previous lemma, again, and so

YN,
rPb}
Ep 1

prl
E, 1

U( ) € (T_Q(b6 +
Now both U(r?by /E,_1) and elements of r?P~4S(N, k,r) have g-expansions divisible
by rP since 2p —4 > p. By the g-expansion principle [Ka] [ Cor. 1.6.2, 1.9.1] there
exists a weight k + p — 1 integral form b} bounded by one such that

)) +r?PAS(N, k,r) N2 S(N, K, 1P).

72 (by Ep—1 + 1Pb)) = rPbY.
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Thus U(rPby /Ep—1) = rPb{ /E,—1 mod r**=4S(N, k,r)Nr=2S(N, k,r?) and so U(f) €
T(r).

In particular, [|[U"||s(x,n,k,re) < |r|=2, for n > 0. This improves Lemma 3.11.7
of [Ka] and Proposition I1.3.9 of [Go]. Although this result is valid for p = 5, it is not
enough to extend Dwork’s bound on the dimension of the unit root subspace Lemma
3.12.4 of [Kal.

COROLLARY 4. Suppose K is a finitely ramified extension of Q,. If s € K,

v(s) < min{p/(p+ 1),p/2e(K/Qp)} (e.g., if p > 2 and e(K/Qy) = [p/2] + 1 take
[p/2]

=———), U(S(Rk,N,k,s)) C S(Rk,N,k,s).
o) = 1B ) V(SR Nk 8)) € S(Ric, N, k)

Proof. If r € K and rP = s, the previous theorem and the fact that U is defined
over Q, implies U(S(Rk,N,k,s)) C S(K,N,k,s)N r_QS(RK[T],N,k:,s). However,
this equals S(Rk, N, k, s) since v(r?) < 1/e(K/Qp))-

COROLLARY 5. Suppose K and L are finitely ramified extensions of Qp and K C
L,sc€ K andtc L. Then U(S(Rk,N,k,s)) C S(Rp, N, k,t) ifv(t) <v(s)/p < ==

p+1°
Proof.

g U(S(RLa Na ka tp))
C S(Rp,N,k,t?) +t2S(Rp, N, k,t?) N t**"*S(Ry, N, k,t)
C S(RL,N,k,t).
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