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DISSIPATIVE HYPERBOLIC GEOMETRIC FLOW*

WEN-RONG DAIf, DE-XING KONG#, AND KEFENG LIU$

Abstract. In this paper we introduce a new kind of hyperbolic geometric flows — dissipative
hyperbolic geometric flow. This kind of flow is defined by a system of quasilinear wave equations
with dissipative terms. Some interesting exact solutions are given, in particular, a new concept —
hyperbolic Ricci soliton is introduced and some of its geometric properties are described. We also
establish the short-time existence and uniqueness theorem for the dissipative hyperbolic geometric
flow, and prove the nonlinear stability of the flow defined on the Euclidean space of dimension larger
than 2. Wave character of the evolving metrics and curvatures is illustrated and the nonlinear wave
equations satisfied by the curvatures are derived.
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1. Introduction. Let .# be an n-dimensional complete Riemannian manifold
with Riemannian metric g;;. The following evolution equation for the metric g;;

32 Gij

ot?

+2Rij + Fij (97657) =0 (1.1)
ot

has been recently introduced and named as general version of hyperbolic geometric

flow by Kong and Liu [11], where R;; is the corresponding Ricci curvature tensor and

F;; is a given smooth symmetric tensor on the Riemannian metric g and its first order

derivative with respect to t. A special but important case is

0%a. -

atggj = —2R,;. (1.2)
Usually, we call (1.2) the standard hyperbolic geometric flow or simply hyperbolic
geometric flow. (1.1) and (1.2) are two nonlinear systems of second order partial
differential equations on the metric g;;.

For the hyperbolic geometric flow (1.2), some interesting exact solutions have been
constructed by Kong and Liu [11]. Recently, Kong, Liu and Xu [13] have investigated
the evolution of Riemann surfaces under the flow (1.2) and given some results on the
global existence and blowup phenomenon of smooth solutions to the flow equation
(1.2). In our paper [2], we prove the short-time existence for the hyperbolic geometric
flow (1.2) and the nonlinear stability of the Euclidean space with dimension larger
than 4. Moreover, we also study the wave character of the curvatures for the flow (1.2)
and derive the equations satisfied by curvatures including the Riemannian curvature
tensor R;jx1, the Ricci curvature tensor R;; and the scalar curvature R. However, these
evolution equations are quite complicated. In general, the solution of the hyperbolic
geometric flow (1.2) may blowup in a finite time even for smooth initial data.
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Motivated by the well-developed theory of the dissipative hyperbolic equations,
we introduce a new geometric analytical tool — dissipative hyperbolic geometric flow:

9gij 9gip 09, 99pq \ 09ij
? _2 . 2 pq p Jqa 2 pq Prq ]
12 Rij 2975, 5 (d+ Y ) ot +
1 dgpe \°  BgP? dg (1.3)
pq y& rq .
n—1 <g 6t> 7 at]g”

where g¢;;(t) stands for a family of Riemannian metrics defined on .#, and d is a
positive constant. The derivation of (1.3) is given in Section 6. Here we would like
to point out that the reason that we choose (1.3) as the equation form of dissipative
hyperbolic geometric flow is that, in the case it possesses a simpler equation satisfied
by the scalar curvature. Noting the dissipative property of (1.3), we expect that the
dissipative hyperbolic geometric flow admits a global smooth solution (i.e., a family
of Riemannian metrics) for all ¢ > 0, and the solution (metrics) has some good or
anticipant geometric properties for relatively general initial data in the case that the
dissipative coefficient d is chosen to be suitably large.

In the present paper we will focus on some basic properties enjoyed by the dissi-
pative hyperbolic geometric flow. The first basic property is on the hyperbolic Ricci
soliton. The hyperbolic Ricci soliton is a new concept which we introduce in this
paper. We will prove that there does not exist steady gradient hyperbolic Ricci soli-
ton with initial metric of positive average scalar curvature on n-dimensional compact
manifold (where n > 3). Comparing with the traditional Ricci flow, here we need
the assumption that the initial metric has non-negative average scalar curvature. If
this assumption does not hold, then the question whether there exist steady gradient
hyperbolic Ricci solitons still remains open. See Theorem 3.1 for the detail.

The second fundamental property is the short-time existence and uniqueness the-
orem for the dissipative hyperbolic geometric flow. For compact manifolds, we can
prove that the dissipative hyperbolic geometric flow always admits a unique smooth
solution ( a family of Riemannian metrics) for smooth initial data. See Theorem 4.1.
Notice that the dissipative hyperbolic geometric flow (1.3) is only weakly hyperbolic,

since the symbol of the derivative of E = E(g;;) 2 —2R;; has zero eigenvectors in
the natural coordinates. In order to reduce the nonlinear weakly hyperbolic partial
differential equation (1.3) to a nonlinear symmetric system of strictly hyperbolic par-
tial differential equations, we use harmonic coordinates introduced by DeTurck and
Kazdan [4]. Then by the standard theory of symmetric hyperbolic system, we can
prove the short-time existence and uniqueness theorem 4.1.

The third property is the nonlinear stability. By the global existence theory of
dissipative wave equations, we can prove the global nonlinear stability of the Euclidean
space R™ with n > 3. See Theorem 5.1 for the details. In the proof of nonlinear
stability, the dissipative property of the flow (1.3) play an important role.

The fourth fundamental property is the wave character of the curvatures. Since
the dissipative hyperbolic geometric flow is described by a system of quasilinear wave
equations on the metrics g;;(t, ), the wave property of the metric implies the wave
character of the curvatures. The equations will play an important role in the future
study. See Section 6 for the details.

By the way, we would like to point out that, a hyperbolic version of mean cur-
vature flow has been developed in [10] and [12], and some physical discussions of
hyperbolic geometric flow governed by mean curvature can be found in [5] and [8].
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The paper is organized as follows. In Section 2, we introduce the dissipative hy-
perbolic geometric flow equation and give a useful lemma. In order to understand the
basics of the dissipative hyperbolic geometric flow, we construct some exact solutions.
These solutions may be useful in physics. In Section 3, we introduce the steady gradi-
ent hyperbolic Ricci soliton, and prove Theorem 3.1 — one of the main results in this
paper. Section 4 is devoted to the short-time existence and uniqueness of the flow,
while Section 5 is devoted to the global nonlinear stability of the Euclidean space R™
with n > 3. The wave character of the curvatures is discussed in Section 6, and the
nonlinear wave equations satisfied by the curvatures are also derived in this section.

2. Dissipative hyperbolic geometric flow. The dissipative hyperbolic geo-
metric flow considered here is defined by the equation (1.3), namely,

9%gi; 9gip 0, 9pq \ 09i;
2 _ - pq ~IP Jqa pq Pq 1]
ot 2Hij + 2975 o (d“g ot ) ot
X 50 \? o (2.1)
pq 99pa + 99" Ogpq Gii
n—1|\7 "ot ot ot |7V

where g¢;;(t) stands for a family of Riemannian metrics defined on .#, and d is a
positive constant. The reason that we choose (2.1) as the equation form of dissipative
hyperbolic geometric flow is as follows: in this case the flow possesses a simpler
equation satisfied by the scalar curvature. See the derivation of (2.1) in Section 6.

We first establish some useful equations from the flow equation (2.1). Let

- Dgss
u(z,t) = g" gtj, (2.2)

_ |99 ? ik 199i5 09
v(x,t) = ‘(% =g ot ot (2.3)

ik il paO0%ip 0954 OGr1

— 4tk 3l g P Jq IRt
w(z,t) = g"g"g" —F =5 (2.4)

and denote the matrix
_ (99 i

G(z,t) = ( a7 ) (2.5)

Then we have

u(z,t) = trG(z,t), v(x,t) =trG*(z,t), w(z,t) =trG?(z,t), (2.6)
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where trG stands for the trace of the matrix G. Thus by (2.1) we obtain

8u(x, t) - g ij 891-]-
o o \Y ot
_ dg" 0gi; ij 8291‘3‘
= ot ot 9 e
i 5109ij Ogri i 0gip 09, 09pq 095
— gtk gl 2y ZIRY U 2R, + 2gP1 2P 2294 94pq ZIPG 2Tt
gg8t6t+g[R]+gat8t T ot ot

_ 09i; 1 pq 9pq ? 9gP? Ogpq 3
d ot +n1((g or ) Y\ o o 9id

-2 1
= —2R — n U2 — du — v
n — n—1
(2.7)
and
ov(z,t)
ot
99" 1y 99ip Og; i pq0°Gip 09,
= 2 rq p J4q 2 1J Pq p J4q
o9 ot ot 09 o or
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_2<g at> ot Tor "1 \9 o ) 9
1 (99" Ogys
L ( at ot )g”’}

o 8gis
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1)u112d’u+ 1u3.

n — n —

THEOREM 2.1. For the dissipative hyperbolic geometric flow (2.1), the quantities
u(zx,t), v(z,t) and w(x,t) satisfy the following equations

ou(z,t) n—2 4 1
5 R m— du v (2.9)
and
ov(z,t) 0 0gY 2
=2w—4¢"" ¢ =Ry, — (4 —2d . 2.10
ot v 99 ot M ( +n—1)uv U+n—1u ( )

In order to understand basically the dissipative hyperbolic geometric flow, in what
follows we construct some exact solutions.
Consider the following Cauchy problem

9gij 9gip 09, 99pq \ 09i;
I _9p.. pq I 7939 pq ZIP9 |\ ZIt)
12 2Hi + 2075 <d+29 815) ot
1 dg 2 dgP? Og
pq Pq Pq L. 2.11
R l(g 8t) T o |99 @11)
0 99i; 0
gij(x’o) :gw(x), 8t(,0>_k”(x)’
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where g?j (z) is a Riemannian metric on the manifold .#, and k% (x) is a symmetric
tensor on ..

If we assume that the initial metric g;(«) is Ricci flat, and the initial velocity
kg;(x) vanishes, then easily see that g;;(z,t) = g;(x) is the unique smooth solution
to the Cauchy problem (2.11).

If we assume that the initial Riemannian metric is Einstein, that is to say,

Rij(l', 0) = /\gij(m, 0), Vae .//, (212)
where A is a constant. Furthermore, we suppose that

69ij
ot

(x,0) = pgij(x,0), (2.13)
where p is an another constant. Let
9ij (x, ) = p(t)gi; (x, 0). (2.14)
By the definition of the Ricci tensor, we have
R;j(z,t) = R;j(x,0) = Agi;(x,0), Ve Z. (2.15)
It follows from (2.13) and (2.14) that
p(0) =1, p'(0)=p. (2.16)
Substituting (2.14) into the evolution equation (2.1) gives the following ODE
p"(t) = —dp'(t) — 2. (2.17)
The solution of (2.17) with the initial data (2.16) reads
pt) =1— %t - <Z + 22) (e —1). (2.18)
It follows from (2.18) that

2X 2X
o(t) = - (u + d) e (2.19)

Noting that d > 0, we distinguish the following three cases to discuss:

Case I. A>0.
In this case, it follows from (2.18) that

lim p(t) = —o0.

t——+o0

Thus the evolving metric g;;(x,t) shrinks homothetically to a point as ¢ approaches
some finite time 7.

Case II. A\ =0.
In the present situation, p(t) = 1—4(e~%—1). If £ < —1, then the evolving metric

gij(z,t) shrinks homothetically to a point as ¢ approaches the time T’ = —% In(1+ g);
If & > —1, then the metric g;;(x,t) evolves smoothly and is positive defined for all
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time; If £ = —1, the metric g;;(x,t) evolves smoothly and is positive defined for all
time, but it shrinks homothetically to a point as t — 4oc0.

Case III. A <O.

In this case, if p < 0 and p(Tp) < 0, where Ty = —é In (ﬁ), then the evolving

metric g;;(x,t) shrinks homothetically to a point as ¢ approaches some finite time not
later than T'. Otherwise, g;;(x,t) is smooth and positive defined for all time.
Summarizing the above argument leads to the following theorem.

THEOREM 2.2. For the Cauchy problem (2.11) of the dissipative hyperbolic geo-
metric flow, suppose that the assumptions (2.12)-(2.13) are satisfied. Then, if one of
the following conditions is satisfied, then the evolving metric g;j(x,t) shrinks homo-
thetically to a point as t approaches some finite time:

(a) A>0;

(b) A=0and p< —d;

(¢) A<0,p<0 andp(éln(%)) > 0.

For the other instances, g;;(x,t) are smooth and positive defined for all time. In
addition, if X\ = 0 and p = —d < 0, the metric g;j(x,t) evolves smoothly and is
positively defined for all time, but it shrinks homothetically to a point as t — +o0.

3. Hyperbolic Ricci soliton. The theory of soliton solutions plays an impor-
tant role in the study of geometric analysis, in particular in the study of Ricci flow.
In this section we first introduce a new concept — steady hyperbolic Ricci soliton for
the flow (2.1), and then describe its properties.

DEFINITION 3.1. A solution to an evolution equation is called a steady soliton, if
it evolves under a one-parameter subgroup of the symmetry group of the equation; A
solution to the dissipative hyperbolic geometric flow (2.1) is called a steady hyperbolic
Ricci soliton, if it moves by a one-parameter subgroup of the symmetry group of the
equation (2.1).

If ¢ is a one-parameter group of diffeomorphisms generated by a vector field V'
on ./, then the hyperbolic Ricci soliton is given by

9ij(z,t) = ¢; gij(2,0) = gij(pe(z),0). (3.1)
It implies that
agij(%t) = Lvgij = g ViV" + g ViVF £ T, (3.2)
and
a%zgij (z,t) = Lvlvg; = LvTi

= TiaVF+ TiVii + TV
= (9ipV;VP + g;pViVP) i VF 4+ (gipV; VP + g5, ViVP)VE
+(grpViVP + gipvkvp)v;?
= (9;pVeV,;VP +¢;pViV;VP) VE 4 gkp(vivk -V;VP 4 Vij -V, VP)

+giijV’“ -V VP + gjpviv’“ -V VP,
(3.3)
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where £y stands for the Lie derivative with respect to the vector field V. Thus, the
equation (2.1) can be reduced to

(9ipViViVP + gipViViVP) VE 4 g1, (ViVE -V, VP 4V, VPV, VP)
+9ipV,;VF VR VP 4 g, ViVE -V VP

= —2R;; + 26" (g VV* + 9ok ViVF) (g Vo V! + gV V1)
20" (gprVVE + 9V V) (9 ViV + g ViV = d(ginV,;VF + gjxViVF)

1 2
ool (97" (9pk Vo V* + 901V VE)] " g5

1
n—1

(97797 (9pk Vo VF + gk Vo V) (g VsV + g0V, V] g5 (3.4)
We predigest it into the following
2R + (9ip ViV, VP + g;, ViV, VP) VE
= 20"girg;1VpV VoV + gir Vi VIVIVE + g Vi VIV VE
—(d+4VEVE) (g ViV 4 g ViV + %(quqmm—

— (grig"V, VIV V4V, VIV, VP) gy (3.5)

If the vector field V is the gradient of a function f on ., then the soliton is
called a steady gradient hyperbolic Ricci soliton. In what follows, we consider
the steady gradient hyperbolic Ricci soliton.

For the steady gradient hyperbolic Ricci soliton, the equation (3.5) becomes

2Rij + (9ip ViV, VP [ + g, ViViVP ) VE f
= 20" girgyVpV VGV [+ gk ViV FVIVEf 4+ g ViV FVIVE S
4
—(d+ 4V ) (Ga ViV + g ViV ) + —— (Vo V) g5

2
1 (gug" VY VGV VYUY,V ) gy
That is to say,

Rij + Vi(ViVf)VFf
= 2gqupViquij — (d + 4Af)Viij
2

+—=(Af) g5 — p—] (9"19"'V ViV Vif)gis. (3.6)
Taking the trace on ¢ and j yields
k 2 2p2 M3 2
R+Vi(Af-V f)z—mw fl —m(ﬁf) —d-Af. (3.7)

Thus, the following theorem comes easily from (3.5)-(3.7).

THEOREM 3.1. For the dissipative hyperbolic geometric flow, (5.5) and (3.6) are
the evolution equations satisfied by the steady hyperbolic Ricci soliton and the steady
gradient hyperbolic Ricci soliton, respectively. Furthermore, for an n-dimensional
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compact manifold with n > 3, if the average scalar curvature of the initial metric is
non-negative, i.e.,

o [q R0V
JadV  — 7

then for the steady gradient hyperbolic Ricci soliton, the gemerating function f must
satisfy the condition Hess(f) =0 on A, i.e., f is a constant and the solution
metric g;j(x,t) = ¢;5(x,0) is Ricci flat for all time t. In reverse, if the initial met-
ric g;;(x,0) is Ricci flat and the function f = constant, then it is obvious that the
steady gradient hyperbolic Ricci soliton generated by f is a solution to the dissipative
hyperbolic geometric flow.

r(0) (3.8)

4. Short-time existence and uniqueness. In this section, we reduce the dis-
sipative hyperbolic geometric flow (2.1) to a symmetric hyperbolic system in the
so-called harmonic coordinates (see [4]), then based on this, we prove the short-time
existence and uniqueness theorem for the flow equation (2.1).

Let gi;(x,t) be a family of metrics on an n > 1 dimensional manifold .#. We
consider the space-time R x .# equipped with the following Lorentzian metric

ds? = —dt? + g;j(z, t)dx'dz? . (4.1)

It follows from (3.4) in Dai, Kong and Liu [2] that

029;; 02g;j 029, ork ork
: 2]%z = A % ik ik
ot? + 2 ot? 9 sk o + S + 9k oz’
09i;
kl Kk
+2g gpqrfkrgl + a;}:F
dg dg
iFk pr.qs Pf] _Fk: prqs PQ , 4.9
+(9k rad” 9" 5 9ilrag? 9" 5 (4.2)
where
INEEI (4.3)

Then the evolution equation (2.1) for the dissipative hyperbolic geometric flow can
be reduced to the following

829ij gkl 829ij __ 8Fk 8Fk agij
ot? Oxkox!

Rl L2 ) 9.kl P T4 k
ik O + Gk 8xi> 29 gpqrikrjl 6‘sz

9y 9y
- (gmfffsg”gqs o T 9RTrg™ g™ )

09ip 0g; 09pq 095 09i;
Pq 4 Jq9 0q pq J J
P2 o 2 e o Ton
1 dg 1 0gP?0g
pq ZIPIN2 pPay .
+n—1(g ot ) 9 n—l( ot ot )9is- (44)

Similar to [4], we make use of the harmonic coordinates such that, for fixed time
t, it holds that

IF(z,t) £ giijj = 0, when z is in an open neighborhood of point p € .#. (4.5)



DISSIPATIVE HYPERBOLIC GEOMETRIC FLOW 353

Then the equation (4.4) can be written as

5291‘;‘ kl 329ij T Ogr1 Ogi
- Hz ) ) 9 4.6
ot? 9 orkaL + Hij(gmi ot 8561’) (4.6)
where
2 Ogr Ogr - 539 r 539
Hijgi, = 5 0) = =20" 9a U0 L5, = ( 9l 7a0™ 9™ 5 2 + gnLrag™ g™ 72

09ip 0g; 09pq 095 0gi;
pq~IwWw ZJ39 pq =~ IPq J J
Y2 Y e e T
1 dg 1, 9gP? 0g
= (gpaZIPaN2 o PqN
0 ) g (5t ot )9

(4.7)

are homogenous quadratic with respect to %i’;f and ag’”
dagzj and rational with respect to gx; with non-zero denominator det(g;j) # 0. By

except the dissipative term

introducing the new unknowns g;;, hi; = %, Gijk = ag’ij, the system (4.6) can be

transformed into a system of partial differential equations of first order
9gij

ot

gt 99ijk _ 1 Ohij (4.8)

= hij,

ot Oxk’

Ohij Kl 8911 k
= H,;
o 9 ou TH

In the C? class, the system (4.8) is equivalent to (4.6). It is easy to see that (4.8) is
a quasilinear symmetric hyperbolic system, which can be rewritten as

ou ou

()5 = A1 ()5 + Blu) (49)

1
where u = (gij, gij.k, hij) T is the 5n(n+1)(n+2)—dimensional unknown vector function

and the coefficient matrices A%, A7, B are given by

0 ¢''I ¢2I - g'"I 0
0 ¢*I ¢*2I --- ¢*I 0
A (u) = A%(gij, gij hij) = | ’
0 g™l g™ -+ g™ 0
0 0 0 0 0
0 0 0 0 g1
‘ ) O 0 O .. O ‘721
Al(u) = A (gr, gk, hit) = | ’ ’

o
.
<

~

Q

(V]
<.

~

g™ 0
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1 1 1
where 0 is the <2n(n—|— 1)) X <2n(n—|— 1)) zero matrix, I is the (2n(n—|— 1)) X

1
<2n(n + 1)) identity matrix,

B(u) = B(gij, 9ij,p, hij) = 0 ,

1
in which 0 is the 5112 (n + 1)-dimensional zero vector.

By the theory of the symmetric hyperbolic system ( [6], [7]), we can obtain the
following theorem.

THEOREM 4.1. Let (A, g;(x)) be an n-dimensional compact Riemannian man-
ifold. Then there exists a constant n > 0 such that the Cauchy problem (2.11) has a
unique smooth solution g;j(x,t) on .4 x [0,7].

REMARK 4.1. Theorem 4.1 can also be proved in a manner similar to that in

DeTurck (see [3], [1], [2]).

5. Nonlinear stability of Euclidean metrics. This section is devoted to the
nonlinear stability of the dissipative hyperbolic geometric flow (2.1) defined on the
Euclidean space with the dimension larger than two.

We consider the following Cauchy problem for the dissipative hyperbolic geometric
flow (2.1),

Pgij 9gip 09, 99pq \ 09i;
? = —9R.. 2 pq ~ I Ja 2 pq Pq ]
a2 Rij 2975 "o (d+ 7ot ) ot
1 dg 2 dgP? Qg
pq rq y&d . 51
) [(g 6t> o0 ot |9 (5:1)
0gi;
9i(@,0) =055 + eg(x), 2L (2,0) = egly(x),

where g7 () and g;;(x) are given symmetric tensors defined on the Euclidean space
R™.

THEOREM 5.1. The flat metric g;j = d;; on the Euclidean space R™ with n > 3 is
globally nonlinearly stable with respect to the given tensor (g?j (x),g}j (z)) € Cg°(R™)
, i.e., there exists a positive constant €y = €g (g?j (m),gllj(x)) > 0 such that, for any

€ € (0,€0], the initial value problem (4.1) admits a unique smooth solution g;j(x,t)
for all time t > 0.

REMARK 5.1. For the standard hyperbolic geometric flow (1.2), we can only
obtain the nonlinear stability of the Fuclidean space R™ with n > 5 (see [2]). Under
suitable assumptions, similar results are true for general hyperbolic geometric flow

(1.1).

Proof of Theorem 5.1. Let the symmetric tensor h;; on R" defined by

hij(z,t) = gij(x,t) — 045 (5.2)
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and 6% be the inverse of ;5. Then for small A,

H & gl — 51 = —pil 4+ 0" (h?), (5.3)

where h = §%§7 by, and 0% (h?) vanishes to the second order at h = 0. Then the
Cauchy problem (5.1) for the metric g;;(z, t) is equivalent to the following initial value
problem for the tensor h;;(z,t) in the harmonic coordinates z* around the origin in
]Rn

o2 2hy; Ohir O

—hyi(z,t) = (6" + H"Y =22 4 Ho (8 + hiy —, S8

atQ J(x? ) ( + )aa,nl’]:xl + J( Kl + kly Ot ) Dz )7 (54)
ij

t=0:h(z,0) = eggj (2), Ey (z,0) = egilj(a:),

where E[\;(ékl + h, agf’, %Z’;l) is defined in (4.7). Thus, the Cauchy problem (5.4)
can be reduced to the following

H? o 0%hij Ohi; _ Ohy Ohy
YR YACE - = Hi j ) ) ’
8t2h j(x,t)—0 Dkl +d 5t 5Okt + P ot Dzp ) (5.5)
_n. _ 0 Gij 1
t=0:h(z,0) = egij(x), 8t] (z,0) = egl-j(x),
where
_ Ohy, Ohy Kl 62/11']' 8hij — Ohy; Ohyy
Hi’ s T Ay 0 =H H’L s T Ay 0 . .
3 Ont 4 hvts 57 ) = gt T gy 0wt =57, ) (5:6)
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By the definition (4.7) and (5.2)-(5.3), we have

_ Ohyy Ohy
Hz] (6kl + hkla W7 1P )
O%h. .
_ kl ()
=H Oxk ol

g ) (g b By (07 HP) (5% 4 H)
. (8hm . Oha 8hik> (ahbj | Oy 6@)

ozk ozt Oz

ozl oxJ Oz
1
G+ ) B + HPT)(T + HO%) (3 4 )
. Ohgr N Ohgs  Ohys Ohyqy
oxs ox" ox® OxJ
1 .
3 B Ry (07 HIT)(8 4 HO( 4 )
_ Ohgr N Ohgs  Ohys Ohyy
Oxs oz Oz ozt

Oh;,, Oh;
2(§P9 [P P 79
A HY) 5

Ohpq Ohij
ot ot
1 Ohpo\ 2 1
- rq Pq\_~""Pq L. Y - (Spa pa
+ ((5 +H )815) (81 + hij) — — (67" + H?)

n—1

ONpg Ohap
ot 0t
_ _%5“5@17 (ahai + ahak ahik

— 2(51"1 + HPQ)

- (89° 4 H?)

(05 + hij

ok Ox? Ox°

)
_15pr5qs (ahir Ohis 8hrs>

8hbj n Ohpy; 8hﬂ
oz! oz Oz

2 oxs + ox" oxt

1 Oh; Oh; oh

_ ZSprsqs Jr Js TS
2(S o (axs * Oxm Ol

Ohp Ohjq 05Pd Ohpg Ohij
ot ot ot ot

1 Ohpy \ 2 1 Ohyy Oh
pq Y''pq o pa sqb 'tpg Yltab -
o (5 ot ) i 1 <§ o ot ot )5”

+267

82hij
Ozkz!

= O(||hwi|| + || Dhpi|| + ||

_hkl

+ O(||hwt| + || Dhyal])?

hij | \o 3
arkle) + O(||hwt|] + [|1Dhsal])”, (5.7)

where

ot 7 Oxp
and || - || stands for the norm with respect to the flat metric 9;;.
By the theory of dissipative wave equations (see [14], [15]), we know that, for

sufficiently small € > 0, the Cauchy problem (5.5), i.e., (5.1), admits a unique smooth
solution for all ¢ > 0 on R™ with n > 3. The proof of Theorem 5.1 is completed. O

Dhy = (
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6. Wave character of curvatures — Derivation of dissipative hyperbolic
geometric flow. In this section, we will illustrate why we choose (2.1) as the equation
of the dissipative hyperbolic geometric flow. Based on this we derive the nonlinear
wave equations satisfied by the curvatures. The results presented in this section show
the wave character of curvatures.

We first assume that the metrics on a manifold .# evolve by the following equation

529ij
o2 (.’E,t):—2Rij(1'7t)+Gij(£L',t), (61)
where
9gip 0g; OGpq 09i5 | ,09ij Jg
i t) = qgP? 2P 2299 4 ppq ZIPd J 4224 gP? pq o
Gujlost) = aght =57 =57 0757 S gy ed T gt
dg dg*1 dg
f(gpq 8§q)2gij+h<at a:q 9ij (62)

and the terms a, b, d, e, f, h are all constants determined below. Then direct
calculation gives

82R ik . 32R' ikl 6ng 8R ikl 82gﬂ 89““ 8R'k 32gik
—— =4 Jl v 2 v R ) 4R
ot? ( ot ot ot R T ) M TR T T
o O02Ry 0¢’" OR; d0g* 8 ik AR, 92tk
_ ik gl ijkl | o g gl 9 R q ik 9R. g
979" g T2 Ty — oy Taam) 275 5 + 2R
o 2 O%R,; dq*™* OR; Hgit Hgik
— ik jl 15kl 4 g ik _ Y9 g g %9 R
979 o T o ot ot M
0? Grs ag r ag s
2Rz ir ks 2 ir k:s Pq P q
+ ’“< 9 2 T "ot ot
v PRy g% ORy, g7 dg'
_ ik gl ijkl 4 g ik 92 g g =~ R
99 "o ot ot or ot kT
0g,y O )
4giT gFs gPa gflf’" g;s Rir, + 4| Ric|? — 2¢7 ¢"* Rix G, (6.3)

where |Ric|?> = g**g9' R;; Ry is the norm of Ricci curvature tensor Ric = R;;. In (6.3),
we have made use of the evolution equation (6.1).

We choose the normal coordinates around a fixed point p on the manifold .# such
that I'};(p) = 0. By the computations (5.2)-(5.5) in [2], we get

8—2Rukl _ 1 0? 9% gr; L 9? Pgu\ %g;
o2~ 2 | Oxt0xt \ Ot2 Ozidzd \ Ot2 Oxtoxk \ Ot2
1[0 (Pgu n P Pgu\ 9 (Pga
2 | 0xi0xt \ Ot? 0xioxt \ Ot2 Oxioxk \ Ot2
0 0 0 0
+2g5 (atrfl ST = ST mr;@) . (6.4)
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Then it follows from (6.1) and (6.4) that

82
Rk =

0? 02 0?
g = |

1
3 |Gwiaa M) T Gpiggr (F2Ek) W(‘QRJ“]
1[ 02 0? 0?

2 | OxI Ozt (=2Rk:) + OxI Ozt (=28p) = OxI Ok (_2Ril)}

o, 0 g, 0
pg (mrfz : @F?k - &FZ : atrgk)
o 0? 02
2 |52700 " T 92023 OH T Gaidah Gﬂ}
1[ 0 0? 0?
2 | 0z 0 ki ¥ 52700t K~ aiaak G”} '

+
[\
=)

Similar to Hamilton [9], by Theorem 5.1 in [2] we have

1 0? 0? 02
5 | (2) + g (2P~ e (2R
1 o? 0? o?
2 {&:jﬁxl (=2Bw) + 07 O’ (=2Fw) - OxJ Ox¥ (_QR”)}

9 0.4 9w 9
+29pq <c’)tF“ "otk T gplat ik
= ARijii + 2 (Bijri — Bijik — Bk + Bikji)
—g"" (RpjkiRgi + RipkiRyj + RijpiRgk + RijepRq)

0 0 0 0
+20pq <8tFZ oLk~ gl af?k) ; (6.6)

where Bjjr = g"" g% Rpiqj Rk and A is the Laplacian with respect to the evolving
metric.

Combining (6.3), (6.5) and (6.6) and referring to the computations in Theorem
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5.3 in [2] leads to
0’R 2
0 0 _» 0

O 0
ik gl
+29"" 9" gpq <8tr58t T ot 3tFik)

e Ogpq O
_Qszg]p lg gpqi ikl

ot ot
; 0gpq ORy, - 0gpq 0grs
— 9P gka ZIPe 4R;g"P g™ sk Y9pq
ot or T HwITITT 57,
Lo | 9 0 0?
9 {8:1&8:65 G Oxtoxi Gu drtoxk Gt
1o | 0 0? 0?
2 {8331 O G + Oridx? Gu DI Dk G
_2girngRikGrs
— AR+ 2[Ric|?
i 0. _, 0 0 0
ik gl
299" 9pq <8th58t ik~ ot ?lﬁtrgk)
o Ogpe O
—92 ik jp lq rqy ¥ »
979" 9" 5 8tRjkl
; 0gpq ORj, ; 09 OGrs
—92q*P kq pa 4 ; ip rq sk Prq
ot ot T ARwgTeTeT 55
+ ik gl 0 G — > G. —9 ir k:sR_ G (6 7)
99 ozt T 9rioLk I g g ftiktrs: ‘

In the normal coordinates, we have
= gtk gl <vilekj + Vil Gpj + VirijPk)
—g'* gl (ViViGri + ViT3.Gpi + VTGpr) — 29" 9" RinGrs
= 9" (ViViGrj = Vi ViGri) + g7 g/ ViT] Gy — ¢* g7 V5T, G
+9™* g (VLT — ViT8) Gy — 297 6 R G
= g% g (ViViGrj — V;ViGri) + % g RY i — 297 g% Rir Gy
= g™ (ViViGyj — V;ViGri) — 4" 9" Rir G,

(6.8)

where we have made use of the following equality in the normal coordinates

ory.  ore
Rl = oo~ g = VLG~ Vil

and V; means the covariant derivative in the direction %. In the normal coordinates,

we easily obtain

0 ( gy \ _ 99T | 0gz 0T 90y 9 ory,
ot \ 9zFor! ot ozk ot or* 9Pt ok T Yot ogk
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This implies that

agjp) _ 829jp a 99pq 4 9954 azgip

Vit N N -

T oxlot Y LY dxtot’
99;p 0 829jp q O9pq 0g; 829' Jg 0g;

— i _ . ]_"q JayN _ Tr Jp ]_'\q' Pq —T4¢ Jaq

ot ) 83@1(8351815 9t P ot ) ”(axrat Y Pt )

r (‘92ng q 9pq q 99rq r aggjr q 9Grq q 99jq

i Gatae ~ P~ Ter ) Telgaar ~Tuer ~ Ty )

= é( 0%gij ) — 8Flj pq aFlp 99,q
ot Ozkox! oxt Ot oxt Ot
0 8F o 8F

=99 owt T o B

V:Vi(

By the direct computations, we have

pq ag]p agk(]) _ glk)g]lvjvl (gpq ag%p agk)Q)

k il
A ot ot
09jp Ogr oy 09ip Ogi
_ ik _jl _pay7. Jp ay ik gl _pav7 . P q
=g"g" 9"V V( 5% o ) — 9" 9"V Vi ( % o )
_ [ _,09" 0Ri; 097 0 O, g2t
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0%gjp grg  0%9jp 0% giq 5 *gip 3291«;) . (6.9)

Analogously, we obtain

zk glv \Y ( Dq agpq 8gjk’) i gikgjlvjvl(gpq agpq agzk)

at ot ot ot
0gpq 09k ik i OGpq OFik
_ ik gl _pay7. Pq J ik gl _pgy7 . Pq
dg OR 8ng dg o 0 O}, dg** 0 or7
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=" )Gy~ o T~ 9 5009 5 e ~ Yo ot aw
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On the other hand, we can easily derive the following equations.

ik j Ogjk\ ik j 9gik
ik _jlx7. J _ otk T .
9" ViVi( 5t ) — 9" g" Vi Vi( 5t )

oo o are o or?, o o or? o ore
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0 O
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o 0 o 0
A AvA TS ((gpquq)ngk> — g% g’V ((gp"gfq)zgm)

ot
j s 99pq OFrs
_ _ Jl pq . rs . pq
(1-n)g’'¢g"yg VJVl( 9t 315)
O Ors , 0%g,, 0%g
Jl l§ ) Jl pq rs PQ_ TS 1
9t 0xs 999 Bt 8t8ml} (6.13)

=—2(n—1)g

— (=) [1(g )

and

. dgP? g o dgP1 g
ik _jlv7. pqg N _ ik gl . pq
9" g ViV =g 9in) = 99"V VI(= g = " gin)

ot
J d 89 agrs

_ _ jl pr qs . pq

=(n—1)g"g"g""V;V, (8t e )

0 0gi, 0 OTY , 0%g,, 0%g
_ _ ik _jlYJwp ¥ kl _ gl pq rs pr gs
A= D900  5r e T VI g gt (61




362 W.-R. DAI, D.-X. KONG AND K. LIU

It follows from (6.7)-(6.14) that

O*R
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In (6.15), if we take
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then we have
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In this case, the corresponding evolution equation reads
8291“
8t2j = —2R¢j + Gij, (6.18)
where
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Taking d = —d, we obtain from (6.18) and (6.19) that

92gij 00090 0950 (5 o ,009q\ 09i
12 28 + 2075 (d 2075, ) ot +
) (6.20)
1 < pq agpq) i 997 Ogpq |
n—1|\7 ot at ot |7

where d is a positive constant. Denoting d by d in (6.20) gives the evolution equation
(2.1) for the dissipative hyperbolic geometric flow.

THEOREM 6.1. If we suppose that the evolution equation of the hyperbolic geo-
metric flow is defined by (6.18)-(6.19) on a manifold 4, then the scalar curvature
of the evolving metrics satisfies the nonlinear wave equation (6.17) in the normal
coordinates.

REMARK 6.1. Ifwe takea=b=d=e=f=h=0, i.e., G;; =0 in (6.1), then
(6.1) is nothing but the standard hyperbolic geometric flow (1.2) (see [11]).

REMARK 6.2. For the evolution equation (6.17) of the scalar curvature, the last
term can be written in the covariant form as follow

" dgik O dgij O dgij O

ik _jl pq Jik Ipl 9ij gkl Gij Jkp
nv 4 GIRL

9"g"g ( V; 5 Vq o + 4V, o Vq 5t 6V, o V4 5

99ip . Ogr
— 2V, IR
Vi ot Va ot
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