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IMPOSSIBLE METRIC CONDITIONS ON EXOTIC R4’S∗

LAURENCE R. TAYLOR†

Abstract. There are many theorems in the differential geometry literature of the following sort.

Let M be a complete Riemannian manifold with some conditions on various cur-
vatures, diameters, volumes, etc. Then M is homotopy equivalent to a finite CW
complex, or M is the interior of a compact, topological manifold with boundary.

At first glance it seems unlikely that such theorems have anything to say about smooth manifolds
homeomorphic to R4. However, there is a common theme to all the proofs which forbids the existence
of such metrics on most (and possibly all) exotic R4’s.
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1. Definitions and the main result. We say a smooth manifold E homeo-
morphic to R4 satisfies the DFT condition (for De Michelis, Freedman and Taubes)
provided that, for every compact subset K ⊂ E, there exists an open neighborhood
U of K such that

1. K ⊂ U
2. the closure of U , U , is homeomorphic to D4

3. U can be engulfed by itself rel K

Precisely, condition (3) means that there exists a smooth, ambient, isotopy of E from
the identity to ι such that ι : U → E satisfies U ⊂ ι(U) and the isotopy is the identity
on K.

As discussed in section 2, all exotic R4’s (smoothings of R4 not diffeomorphic to
the standard smoothing) known to the author do not have the DFT -property.

Differential geometry enters the picture via critical points of functions related to
the distance function. Such functions are not necessarily smooth so the notion of
critical point needs to be interpreted and there is a standard way to do this going
back at least to Grove and Shiohama [8]. The idea involves constructing vector fields
and using differential geometry to get enough similarity to the gradient-like vector
fields of Morse theory to prove results. Here is the main observation of this note.

Theorem 1.1. Let E be a smooth, manifold homeomorphic to R4 with a proper
Lipschitz function which has bounded critical values. Then E satisfies the DFT -
condition.

2. Remarks on the DFT property. Taubes [11, Thm. 1.4, p. 366] proves that
many exotic R4’s have the property that neighborhoods of large compact sets can not
be embedded smoothly in exotic R4’s with periodic ends. Hence these R4’s are not
DFT since ι can be used to construct a periodic end smoothing of R4 containing a
neighborhood of any compact set K.

De Michelis and Freedman [4] state in the first line of the last paragraph on page
220 that the family of R4’s they construct do not satisfy the DFT -property even if
the ι is not required to be isotopic to the identity.
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Gompf [6] argues that none of the smoothings of R4 in his menagerie have the
DFT property. Certainly the universal R4 of Freedman and Taylor [5] is not DFT .

On the other hand, if the smooth Schoenflies conjecture is true but the smooth
Poincaré conjecture is false, there will be exotic DFT R4’s.

3. Patterns of application. Rather than produce a long list of theorems, here
is a meta-principle for generating theorems.

Meta-Principle. Take any theorem in differential geometry regarding the existence
of complete metrics with special properties. If the proof shows that a distance function
or some other proper Lipschitz function has bounded critical values then such metrics
do not exist on a non-DFT R4.

Remark. The distance function from any point p ∈ E is proper Lipschitz if the
Riemannian metric on E is complete.

Here are three examples.

Example 3.1. Reading the paper of Lott and Shen [9] gave the author the idea
for this note. The first paragraph on page 281 shows that an exotic R4 with lower
quadratic curvature decay, quadratic volume growth and which does not collapse at
infinity is DFT .

Example 3.2. An early finite-type theorem is by Abresch [1] which says that if
the curvature decays faster than quadratic on some complete Riemannian exotic R4,
then it satisfies the DFT -property.

Example 3.3. An example involving mostly Ricci curvature and diameter is [2,
Thm. B, p. 356].

4. The proof of Theorem 1.1. Let E be any smoothing of R4. Say that a
flat topological embedding e : S3 ⊂ E is not a barrier to isotopy provided there is a
smooth vector field on E with compact support so that if ι : E → E is the isotopy
at time 1 generated by the vector field, then U ⊂ ι(U), where U is the bounded
component of E − e(S3).

Say that E has no barrier to isotopy to ∞ if, for every compact set K ⊂ E, there
is a flat topological embedding e : S3 ⊂ E such that K lies in the bounded component
of E − eK(S3) and such that eK is not a barrier to isotopy .

Proposition 4.1. Let E be a smooth, manifold homeomorphic to R4. If E has
no barrier to isotopy to ∞ then E satisfies the DFT -condition.

Proof. Given K compact, pick an eK : S3 → E with K in the bounded component
of E − eK(S3) such that eK is not a barrier to isotopy. Let χ1 be the smooth vector
field promised by the definition. Let U be the bounded component of E − eK(S3)
and notice U satisfies (1) and (2). Since K ⊂ U , there is another smooth vector field
χ such that χ vanishes on K and agrees with χ1 on a neighborhood of e(S3). Let
I : E × [0, 1] → E be the isotopy generated by the flow for χ. Since χ vanishes on
K, the isotopy I fixes K and since χ agrees with χ1 on e(S3), I1

(
e(S3), 1

)
⊂ E − U .

Hence I is the isotopy required for (3).

Proof of Theorem 1.1. Let ρ : E → [0,∞) be a proper Lipschitz function. Since
the critical values are bounded by hypothesis, there is an r0 such that for any critical
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point x ∈ E, ρ(x) < r0. Since ρ is proper, ρ−1
(
[0, r0]

)
is compact. Let e : S3 → E

be any flat embedding with ρ−1
(
[0, r0]

)
in the bounded component of E − e(S3). It

will be shown that e is not a barrier to isotopy, from which it follows that E has
no barrier to isotopy to ∞, from which it follows that E satisfies the DFT -property
using Proposition 4.1.

Since S3 is compact, ρ
(
e(S3)

)
⊂ [r1, r2] with r0 < r1. The idea is contained in the

proofs of [7, Lemma 3.1, p. 108] or [3, Lemma 1.4, p. 2]. They start by constructing a
vector field locally on ρ−1

(
[r1, r2]

)
and patching it together using a smooth partition

of unity. They observe that the conditions they need are open conditions so the field
can be taken to be smooth. Then the proofs show that the resulting flow (or the flow
for the negative of the constructed field) moves ρ−1(r1) out past ρ−1(r2) and so e(S3)
ends up in ρ−1(r2,∞) = E − ρ−1

(
[0, r2]

)
⊂ E − U since ρ

(
U

)
⊂ [0, r2].

5. Concluding remarks. Differential geometry can show that two smooth 4-
manifolds are diffeomorphic, avoiding the “greater than or equal to 5” hypothesis of
differential topology. As examples, the Cartan-Hadamard Theorem [10, Thm. 4.1,
p. 221] and the Cheeger-Gromoll Soul Theorem [10, Thm. 3.4, p. 215] both prove
that a 4-manifold with very restrictive curvature conditions is diffeomorphic to the
standard R4.

The results presented here start with much weaker hypotheses than the Cartan-
Hadamard or the Cheeger-Gromoll Soul Theorems, but the conclusions are also
weaker. One question would be whether some of these theorems could be strengthened
to show that the manifold was diffeomorphic to the standard R4. A second question
would be to use the DFT property to produce interesting metrics, perhaps metrics
strong enough to prove that a DFT R4 is standard.
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